2 min leitura
0

Radiação ultravioleta em frutas e hortaliças minimamente processadas

2 min leitura

O consumo de frutas e hortaliças minimamente processadas (MP) é crescente, atendendo a um público que busca alimentos saudáveis e prontos para o consumo.

De acordo com a International Fresh-Cut Produce Association (IFPA), produto minimamente processado é “qualquer fruta ou vegetal, ou combinação dos mesmos que foi fisicamente alterada de sua forma original, mas permanece em um estado fresco”.

A indústria de alimentos vem estabelecendo métodos não térmicos para o processamento de frutas, vegetais e produtos de origem animal, a fim de não produzir substâncias indesejáveis que possam alterar o sabor, o odor e a cor, aumentando a vida útil de produtos frescos.

A radiação ultravioleta (UV) é uma tecnologia próspera para o processamento de alimentos, pois é um método não tóxico, sem os efeitos adversos derivados de opções mais convencionais, como por exemplo, o processamento térmico.

A irradiação ultravioleta inativa as bactérias danificando seu DNA, o que impede sua proliferação. Apresenta, ainda, um efeito no metabolismo secundário de defesa nos vegetais: a produção de compostos antimicrobianos, as fitoalexinas. Várias outras vantagens também foram apresentadas na utilização de UV na desinfecção das frutas e hortaliças minimamente processadas, como a não formação de compostos tóxicos residuais na superfície do produto, o baixo custo e a não produção de odor.

Além disso, a irradiação ultravioleta provoca perda mínima de nutrientes e de qualidade sensorial, e baixo consumo de energia em comparação com outros processos de pasteurização térmica e não térmica. Os ajustes de parâmetros do processo de irradiação podem ser úteis para aperfeiçoar a técnica.

Contudo, são necessárias mais pesquisas para uso nas indústrias de alimentos, buscando métodos de conservação seguros e de baixo custo, sem comprometer a qualidade.

Autores: Valtemir Paula de Oliveira Júnior, nutricionista; Prof. Drª Geovana Rocha Plácido*, engenheira de alimentos; Prof. Dr. Celso Martins Belisário*, químico. 

*Docentes do Mestrado Profissional em Tecnologia de Alimentos do IF Goiano, campus Rio Verde

Referências

Balbinot, C. A., & Borges, C. D. (2020). Efeitos da radiação UV-C em alface e maçã minimamente processadas: uma revisão. Brazilian Journal of Food Technology23

Biancaniello, M., Popovi, V., Fernandez-Avila, C., Ros-Polski, V., & Koutchma, T. (2018). Feasibility of a novel industrial-scale treatment of green cold-pressed juices by UV-C light exposure. Beverages4(2), 29

Gayán, E., Condón, S., & Álvarez, I. (2013). Biological Aspects in Food Preservation by Ultraviolet Light: a Review. Food and Bioprocess Technology, 7(1), 1–20

IFPA (International Fresh-Cut Produce Association); PMA (The Produce Marketing Association). Diretrizes de manuseio para a indústria de produtos recém-cortados , 3ª ed .; IFPA: Alexandria, VA, USA, 1999; p. 5

Keyser, M., Miller, I. A., Cilliers, F. P., Nel, W., & Gouws, P. A. (2008). Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative Food Science & Emerging Technologies, 9(3), 348-354.

Ribeiro, C., Canada, J., & Alvarenga, B. (2012). Prospects of UV radiation for application in postharvest technology. Emirates Journal of Food and Agriculture, Abu Dhabi, 24(6), 586-597

Tawema, P., Han, J., Vu, K. D., Salmieri, S., & Lacroix, M. (2016). Antimicrobial effects of combined UV-C or gamma radiation with natural antimicrobial formulations against Listeria monocytogenes, Escherichia coli O157: H7, and total yeasts/molds in fresh cut cauliflower. LWT-Food Science and Technology, 65, 451-456.

Yaun, B. R., Sumner, S. S., Eifert, J. D., & Marcy, J. E. (2004). Inhibition of pathogens on fresh produce by ultraviolet energy. International journal of food microbiology, 90(1), 1-8.

Yin, R., Dai, T., Avci, P., Jorge, A. E. S., de Melo, W. C., Vecchio, D., … & Hamblin, M. R. (2013). Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Current opinion in pharmacology13(5), 731-762

2 min leituraO consumo de frutas e hortaliças minimamente processadas (MP) é crescente, atendendo a um público que busca alimentos saudáveis e prontos para o consumo. De acordo com a International Fresh-Cut […]

4 min leitura
0

Aquecimento ôhmico na inativação microbiana em leite e derivados

4 min leitura

Tecnologias emergentes na indústria de alimentos vêm sendo amplamente estudadas nos últimos anos. São tecnologias que, além dos benefícios das tecnologias convencionais, têm em paralelo diversas outras vantagens, sejam elas nutricionais, tecnológicas ou ambientais. O aquecimento ôhmico (AO) é uma dessas tecnologias  que vêm sendo pesquisadas com maior frequência nos últimos anos. É uma técnica capaz de converter energia elétrica em energia térmica. Nela, a forma de dissipação do calor na matriz alimentícia é mais uniforme e rápida, sendo um fator importante na manutenção das características do produto in natura.

Processamento mais rápido e eficaz, menor gasto energético, menor impacto ambiental, preservação de características sensoriais e nutricionais, além da maior formação de compostos bioativos são as principais vantagens de se utilizar AO no processamento de leite e derivados, sendo superior ao tradicional processo de pasteurização do leite. Além disso, AO mostra-se eficaz também no que se refere à eliminação de microrganismos deteriorantes e patogênicos de importância em produtos lácteos.

Os mecanismos que levam à inativação microbiana pelo AO são diversos. O primeiro deles é o calor, que promove a destruição da membrana celular e inativação enzimática na célula. Além do efeito térmico, durante o processamento pode ocorrer a formação de compostos que são altamente tóxicos para a célula, como radicais livres, oxigênio e hidrogênio livres, hidroxilas, e peróxido de hidrogênio, sendo estas substâncias praticamente inexistentes nos produtos após o processamento. Por fim, outro fenômeno que garante a eficácia contra microrganismos é a eletroporação, que consiste no acúmulo de cargas na membrana celular, levando à formação de poros, com posterior lise e morte celular.

Para uma eficiente inativação microbiana durante o processamento pelo AO, diversos fatores devem ser cuidadosamente verificados. De maneira geral, esses fatores podem ser divididos em extrínsecos e intrínsecos. Pode-se dizer que todos os parâmetros inerentes ao equipamento e sua operação, como campo elétrico, frequência, corrente, e também tempo e temperatura são considerados extrínsecos e influenciam diretamente o sucesso do processamento. Existe uma grande faixa de V/cm com a qual se pode trabalhar no processamento de alimentos. As variações desses parâmetros irão ditar quão eficaz será seu processamento, e também quanto tempo levará para que se atinja tempo/temperatura esperados. No processamento de leite e derivados são comuns variações de 2V/cm até 20V/cm a 60Hz por exemplo. Porém, em diferentes matrizes esses valores podem sofrer variações.

Os fatores intrínsecos são aqueles relacionados diretamente com a composição do alimento. Tipo de alimento, pH, umidade, teor de gordura, teor de proteína e concentração de sal, por exemplo, são alguns desses fatores que interferem diretamente no tratamento. Um dos compostos que mais tem capacidade de interferir nesta etapa é a gordura, que além de proteger os microrganismos, é um importante isolante térmico, além de diminuir a condutividade elétrica no alimento, sendo necessário ajustar os fatores extrínsecos a fim de otimizar o processo. Estudos verificando a interferência do teor de gordura presente no leite na eliminação de cepas de E. coli O157:H7, Salmonella Typhimurium e Listeria monocytogenes mostraram que quanto menor o teor de gordura, maior a redução populacional desses microrganismos quando se comparam amostras submetidas às mesmas condições de processo.

Outros estudos também avaliaram a eficácia do AO na inativação de Listeria monocytogenes. Em bebidas lácteas, houve reduções de 2,10 log UFC/mL, enquanto o tratamento térmico convencional reduziu 1,38 log UFC/mL, ambos em temperatura de 65ºC. Existem também trabalhos que demonstram sua ação contra diversos outros patógenos como Salmonella, E. coli, Clostridium e bolores e leveduras, nos mais diversos derivados lácteos, como queijo Minas frescal, doce de leite, leites fermentados, além de fórmulas infantis.

Imagem 1: E. coli O157:H7: (a) sem tratamento térmico, (b) tratamento térmico convencional, (c) tratamento por aquecimento ôhmico (Lee et al., 2012).

O aquecimento ôhmico mostra-se eficaz também na destruição de esporos bacterianos, sendo capaz de eliminar, por exemplo, bactérias do gênero Bacillus e Clostridium, microrganismos esses causadores de doenças de origem alimentar, e em alguns casos, deterioração de derivados lácteos.

A utilização do aquecimento ôhmico em conjunto com outras tecnologias emergentes também é opção viável no processamento de alimentos, como no caso de esterilização de embalagens. Dessa maneira é possível obter maior eficiência contra microrganismos que possam causar problemas no produto e ou doenças no consumidor.

Contudo, os desafios para utilização em escala industrial são grandes, principalmente quando se fala em indústrias lácteas de médio e grande porte. O primeiro grande desafio seria a adaptação da planta industrial, uma vez que indústrias já possuem seu desenho e fluxo de processos definidos, documentados e auditados. Dessa forma, a construção e/ou adaptação de um novo espaço, pensando no processamento de grandes volumes de leite, pode custar um valor alto e demandar grande tempo operacional. Paralelamente, existe a necessidade de treinamento de operadores para trabalhar com o equipamento, com conhecimento de todas as suas operações e variações que possam ocorrer durante o processo. Além desses fatores, o aquecimento ôhmico é uma tecnologia pouco conhecida por parte do mercado consumidor de lácteos. Assim, são necessárias campanhas para esclarecer as dúvidas e curiosidades a respeito dessa tecnologia, aumentando a confiança do consumidor nos alimentos submetidos a este processo.

Grandes passos já foram dados sobre os benefícios da utilização do aquecimento ôhmico em produtos lácteos, principalmente com relação à garantia da segurança microbiológica. Contudo, novos estudos ainda necessitam ser feitos para esclarecer e consolidar ainda mais sua importância como uma tecnologia eficiente no processamento de leite e derivados lácteos seguros.

Autores: Ramon S. Rocha1,2 e Adriano Gomes da Cruz2

1IFRJ, Departamento de Alimentos, 2UFF, Faculdade de Medicina Veterinária

Referências

Makroo, H. A., Rastogi, N. K., Srivastava, B. Ohmic heating assisted inactivation of enzymes and microorganisms in foods: A review. Trends in Food Science & Technology, v.97, p.451-465, 2020.

Müller, W. A., Ferreira Marczak, L. D., Sarkis, J. R. Microbial inactivation by ohmic heating: Literature review and influence of different process variables. Trends in Food Science & Technology, v.99, p.650-659, 2020.

Pereira, M. O., Guimarães, J. T., Ramos, G. L. P. A., do Prado-Silva, L., Nascimento, J. S., Sant’Ana, A. S., Franco, R.M., Cruz, A. G. Inactivation kinetics of Listeria monocytogenes in whey dairy beverage processed with ohmic heating. LWT, 127, 109420, 2020.

TIAN, X., YU, Q., WU, W., DAI, R. Inactivation of Microorganisms in Foods by Ohmic Heating: A Review. Journal of Food Protection, v.81, n.7, p.1093–1107, 2018.

4 min leituraTecnologias emergentes na indústria de alimentos vêm sendo amplamente estudadas nos últimos anos. São tecnologias que, além dos benefícios das tecnologias convencionais, têm em paralelo diversas outras vantagens, sejam elas […]

3 min leitura
0

Importância da técnica Multilocus sequence typing para investigação de doenças transmitidas por alimentos

3 min leitura

As doenças transmitidas por alimentos (DTA) são causadas pela ingestão de água ou de alimentos contaminados. No Brasil, entre 2009 e 2018, foram registrados no total 6.800 surtos de DTA, envolvendo aproximadamente 120 mil doentes e 99 óbitos. O aumento dos casos de DTA está relacionado ao crescimento da população mundial, ao processo de urbanização desordenado, ao crescimento da exportação de alimentos, ao alto consumo de fast-food, entre outras questões.

Os surtos de DTA são considerados eventos de saúde pública, sendo de notificação compulsória conforme a Portaria n.º 1.061/2020 do Ministério da Saúde. No entanto, os dados registrados de casos esporádicos e surtos de DTA são considerados subnotificados por diversos motivos, como a não procura dos serviços de saúde pelos pacientes com sintomas leves e o descarte do alimento suspeito, impedindo uma investigação completa.

Os métodos tradicionais de detecção dos micro-organismos em alimentos são confiáveis, porém demandam um certo tempo para a obtenção dos resultados. A caracterização molecular é uma ferramenta útil que permite não somente identificar os micro-organismos, como também analisar o perfil clonal das cepas isoladas. A detecção mais rápida do patógeno agiliza a adoção de medidas corretivas e preventivas para evitar futuros surtos, bem como o rastreamento da fonte da contaminação.

A técnica Multilocus sequence typing (MLST) pode ser utilizada para diagnóstico e monitoramento de surtos e casos eventuais por possuir um alto nível de discriminação entre os isolados. O MLST foi idealizado em 1998 para identificar relações clonais entre bactérias. Esse método é baseado na comparação da sequência genética de sete genes constitutivos, que são expressos continuamente em condições normais de crescimento dos microrganismos. O conjunto dos genes forma um perfil alélico denominado tipo sequencial (ST, do inglês Sequence Type), que pode ser organizado em grupos relacionados formando os complexos clonais (CC) de acordo com o número de alelos compartilhados, além de definir o possível genótipo central do grupo. Essas informações são inseridas em um banco de dados online com acesso aberto que recebe, organiza, compara e disponibiliza informações sobre as sequências de ácido desoxirribonucleico (DNA) depositadas.

Baseando-se nas informações presentes no banco de dados, pode ser realizada uma comparação entre todas as cepas depositadas. Por exemplo, um isolado bacteriano de origem alimentar sofrerá o processo de extração e amplificação por reação em cadeia da polimerase (PCR) do seu DNA. Após essas etapas, realiza-se a purificação dos produtos da PCR, o sequenciamento e a análise das sequências, sendo obtido ao final um ST para o isolado. Este ST pode ser comparado com todos os outros isolados de amostras clínicas no mundo que estão depositadas no banco. Com base nas informações oriundas da análise, pode-se verificar a possibilidade de um ST isolado de determinadas categorias de alimentos estar relacionado a casos de infecção.

Ademais, a partir dos dados obtidos, também é possível verificar a distribuição deste ST não somente no país de origem, mas também em outros países, permitindo a realização de uma análise da distribuição geográfica e temporal. Assim, é possível obter um panorama sobre a epidemiologia e diversidade genética, auxiliando a investigação de casos esporádicos e surtos de DTA.

Autores: Paula V. Costa1, Leonardo E. O. Costa1, Janaína S. Nascimento1, Marcelo L.L. Brandão2

1Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ)
2Fundação Oswaldo Cruz, Rio de Janeiro, RJ

Referências

BRASIL. Ministério da Saúde. Manual integrado de prevenção e controle de doenças transmitidas por alimentos. Brasília: Editora do Ministério da Saúde, 2010. 158p. Disponível em:<https://bvsms.saude.gov.br/bvs/publicacoes/manual_integrado_vigilancia_doencas_alimentos.pdf> Acesso em: 24 ago. 2021.

BRASIL. Ministério da Saúde. Surtos de doenças transmitidas por alimentos  no Brasil: Informe 2018. Brasília, 2019. Disponível em: <https://portalarquivos2.saude.gov.br/images/pdf/2019/fevereiro/15/Apresenta—-o-Surtos-DTA—Fevereiro-2019.pdf> Acesso em: 24 ago. 2021.

DROSINOS, E. H.; HADJILOUKA, A.; PARAMITHIOTIS, S. Molecular typing of major foodborne pathogens. In: HOLBAN, A. M.; GRUMEZESCU, A. M. Foodborne diseases, 2018. 15. ed. Academic Press, 564. cap. 13, p. 422-472.

JOLLEY, K. A; MAIDEN, M. C. Using multilocus sequence typing to study bacterial variation: prospects in the genomic era. Future Microbiology, v.9, n. 5, p. 623-630, 2014.

MAIDEN, M. C.; RENSBURG, M. J. J. V.; BRAY, J.; EARLE, S. G.; FORD, S. A.; JOLLEY, K. A.; MCCARTHY, N. D. MLST revisited: the gene-by-gene approach to bacterial genomics. Nature Reviews Microbiology, v. 11, n. 10, p. 728-736, 2013. 

3 min leituraAs doenças transmitidas por alimentos (DTA) são causadas pela ingestão de água ou de alimentos contaminados. No Brasil, entre 2009 e 2018, foram registrados no total 6.800 surtos de DTA, […]

5 min leitura
4

Plant-based food: será que as carnes vegetais são seguras?

5 min leitura

O mercado de alimentos está avançando de forma considerável e já é possível ver todo tipo de alimento à base de plantas nas gôndolas das grandes redes. Grandes conglomerados produtores de carne bovina também já se renderam e montaram linhas de alimentos plant-based.

Inúmeras marcas e tipos de imitação de carnes de origem vegetal estão surgindo e já são consumidas por um número cada vez maior de pessoas. Aí vem a pergunta: será que estas carnes são seguras?

Uma pesquisa realizada pelo GFI (Good Food Institute) realizada em 2020 identificou que metade das pessoas já reduziu seu consumo de carne nos últimos 12 meses. Apesar disso, o consumo de proteína de origem animal ainda é bastante alto, independentemente da categoria.

Outro estudo realizado em 2018 no Canadá mostrou que metade dos canadenses estão procurando consumir produtos alternativos à carne e o interesse dessa nação só cresce desde então.

Os consumidores estão buscando alternativas para a carne, embora apenas cerca de 1% deles tenha de fato abandonado este hábito por completo.

 

O que leva o consumidor a escolher o plant-based food?

  • Saudabilidade: os consumidores relacionam o consumo de produtos à base de vegetais como sendo mais saudável.
  • Questões ambientais: muitos consumidores acreditam que os alimentos plant-based causam menor impacto ao meio ambiente devido à sua forma de produção.
  • Curiosidade: muita gente tem curiosidade de conhecer o sabor dos hambúrgueres vegetais ou dos iogurtes plant-based. Com isso, a curiosidade é uma grande motivação de compra.
  • Diversificação: com a nova tecnologia, o consumidor final hoje tem uma opção diferente para o consumo de proteína sem depender apenas de produtos de origem animal.

Esse mercado nos leva a algumas reflexões:

  1. Esses produtos são modismo ou vieram para ficar?
  2. Quais as vantagens do consumo destes produtos em termos nutricionais?
  3. São realmente melhores para o meio ambiente do que as carnes reais?
  4. Os alimentos plant-based são considerados mais naturais ou ultraprocessados?
  5. Esses produtos são seguros?

1. Ao que tudo indica vieram para ficar e as pesquisas indicam que haverá crescimento expressivo neste mercado ao longo dos próximos anos. Segundo informações do GFI (The Good Food Institute), o mercado global desse segmento está estimado entre US$ 100 bilhões a US$ 370 bilhões até 2035.

2.  Não confunda dieta plant based com alimento plant based. Na dieta recomenda-se o consumo de alimentos vegetais sem processamento ou minimamente processados, enquanto as carnes plant based são processadas e portanto apresentam maior numero de ingredientes, aditivos e conservantes.

3. Essa pergunta é bem complexa e ainda não há uma resposta definitiva. Levando-se em conta a área necessária para a produção animal aqui no Brasil, sim, ainda usamos grandes extensões, mas para produzir a soja (ingrediente muito utilizado nos alimentos plant-based) também se usam grandes áreas e adicione-se a isso o uso de agroquímicos, transgênicos, etc.

4. A maioria dos estudiosos sobre o assunto considera este alimento ultraprocessado, uma vez que a necessidade de apresentar características semelhantes à carne de origem animal exige a utilização de mais ingredientes e processos industriais.

5. Aqui vou me demorar um pouco para responder, e faço um convite para refletirem comigo:

Primeira questão – Quais ingredientes são utilizados?

Para determinar se um alimento é seguro ou não, é preciso conhecer sua composição. As proteínas alternativas utilizadas geralmente são as de soja, do trigo ou glúten. Esses elementos formam a base, enquanto outros são adicionados ou alterados para criar o produto final.

A escolha dos ingredientes tem entre outras funções proporcionar benefícios nutricionais, mas também simular sabores, textura, cores, suculência, aspecto marmóreo e até a sensação de sangue da carne. Para isso são utilizados diversos ingredientes, como trigo, feijão, aveia, maçã, beterraba, etc.

Para se ter uma ideia da diversidade, a leg-hemoglobina (proteína extraída da raiz da soja) tem aspecto e função de imitar o sangue da carne. O dióxido de titânio (de origem mineral) é usado para iluminar e dar a aparência de carne de frango nesses alimentos. Extratos de leveduras, açúcares e especiarias podem ser utilizados para melhorar a palatabilidade, já que esse é um grande desafio quando se trata de alimentos plant-based. Vitaminas e minerais também podem ser utilizados para compensar deficiências nutricionais. Ácidos orgânicos ou compostos de fosfato têm como função aumentar o prazo de validade.

A que tipo de processamento são submetidos?

Algumas carnes passam pelo processo de extrusão que submete os produtos a altas temperaturas e altas pressões para facilitar a moldagem e a textura do produto, além de reduzir a carga microbiana da massa. Os produtos alimentares fabricados por extrusão têm geralmente um elevado teor de amido.

Esses alimentos apresentam alguns desafios aos profissionais da área:

  • Presença de riscos físicos, químicos e biológicos: qualquer alimento pode conter perigos potenciais e eles devem ser bem avaliados
  • Criação de novos alérgenos: proteínas de ervilha, por exemplo, usadas em substitutos de carne altamente processados podem desencadear alergias a amendoim em algumas pessoas
  • Introdução de contaminantes: o consumo repetido de novas proteínas pode ser tóxico a longo prazo, porém isso ainda requer estudos mais aprofundados
  • Presença de elementos transgênicos: embora a pesquisa da GFI (The Good Food Institute) tenha identificado que isso não é um problema para o consumidor, é preciso lembrar que pessoas que são contra o consumo de OGM devem estar atentas aos rótulos.
  • Presença maior de aditivos e coadjuvantes artificiais: muitos aditivos são utilizados para melhorar os aspectos e imitar a carne de origem animal. Produtos com menor quantidade de ingredientes tendem a apresentar sabor bem diferente do de carne.
  • Desafios de legislação: a tecnologia evolui muito rápido e neste caso as regulamentações vão surgindo depois. O Mapa (Ministério da Agricultura, Pecuária e Abastecimento) iniciou este ano a discussão sobre o tema a fim de criar subsídios para regular este mercado.

Possivelmente, o desafio mais preocupante sejam os  alérgenos desconhecidos presentes nas imitações de carnes. A soja e o trigo são dois dos alérgenos comuns. Leguminosas como grão de bico e ervilha também estão fortemente associados a alergias.

Como as alternativas à carne usam proteínas concentradas isoladas, ao comer um desses produtos, o consumidor poderia inadvertidamente consumir uma dose muito maior de um alérgeno do que comeria em um alimento inteiro.

Como deve ser realizado o preparo deste produto?

Os riscos de comer carne crua ou mal passada estão bem documentados. O mesmo não pode ser dito para carnes de imitação, mas ainda assim devem ser bem cozidas (de acordo com as especificações do fabricante) porque legumes, grãos e vegetais podem ficar contaminados com bactérias patogênicas, então cozinhá-los bem é importante para a segurança.

Carnes à base de vegetais não devem ser tratadas como carne

Os consumidores e as empresas não devem tentar substituir a carne por algo que simplesmente não seja carne, ou tratar esses produtos como uma substituição exata. Não se deve presumir que as não-carnes são necessariamente mais seguras do que a verdadeira carne. Não há uma resposta simples para saber se as carnes vegetais são mais arriscadas do ponto de vista da segurança do que as carnes reais, já que nenhum estudo de longo prazo foi realizado.

As embalagens e rótulos devem apresentar os dados com clareza para evitar induzir o consumidor a erro, achando que este produto é igual à carne. Os ingredientes e a presença de alérgenos deve ser adequada e seguir as recomendações da legislação.

Para o consumidor, a dica é ler os ingredientes e analisá-los, observando principalmente a quantidade de gordura, sódio e açúcar e todo tipo de elementos desconhecidos.

Estes produtos podem sim ser considerados seguros. Como todo produto industrializado, ele está sujeito a falhas e por isso é importante buscar alimentos que demonstrem ter controle de qualidade, processos bem definidos e clareza na descrição do rótulo. Produtos “artesanais” são seguros desde que apresentem credenciais e controle de qualidade, porém é claro que aqueles feitos sem controle e acompanhamento profissional correm mais risco de apresentar problemas, uma vez que a legislação ainda não está bem clara sobre o tema e com isso a fiscalização ainda precisa avançar.

Referências:

https://gfi.org.br/wp-content/uploads/2021/02/O-consumidor-brasileiro-e-o-mercado-plant-based.pdf

https://www.foodsafety.ca/blog/plant-based-meats-food-safety-risk

https://www.uol.com.br/vivabem/noticias/redacao/2020/10/21/nao-se-engane-mesmo-parecendo-saudavel-carne-vegetal-e-ultraprocessado.htm

https://www.uol.com.br/vivabem/noticias/redacao/2020/10/21/nao-se-engane-mesmo-parecendo-saudavel-carne-vegetal-e-ultraprocessado.htm

https://laiob.com/blog/o-mercado-de-carne-vegetal-no-brasil/

5 min leituraO mercado de alimentos está avançando de forma considerável e já é possível ver todo tipo de alimento à base de plantas nas gôndolas das grandes redes. Grandes conglomerados produtores […]

4 min leitura
1

Tratamento fotodinâmico com Led: alternativa não térmica para conservação de alimentos

4 min leitura

Nos processos industriais, podemos nos deparar com situações nas quais o alimento está suscetível a diferentes contaminações, que podem ser provenientes de superfícies ou utensílios mal higienizados, da matéria prima ou da manipulação. Assim, as doenças transmitidas por alimentos podem se propagar, produzindo diversos surtos alimentares em várias partes do mundo. Os tratamentos tradicionais para o controle do crescimento microbiológico usam o calor (ex: pasteurização e esterilização comercial) como forma de inativar os microrganismos. Contudo, estes processos podem resultar na depreciação da qualidade dos produtos. Neste aspecto, as tecnologias emergentes não térmicas, como luz UV, PEF e aerossolização apresentam grande vantagem frente aos processos térmicos, reduzindo os danos ocasionados pelo aquecimento, sendo uma tendência no processamento de alimentos. Entre esses processos, o tratamento fotodinâmico com Led tem sido bastante estudado, apresentando resultados promissores na inativação microbiana em alimentos.

O mecanismo baseia-se na fotoativação do fotossensibilizador irradiado em um comprimento de onda na faixa visível do espectro eletromagnético da luz. Após esta interação, inicia-se uma série de reações oxidativas citotóxicas na célula microbiana, causando a morte do microrganismo. Os principais elementos para o uso do método são: a presença de uma substância fotossensibilizadora, uma fonte de luz e a presença de oxigênio atmosférico. Assim, o mecanismo só ocorre mediante a presença desses elementos, sendo impraticável na ausência de algum deles.

Os fotossensibilizadores mais estudados em alimentos são os naturais como: a clorofila, a curcumina e a riboflavina. Na técnica do tratamento fotodinâmico os fotossensibilizadores são os compostos sensíveis à luz que desencadeiam as reações, sendo responsáveis pela eficácia do tratamento aumentando o alcance, seletividade, a segurança e o sucesso dos resultados. A luz é um importante componente da técnica, pois a escolha do diodo emissor de luz, comumente chamado de LED, determina o comprimento de onda que irá interagir com o fotossensibilizador. Para a escolha da melhor fonte de luz existem seis subdivisões de comprimento de onda na região do visível e entre elas as luzes azul (450–500 nm), verde (500–570 nm) e vermelha (610–760 nm) são habitualmente usadas na pesquisa e na indústria da área de alimentos.

O mecanismo de ação inicia-se com a absorção da luz pelo fotossensibilizador, provocando a excitação dos elétrons nas moléculas, promovendo-os para um estado singlete de energia. Com o estado singlete ativado há um processo de cruzamento intersistemas (CI) passando para estado triplete excitado. A ação do fotossensibilizante no estado triplete pode seguir por 2 tipos de reações, a do tipo I e a do tipo II. A reação tipo I é responsável pela formação de radicais livres e interação destes radicais com oxigênio intracelular. No tipo II, o fotossensibilizante no estado triplete excitado transfere energia para o oxigênio molecular, provocando a formação de oxigênio molecular singlete (1O2). O 1O2 formado no mecanismo de reação do Tipo II é altamente reativo e citotóxico e, juntamente aos componentes gerados no mecanismo de reação do Tipo I, reage com as biomoléculas promovendo oxidação celular. Ambas reações do Tipo I e II ocorrem de forma simultânea e são dependentes da concentração do fotossensibilizante, da intensidade da luz, do comprimento de onda característico do fotossensibilizador e da concentração de oxigênio presente. É importante mencionar que cada fotossensibilizador possui um rendimento quântico de produção de 1O2 determinado.

A tecnologia apresenta um amplo espectro de atuação, podendo ser utilizada contra bactérias Gram positivas e negativas, além de fungos superficiais. Na literatura podemos encontrar os relatos da eficácia da aplicação do método em diferentes alimentos e contra diferentes microrganismos. Uma pesquisa realizada em 2011 relatou que a aplicação do pigmento esverdeado de clorofilina sódica de cobre utilizando 1 mM por 5 min e irradiação por LED de 400 nm e 12 mW/cm² de potência, com uma dose de 14 J/cm² por 30 min, foram capazes de reduzir 1,8 log de L. monocytogenes em morangos, aumentando a vida de prateleira em 2 dias. Em outra pesquisa publicada no Journal of Food Process Engineering, os autores observaram que a aplicação de curcumina utilizando 16 mM por 60 min utilizando o LED de 465 – 470 nm e 30,2 mW/cm², com uma dose de 36 J/cm² por 20 min, foram capazes de reduzir 2,4 log de E.coli em uvas. Recentemente, um estudo publicado na revista Food Chemistry observou uma redução de 0,95 log de E.coli em cortes frescos de maçã, utilizando solução de curcumina de 2 µM por 5 min e irradiando com LED de 420 nm e 298 mW/cm², com uma dose de 152 J/cm² (510 s). Em março de 2020, um artigo publicado na Food Control demonstrou que a aplicação de 300 ppm de curcumina e LED de 430 nm e 7,2 W, com uma dose de 64,200 J/cm², foram capazes de reduzir 2 log de L. monocytogenes em 5 min de tratamento em pés de galinha.

Apesar dos efeitos na inativação de microrganismos, existem alguns fatores limitantes dentro da técnica que devem ser observados, como: baixa penetração de luz em sólidos e líquidos opacos, efeito apenas na descontaminação superficial dos alimentos e possibilidades de alteração em atributos sensoriais, como cor e sabor. Apesar dos atributos sensoriais serem extremamente importantes para determinar o sucesso de um tratamento, ainda há poucos estudos realizados para verificação desses atributos. Contudo, os estudos existentes apontam que o alimento não sofre uma alteração extrema, como observado em uma pesquisa envolvendo o tratamento em morangos, na qual não se observou diferença no sabor. Em contrapartida, pesquisadores publicaram um artigo na Food Control relatando uma alteração indesejável na cor do salmão defumado, quando aplicaram 100 µM de riboflavina por 160s irradiado com um LED de 15-58 mW/cm² de 460 nm e uma dose de 2400 J/cm² (160 s), que resultou na redução de 1,2 log de L. monocytogenes. Isso aponta que o tratamento deve ser explorado a fim de indicar combinações eficientes de fotossensibilizadores e condições da aplicação dos LEDs que podem ser usados para melhorar o método.

O uso do tratamento fotodinâmico com LED apresenta-se como uma tecnologia promissora para inativação superficial de microrganismo em alimentos, podendo ser aplicado, principalmente, em ambientes de armazenamento de frutas, vegetais e laticínios. Contudo, mais pesquisas devem ser realizadas para otimizar as condições do processamento e para divulgar esta tecnologia inovadora, a fim de aperfeiçoar a técnica para sua plena aplicação industrial.

Autores convidados: Jordana dos Santos Alves, Marilene Silva Oliveira e Leandro Pereira Cappato, todos do IF Goiano – Campus Rio Verde

Referências

D’SOUZA, C., YUK, HG, KHOO, GH, & ZHOU, W. Application of light?emitting diodes in food production, postharvest preservation, and microbiological food safety. Comprehensive Reviews in Food Science and Food Safety, v. 14, n. 6, p. 719-740, 2015.

GHATE, V. S., ZHOU, W., & YUK, H. G. Perspectives and trends in the application of photodynamic inactivation for microbiological food safety. Comprehensive reviews in food science and food safety, v. 18, n. 2, p. 402-424, 2019.

HYUN, J. E., & LEE, S. Y. Blue light-emitting diodes as eco-friendly non-thermal technology in food preservation. Trends in Food Science & Technology, v. 105, p. 284-295, 2020.

4 min leituraNos processos industriais, podemos nos deparar com situações nas quais o alimento está suscetível a diferentes contaminações, que podem ser provenientes de superfícies ou utensílios mal higienizados, da matéria prima […]

3 min leitura
0

Food Defense – O caso da JBS e uma reflexão sobre TI e TO

3 min leitura

Todos nós fomos surpreendidos com a notícia no início do mês de Junho sobre o ataque cibernético sofrido pela JBS (veja a reportagem aqui). A JBS, uma das maiores produtoras de carne bovina e suína do mundo, foi vítima de um grande ataque cibernético no fim de semana do Memorial Day (31/05/21), levando ao fechamento de fábricas na América do Norte e Austrália.

Em 2 de junho, o FBI divulgou um comunicado atribuindo o ataque ao REvil, um grupo de língua russa que fez algumas das maiores demandas de ransomware nos últimos meses. Ransomware é um tipo de malware que restringe o acesso ao sistema infectado com uma espécie de bloqueio e cobra um resgate em criptomoedas para que o acesso possa ser restabelecido. Caso isso não ocorra, arquivos podem ser perdidos e até mesmo publicados.

Em 9 de junho, a subsidiária da JBS nos Estados Unidos informou que pagou o equivalente a US$ 11 milhões em resgate após o ataque hacker à sua operação no país. A empresa afirmou que a maioria de seus frigoríficos estava em plena operação no momento do pagamento. Em comunicado, a JBS apontou que a decisão de pagar o resgate foi tomada após consultar especialistas em segurança digital. O objetivo, segundo a companhia, foi reduzir problemas relacionados à invasão e evitar o vazamento de dados.

Ataques de hackers são cada dia mais comuns e estão, na maior parte das empresas certificadas em uma norma reconhecida pelo GFSI, mapeados nos Planos de Food Defense – já falamos sobre isso aqui no Food Safety Brazil.

A Revista Food Quality & Safety, na ocasião do evento da JBS, conversou com Stephen Streng, analista de defesa de alimentos do Food Protection and Defense Institute da University of Minnesota em St. Paul, e a fala dele pode nos trazer vários insights, inclusive relacionados à cultura de segurança de alimentos.

“As melhores práticas de segurança cibernética e controles de segurança para sistemas de TO [tecnologia operacional] e TI são bem conhecidos e há uma tonelada de recursos disponíveis”.

“O maior problema é assumir o compromisso de implementá-los, pois isso custa tempo e dinheiro. Esperançosamente, com a recente onda de ciberataques amplamente divulgada, as empresas começarão a ver que custará mais não dar atenção e recursos adequados à segurança cibernética. ”

“A maioria dos processadores e fabricantes de alimentos tem uma grande cultura de segurança de alimentos. Eles precisam incorporar a segurança cibernética porque, especialmente quando se trata de TO, a segurança cibernética insatisfatória é um problema de segurança de alimentos.”

A reportagem completa você encontra aqui.

Ao ler isso eu me perguntei se nós, profissionais da indústria de alimentos aqui no Brasil, sabemos o que é TO. Você já ouviu falar? Entenda aqui.

Ao pesquisar mais sobre o assunto, encontrei alguns dos riscos relacionados à segurança de TO que as empresas de alimentos e bebidas enfrentam. Estes incluem:

  • Infecção por malware (caso JBS) – sem os controles de segurança adequados, ambas as ameaças direcionadas e não direcionadas têm a liberdade de manobra de ambientes de TI para TO. O potencial transbordamento de um ataque de malware para redes TO pode ser caro – interrompendo a produção e criando problemas de segurança e conformidade;
  • Ameaça de acesso remoto de terceiros – fornecedores externos acessam remotamente as redes de TO das fábricas para fazer a manutenção das máquinas existentes, incluindo a realização de correção de erros e leituras de desempenho. Isso expõe os sistemas e controladores no chão de fábrica a um possível comprometimento se os sistemas da parte autorizada forem infectados com malware, suas credenciais de acesso forem roubadas ou se eles não aderirem às práticas recomendadas de segurança. Também é importante ter visibilidade do uso não autorizado e inadequado do acesso;
  • Alteração na operação do controlador em instalação remota – as instalações de tratamento de água, que garantem água potável para o processo de fabricação, normalmente estão fisicamente isoladas da planta. Espera-se que os sistemas que administram essas instalações operem da mesma maneira todos os dias. Qualquer mudança pode indicar uma ameaça de contaminação da água, mas a maioria das empresas não tem visibilidade granular desses sistemas para entender e explicar as mudanças. Ataques cibernéticos à estações de tratamento de água nos Estados Unidos têm acontecido nos últimos anos. Veja a reportagem sobre esses casos aqui.

Diante de tudo isso, fica a pergunta: será que os nossos planos de Food Defense estão realmente adequados quando falamos de ataques cibernéticos? Quais são as possíveis ações de mitigação? O pessoal de TI da sua empresa faz parte da equipe de Food Defense? Os sistemas de TO utilizados pela sua empresa foram mapeados e/ou contemplados dentro da sua avaliação de Food Defense? Os sistemas de TI e TO da sua empresa convergem de forma adequada?

A grande verdade é que quando falamos de segurança de alimentos nos dias atuais, podemos usar Shakespeare: “Há mais coisas entre o céu e a terra do que sonha a nossa vã filosofia”.

3 min leituraTodos nós fomos surpreendidos com a notícia no início do mês de Junho sobre o ataque cibernético sofrido pela JBS (veja a reportagem aqui). A JBS, uma das maiores produtoras […]

3 min leitura
0

Movimento Clean Label e seus impactos em Segurança de Alimentos

3 min leitura

Você já deve ter ouvido falar de Clean Label, certo? Afinal esse movimento tem ganhado muita força nos últimos tempos.

No centro do movimento de Clean Label, há uma mudança subjacente nas percepções das pessoas sobre os alimentos e o que eles deveriam ser. Embora ainda não exista legislação a respeito, há basicamente 3 diretrizes de consenso que caracterizam estes produtos:

  • produtos naturais (sem aditivos artificiais e/ou químicos) e/ou minimamente processados,
  • com lista de ingredientes simples/curta,
  • com compostos de nomes conhecidos do consumidor.

Nesse artigo vamos nos ater à primeira diretriz. Visando produzir alimentos mais naturais ou menos processados, muitas indústrias de alimentos têm testado novas formulações e/ou novos processos, como fórmulas sem conservantes ou produtos menos processados, reduzindo ou eliminando etapas como, por exemplo, um tratamento térmico que prolongaria a vida de prateleira desse produto – você já parou para pensar nas implicações disso para a segurança de alimentos?

Quando uma indústria opta por tirar um conservante de uma formulação ou reduzir um processamento, isso pode gerar uma reação em cadeia pois ela passa a cobrar de seus fornecedores uma melhor qualidade das matérias primas, principalmente em termos microbiológicos.

Vamos entender melhor: todos nós sabemos que a qualidade da matéria prima é essencial para a fabricação de um produto seguro, dentro de padrões microbiológicos especificados. A indústria de alimentos, em muitas ocasiões, se responsabiliza por isso – por reduzir contaminantes a níveis aceitáveis. O APPCC é um bom exemplo: quem aqui nunca se deparou com a clássica pergunta “essa etapa foi especificamente projetada para prevenir, eliminar ou reduzir perigos a níveis aceitáveis?” Como fornecedor, que fornece matéria prima a uma indústria de alimentos, há o pensamento de que uma especificação microbiológica pode ser flexibilizada visto que o próximo elo se tornará o responsável pelo controle – a própria ISO 22.000 estabelece essa possibilidade no requisito 7.4.2. Com o Clean Label, não mais!

Ao seguir a tendência de Clean Label, essa responsabilidade é passada (ou dividida) ao elo anterior da cadeia, os fornecedores. Estes passam então a ter a necessidade de implementar (ou pelo menos considerar) uma etapa de inativação ou redução microbiana em seus processos.

Dessa forma, os fornecedores, também indústrias de alimentos, começam a pesquisar formas de garantir matérias primas de “melhor” qualidade, ou seja, formas de descontaminar o produto. É aí que entramos com um outro assunto que está está muito em voga: as tecnologias emergentes. O Food Safety Brazil já trouxe esse tema – veja aqui  e aqui.   Por definição, tecnologias emergentes são aquelas que têm o potencial para criar ou transformar o ambiente de negócios nos próximos 5 a 10 anos e poderão alcançar grande influência econômica, mas que ainda não se consolidaram.

Vamos a um exemplo: farinha de trigo. O processo de fabricação da farinha de trigo é realizado por um moinho de trigo, onde não há nenhuma etapa de inativação microbiana. O trigo, por sua vez, vem do solo, habitat natural de microrganismos. Hoje em dia tem sido testada a utilização de ozônio para descontaminação de farinhas – ozônio é uma tecnologia emergente. Leia mais sobre isso aqui. Outro bom exemplo são os fabricantes de temperos que servem de matéria prima para indústrias de alimentos. Sim, temperos – onde microrganismos patógenos, como a salmonela podem se desenvolver e que alguns ainda insistem em dizer que o “produto é seco e não precisamos nos preocupar”. Tecnologias emergentes como luz pulsada e plasma frio têm sido estudadas pois, além de descontaminar o produto, reduzem o impacto adverso do processamento nas propriedades organolépticas, nutricionais e também funcionais deste produto.

A verdade é que a onda Clean Label vai muito além dos novos hábitos de consumo. Ela apresenta impactos significativos em segurança de alimentos – as indústrias querem atender aos desejos de seus consumidores e para tal precisam criar robustez em seus processos. Do ponto de vista de segurança de alimentos isso é um enorme desafio, mas também é um grande avanço pois chama a responsabilidade para toda a cadeia de fornecimento.

3 min leituraVocê já deve ter ouvido falar de Clean Label, certo? Afinal esse movimento tem ganhado muita força nos últimos tempos. No centro do movimento de Clean Label, há uma mudança […]

3 min leitura
4

Admirável mundo novo – alimentos reciclados!

3 min leitura

Que, ao longos dos anos, a indústria de alimentos vem passando por transformações gigantescas, todos nós sabemos. Já tivemos artigo no Food Safety Brazil falando de alimentos do futuro (veja aqui), mas você já ouviu falar de alimentos reciclados?

Eu costumo falar nos treinamentos que ministro que sou da época da NASA – quando o HACCP foi “criado para os astronautas” e o conceito de segurança de alimentos era ainda embrionário. Nessa ocasião, mal fazíamos gestão da qualidade na indústria de alimentos, quem dirá HACCP.

Vocês devem então imaginar a minha surpresa com um novo conceito e tendência na área de alimentos que vem sendo muito comentado: alimento reciclado – em inglês chamado de “upcycled food”. Você já ouvir falar?

No início, me perguntei se não seria similar ao subproduto de determinada indústria, que é usado por outra indústria alimentícia como matéria prima, ao qual já estamos bastante acostumados:

“Um subproduto é um produto secundário derivado de um processo de produção; não é o produto principal sendo produzido.”

Um exemplo clássico de subproduto é o soro de leite utilizado na panificação, nos salgadinhos, nos sorvetes e nas sobremesas lácteas, ou ainda como realçador de sabor de molhos para saladas, emulsificante e fonte de cálcio.

Mas “upcycled food” tem outra definição: para nós, seria algo semelhante a “resíduo” – aquele que é descartado pela indústria de alimentos e vai para o lixo. Conforme definido pela Upcycled Food Association (UFA) dos Estados Unidos, os alimentos reciclados “usam ingredientes que, de outra forma, não seriam destinados ao consumo humano, são adquiridos e produzidos usando cadeias de suprimentos verificáveis e têm um impacto positivo no meio ambiente“. Ou seja, os alimentos reciclados são normalmente feitos com ingredientes que não seriam considerados produtos alimentícios comercializáveis, sejam eles subprodutos de qualidade, subprodutos de outras manufaturas ou restos de preparação de alimentos, cada um dos quais normalmente sai da cadeia de abastecimento alimentar. Ao desviar esses componentes alimentares de seus destinos tradicionais de fim de vida e incorporá-los como ingredientes seguros e nutritivos em novos produtos alimentícios, os alimentos reciclados podem contribuir para a redução do desperdício de alimentos de maneiras que vão além de uma estratégia de redução de aterro, até de conceituar excedentes e subprodutos alimentares como matérias-primas valiosas.

Se você acha impossível imaginar como o resíduo se torna alimento novamente, achei na internet alguns exemplos interessantes que já estão sendo trabalhados, tais como:

  1. Aqua Botanical, Austrália

    O Aqua Botanical está trabalhando para criar água potável para combater a escassez de água, um dos maiores problemas do mundo. A empresa extrai, filtra e mineraliza a água evaporada durante o processo de concentração de sucos.

  2. Kromkommer, Holanda

    A Kromkommer foi fundada em 2012 para resgatar produtos imperfeitos que, de outra forma, seriam jogados fora. Em 2014, a empresa lançou Wonky Veggie Soup, uma linha de sopas criada a partir de produtos resgatados.

  3. NETZRO, Estados Unidos

    Criada em 2014 como uma empresa de ingredientes reciclados, a NETZRO trabalha com grandes e pequenos agricultores para colher subprodutos de alimentos e desenvolver novos ingredientes inovadores. Alguns projetos incluem o reaproveitamento de cascas de ovos como fontes de cálcio e de grãos já usados em outros processos para obtenção de fibras e proteínas.

  4. Pure Plus, Estados Unidos

    Pure Plus transforma frutas e vegetais imperfeitos em um substituto do açúcar em pó que pode ser integrado em alimentos e bebidas. Seu objetivo é desviar os resíduos de frutas e vegetais para reduzir o impacto ambiental e o custo do desperdício de alimentos.

  5. RISE + WIN Brewing Co., Japão

    Usando sobras de cascas de frutas cítricas e garrafas retornáveis, a RISE + WIN Brewing Co. está fazendo o upcycling de produtos em cada etapa do processo de fermentação. O grão descartado após o processo de fabricação da cerveja, por exemplo, é utilizado para fazer granola e doces vendidos em seu armazém.

  6. Rubies in the Rubble, Reino Unido

    Jenny Costa, de Londres, criou Rubies in the Rubble em 2012 com o objetivo de fazer condimentos a partir de produtos alimentícios rejeitados. Rubies também faz maionese com aquafaba, uma alternativa líquida de grão de bico aos ovos e que geralmente é jogada fora.

  7. Toast Ale, Reino Unido

    A Toast Ale usa o pão excedente doado para substituir um terço da cevada maltada usada no processo de fabricação da cerveja.

  8. Projeto de grãos reciclados, Nova Zelândia

    O Upcycled Grain Project usa grãos de cervejarias em toda a Nova Zelândia para criar salgadinhos voltados para a saúde.

  9. Wize Monkey, Canadá

    A organização trabalha para ajudar os agricultores a manter uma renda durante o ano todo, usando folhas da planta do café arábica, muitas vezes negligenciada, para fazer chá.

Para ler mais sobre os exemplos acima e conhecer detalhes, como prêmios ganhos, acesse aqui.

Depois de ler estes exemplos, conseguimos entender melhor e perceber que de fato há coisas bastante inovadoras – outras já mais conhecidas, como as sopas feitas a partir de vegetais rejeitados. A questão é que essa tendência tem ganhado cada vez mais destaque – em dezembro de 2020 a UFA (Upcycled Food Association) publicou um padrão de certificação para ingrediente reciclado e produto contendo ingrediente reciclado. O padrão inclui requisitos de rastreabilidade, mas não aprofunda em requisitos relacionados à segurança de alimentos. Veja aqui.

Definitivamente esse é um ponto de atenção para nós, que trabalhamos na indústria e nessa área de segurança de alimentos. Logo veremos legislação sobre o assunto. Vamos acompanhar!

3 min leituraQue, ao longos dos anos, a indústria de alimentos vem passando por transformações gigantescas, todos nós sabemos. Já tivemos artigo no Food Safety Brazil falando de alimentos do futuro (veja […]

3 min leitura
0

ComBase como ferramenta de microbiologia preditiva em alimentos – II

3 min leitura

Na parte I deste post abordamos as funcionalidades do software Pathogen Modeling Program (PMP) Online. Hoje, falaremos do ComBase, o software de Microbiologia Preditiva mais usado mundialmente, são mais de 70.000 usuários ao redor do mundo.

O ComBase, assim como o PMP, está disponível gratuitamente. O acesso é dependente de login, mas o cadastro é bem simples e fácil de fazer. Após realizar a conexão, você poderá acessar um banco de dados com mais de 60.000 registros do comportamento microbiano em ambientes alimentares. Esse software de microbiologia foi lançado em 2003 e graças a doações tanto de dados que descrevem como os micro-organismos se comportam (crescem, sobrevivem ou morrem em meios de cultura e em alimentos), quanto monetárias ele está cada vez mais útil e funcional. Atualmente, ele é administrado pela Universidade da Tasmânia e pelo Departamento de Agricultura dos Estados Unidos – Serviço de Pesquisa Agrícola (USDA-ARS).

A primeira ferramenta disponível do software é o Browser, que realiza a pesquisa em um banco de dados da literatura científica e de diversas instituições que avaliaram o comportamento de micro-organismos deteriorantes e patogênicos em alimentos e em meios de cultura. A busca pode ser feita adicionando-se os campos: Micro-organismo (patógenos, bactérias deteriorantes e bolores e leveduras); Tipo de alimento ou meio de cultura; variadas Condições (exemplos: diferentes concentrações de conservantes, embalados à vácuo e presença de microbiota); várias Propriedades (exemplos: inoculação de esporos, cepas resistentes a antibióticos ou tolerantes a ácidos); Faixas de temperatura, de atividade de água e de pH específicas; por fim, também pode-se restringir a pesquisa por autor.

Já o Broth Models fornece previsões, a partir de modelos matemáticos, baseados em dados selecionados do banco do ComBase, em função de fatores ambientais, como temperatura, pH e atividade de água do meio de cultura. Os tipos de modelos disponíveis são de multiplicação, de inativação térmica e de sobrevivência não-térmica para diversas bactérias, todos baseados em meio de cultura. O resultado da predição, após se completar com os dados desejados de temperatura, pH e atividade de água, será em forma de gráfico e de tabela.

O Food Models permite a predição do comportamento de patógenos nos alimentos. Existem dois modelos disponíveis: Perfringens Predictor prevê a multiplicação de Clostridium perfringens durante o resfriamento de carnes e Salmonella in egg para prever a multiplicação de Salmonella resistente a antibióticos (cepa S. Typhimurium DT104) em produtos líquidos à base de ovos, entre 10 – 42°C.

O DMFit permite que coloquemos nossos dados experimentais de contagens microbianas ao longo do tempo para ajustar esses dados aos modelos de Baranyi e Roberts, trilinear, bifásico ou linear. Após a adição dos dados experimentais, basta clicar no botão FIT e os pontos (contagem microbiana X tempo) serão ajustados aos modelos citados anteriormente. Os resultados são apresentados na forma de gráfico e de tabela. Também pode-se optar por trocar o modelo apresentado e os parâmetros serão recalculados automaticamente.

Em Resources há uma lista bastante útil de outras ferramentas de microbiologia preditiva disponíveis. Finalmente, em Help você pode aprofundar os conhecimentos e sanar dúvidas sobre todas as ferramentas do Combase citadas aqui no post, bem como assistir a tutoriais que explicam o passo a passo do uso do software.

Apesar de poder assustar um pouco no começo, essas ferramentas disponíveis gratuitamente trazem uma interface amigável à microbiologia preditiva.

Agora chega de teoria, acesse os sites do PMP e do ComBase e veja como esses softwares são fáceis de usar e acessíveis a partir de um simples clique!

Referências:

Baranyi J. and Roberts T.A. (1994). A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 23, 277-294.

Baranyi J. and Tamplin M. (2004). ComBase: A Common Database on Microbial Responses to Food Environments. J. Food Prot. 67(9):1834-1840.

McMeekin J.,  Baranyi J.,  Zwietering M.,  Ross T.,  Dalgard P., Bowman J. and Kirk M. (2005). Information systems in food safety management. Int. J. Food Microbiol. 112, 181–19

3 min leituraNa parte I deste post abordamos as funcionalidades do software Pathogen Modeling Program (PMP) Online. Hoje, falaremos do ComBase, o software de Microbiologia Preditiva mais usado mundialmente, são mais de […]

2 min leitura
0

Contaminantes biológicos associados aos insetos na alimentação humana

2 min leitura

Durante a última década, o uso de insetos na alimentação humana ganhou maior evidência, e esse é um assunto que já foi mencionado algumas vezes aqui no blog. Entretanto, muitos consumidores ainda apresentam receio quanto a segurança dessa categoria de alimentos e para atingir mais adeptos, a segurança microbiológica precisa ser garantida. Atrelada a essa questão, recentemente, uma revisão abrangente sobre os principais contaminantes biológicos associados aos insetos na alimentação humana foi publicada. Confira abaixo os principais pontos levantados na publicação.

  • Os insetos mais estudados para alimentação humana atualmente são a lagarta-da-farinha amarela (Tenebrio molitor), a larva-da-farinha (Alphitobius diaperinus), o grilo-doméstico (Acheta domesticus), o grilo-doméstico-tropical (Gryllodes sigillatus) e a gafanhoto-migratório (Locusta migratoria).
  • Os três principais patógenos associados aos insetos para uso na alimentação são Staphylococcus aureus, Clostridium e Bacillus cereus. S. aureus é muito abundante e os formadores de esporos (Clostridium spp. e Bacillus spp.) são relatados como uma grande preocupação, especialmente os membros do grupo B. cereus, apresentados como o maior risco de segurança de alimentos;
  • Os gêneros Cronobacter (incluindo sakazakii), Pseudomonas (incluindo Pseudomonas aeruginosa), Vibrio, Yersinia spp., Campylobacter, Salmonella e Listeria (incluindo Listeria monocytogenes) representam um menor risco;
  • Entre os fungos, os gêneros Aspergillus e Penicillium foram os mais encontrados;
  • Príons, parasitas e vírus são considerados de baixo risco e ainda não foram detectados em insetos criados para consumo humano;
  • A forma de produção dos insetos (selvagem ou em criadoouro) afeta fortemente a segurança. Os insetos capturados de locais próximos de criadouros de aves e suínos apresentaram alta incidência de Salmonella e Campylobacter;
  • Tratamentos térmicos como fervura, torra, fritura (profunda) e escaldamento, mesmo por curtos períodos, demonstram ser eficazes na redução de bactérias vegetativas e fungos, assim como tratamentos alternativos como fermentação, plasma frio e microondas. Entretanto, não existem recomendações gerais;
  • Os métodos de secagem não térmica, como a liofilização, que é comumente usada na indústria de insetos, têm apenas efeito bacteriostático, portanto não são suficientes para garantir a segurança de alimentos;
  • Uma vez que cada inseto possui uma matriz diferente como composição e estrutura (teor de água, teor de gordura, insetos inteiros, pasta, pó ou grosseiramente triturado), bem como patógenos-alvos diferentes, não é possível extrapolar as cinéticas de inativação de um inseto para outro;
  • Caso após o tratamento seja observada a sobrevivência de esporos no produto, deve-se tomar cuidado nas condições durante armazenamento e transporte, associando a refrigeração ou acidificação para impedir a germinação dos esporos;

No Brasil, ainda não temos legislação sobre a produção de insetos para alimentação humana. Entretanto, estudos como esses são importantes na construção de uma futura legislação. Em resumo, para uso seguro dos insetos na alimentação, assim como outras matérias-primas, será imprescindível uma produção que considere as boas práticas de fabricação, como higiene do local, o uso de tratamento térmico e a utilização de tecnologias de barreiras, com uma maior atenção para os esporulados.

O artigo completo foi publicado na revista Journal of Insects as Food and Fee e pode ser acessado aqui.

Leia outros posts sobre o uso de insetos na alimentação:

Insetos no cardápio: uma opção nutritiva e sustentável e…segura!

Inseto como alimento: o início

Insetos como alimento: tendência, segurança, processamento e preservação

Insetos como alimento: entrevista com Thelma Lucchese Cheung

A mosca doméstica pode ser fonte segura de proteína?

2 min leituraDurante a última década, o uso de insetos na alimentação humana ganhou maior evidência, e esse é um assunto que já foi mencionado algumas vezes aqui no blog. Entretanto, muitos […]

3 min leitura
0

Você sabe a diferença entre os métodos moleculares LAMP e PCR?

3 min leitura

Uma das metas de desenvolvimento sustentável das Nações Unidas para 2030 é alcançar Fome Zero. Não se trata apenas de ter alimentos disponíveis para todos, mas de ter alimentos seguros. Referimo-nos a não termos perigos nos alimentos ou, se os tivermos, que estejam em níveis que não afetem a saúde, incluindo microrganismos patogênicos.

É sabido que “é melhor prevenir do que remediar”. Na indústria de alimentos é a mesma história, os esforços deveriam focar fortemente a prevenção e não a descontaminação de produtos (mesmo que isso fosse possível). Uma tarefa conjunta entre governo e indivíduos é a detecção de patógenos nos alimentos antes que eles cheguem ao consumidor para prevenir o aparecimento da doença.

Os métodos de detecção de microrganismos têm avançado rapidamente e estão cada vez mais alinhados às necessidades industriais e governamentais: detecção rápida e precisa e a um custo acessível. As tecnologias para detecção de microrganismos patogênicos começaram com o uso do ágar, passando por métodos imunológicos e atualmente, e de maneira importante, métodos moleculares.

Os métodos de cultivo tradicionais baseiam-se na capacidade microbiana de metabolizar açúcares, proteínas e / ou produção de enzimas. Alguns microrganismos podem ter diferentes capacidades quando se trata de metabolizar ou produzir um composto. Por exemplo: Salmonella fermentadora de lactose ou sulfídrico negativo, essas variantes farão com que seja erroneamente relatado como negativo um teste de rotina e com pouca habilidade do analista e pode colocar em risco a saúde do consumidor.

Os métodos moleculares baseiam-se na presença de genes característicos de cada microrganismo, em seu DNA, de forma que o microrganismo será detectado independentemente da capacidade metabólica ou de produção de compostos. Por isso, além da rapidez, essas técnicas estão se tornando cada vez mais relevantes e utilizadas tanto por empresas quanto por órgãos fiscalizadores (como o USDA nos EUA e o MAPA em nosso país). Os métodos moleculares provavelmente irão eventualmente tomar o lugar Golden Standard que os métodos tradicionais baseados em ágar têm atualmente.

Dentro dos métodos moleculares, existe uma gama de metodologias e variantes. Vamos agrupá-los em dois grandes grupos: PCR e LAMP. A Reação em Cadeia da Polimerase (PCR) foi um marco para a ciência e especialmente para os métodos de detecção de patógenos. Desde sua descoberta em meados dos anos 80, ela passou por melhorias substanciais ao longo do tempo. As reações de amplificação mediadas por loop (LAMP) foram inicialmente desenvolvidas para detecção de vírus no início do século 21 e, desde então, têm sido cada vez mais utilizadas em vários campos, como pesquisa, vigilância e indústria.

Uma das diferenças mais importantes entre PCR e LAMP são as enzimas que eles usam, a primeira sendo uma Taq polimerase e a segunda uma BST polimerase. A última é geralmente reconhecida por sua estabilidade e resistência às condições e compostos da amostra. A quantidade de primers que cada tipo de reação contém é diferente, desde os PCRs básicos que contêm apenas um par de primers, até as reações em que os primers “Reporter” são adicionados para melhorar a especificidade e os LAMPs que requerem o reconhecimento de pelo menos seis diferentes regiões, o que lhe confere maior especificidade.

A parte da amplificação é extremamente diferente entre esses dois tipos de reações. Os PCRs realizam ciclos térmicos, ou seja, mudanças de temperatura constantes e controladas para desnaturar (95°C), alinhar (60°C) e estender (72°C) a genética, tendo como desvantagem em cada ligação e separação enzimática a possibilidade de inibição da reação. Por outro lado, a reação LAMP trabalha à mesma temperatura (60°C) e a amplificação se dá por deslocamento da cadeia sem a necessidade de termocicladores e seus gastos relacionados.

A detecção nas reações LAMP pode ser realizada por turbidimetria ou associada a outra tecnologia como a bioluminescência para obter resultados mais precisos, enquanto na PCR é necessário correr em géis ou adicionar compostos fluorescentes para leitura com filtro de fluorescência. Dependendo da natureza dos alimentos, alguns dos componentes dos alimentos podem afetar a leitura deste tipo.

Detectar e fazer correções conta a cada segundo, então cada minuto que conseguimos reduzir a reação significa a possibilidade de aplicar correções rápidas, de extrema importância para termos tempos de resposta cada vez mais curtos. Algumas reações LAMP podem dar resultados positivos alguns minutos após o início da reação, enquanto em algumas reações do tipo PCR é necessário esperar até o final do teste para ter um resultado que às vezes pode levar até horas.

Gustavo Gonzalez

Professional Service Pathogen Specialist – LATAM

3M Food Safety

e

Sylnei Santos

Scientific Affairs Leader

3M Food Safety

3 min leituraUma das metas de desenvolvimento sustentável das Nações Unidas para 2030 é alcançar Fome Zero. Não se trata apenas de ter alimentos disponíveis para todos, mas de ter alimentos seguros. […]

4 min leitura
7

Uso de filmes e revestimentos comestíveis em frutas e hortaliças

4 min leitura

A conservação de alimentos é o conjunto de métodos que possuem como objetivo prolongar a vida de prateleira dos alimentos. Entre os métodos, temos a aplicação de filmes e revestimentos comestíveis na etapa de pós-colheita de frutas e hortaliças, as quais devem ser acondicionadas em temperaturas e ambientes adequados.

Frutas e hortaliças são componentes importantes e essenciais para uma dieta balanceada. Elas são muito perecíveis, tendo uma curta vida pós-colheita. Quando as frutas amadurecem, ocorrem profundas variações nas mudanças bioquímicas e fisiológicas, como produção de etileno, aumento na taxa de respiração, variação no teor de açúcar, desencadeamento de enzimas degradantes da parede celular, perda da estabilidade da clorofila e aumento da síntese de compostos aromáticos. Com isso, as espécies reativas de oxigênio (ROS), as quais são geradas pelo transporte durante o amadurecimento, podem causar danos celulares e degradar a qualidade e aceitabilidade de frutas e vegetais.

O mercado de alimentos é um dos que mais cresce e as embalagens passam pela mesma transformação. Com o avanço da tecnologia, o principal diferencial das embalagens está nos materiais que atuam como barreiras ao oxigênio, retardando a senescência de frutas e hortaliças.

Atualmente, existem novas embalagens no mercado denominadas de embalagens “ativas”, embalagens “inteligentes” e embalagens biodegradáveis. As embalagens biodegradáveis têm a capacidade de, além de conservar e proteger o alimento, possuir maior facilidade de deterioração pela ação de elementos vivos, facilitando sua biodegradação.

O estudo de filmes e revestimentos comestíveis vem ganhando força nos últimos anos, como alternativa devido a sua biodegradabilidade, reduzindo danos ambientais causados por embalagens comuns. Essa demanda está cada vez mais crescente, tornando-se um desafio para as indústrias de alimentos e para os cientistas. Existem diversas abordagens para aumentar a manutenção do frescor e da vida de prateleira de um alimento pelo uso de polímeros naturais, comestíveis e biodegradáveis.

Vários biopolímeros, como amido, pectina, carragena, alginato, quitosana, goma xantana, têm sido amplamente usados para criar filmes comestíveis e revestimentos de alimentos.  A aplicação de revestimentos e coberturas, comestíveis ou não, em produtos naturais, particularmente sobre frutas e hortaliças com o objetivo de aumentar o seu período de conservação não consiste em prática recente. Segundo Hardenburg, emulsões derivadas de óleos minerais têm sido empregadas desde o século 13 na China para elevar a conservação de frutos cítricos e demais produtos perecíveis que eram transportados por longas distâncias. Na década de 1950, a cera de carnaúba tornou-se o principal produto introduzido para preservar frutos. A tabela 1 apresenta os principais materiais usualmente empregados para o revestimento de frutas e hortaliças e suas principais ações.

Tabela 1. Materiais usualmente empregados como revestimento e suas principais ações

Recobrimento principal  Ação
Alginato Redução das perdas de água
Caseína /Monoglicérido acetilado Monoglicérido de ácido graxo Barreira a gases, manutenção da cor
Amilose/ amilopectina Barreira a gases; melhora da cor e da firmeza; ação antifúngica
Zeínas Barreira a gases; redução de perdas de água, ação antimicrobiana e manutenção da firmeza
Pectina Barreira a gases; ação antifúngica, manutenção da firmeza
Lipídios Barreira a gases; redução de perdas de água
Carboximetilcelulose (CMC) Barreira a gases, manutenção da cor
Albúmen do ovo Manutenção da cor e redução do escurecimento
Proteína do soro do leite Barreira a gases; redução de perdas de água; manutenção da cor
Proteínas de soja Barreira a gases; redução de perdas de água; manutenção da firmeza
Cera de carnaúba Barreira a gases; redução de perdas de água; diminuição da desidratação superficial
Cera de abelhas Barreira a gases; redução de perdas de água; diminuição da desidratação superficial
Quitosana Ação antimicrobiana; manutenção da cor e redução do escurecimento
Goma xantana Redução de perdas de água, diminuição da desidratação superficial
Carragenato Redução de perdas de água

Fonte: Embrapa, 2009.

O revestimento comestível é uma fina camada (imagem 1) constituída por um material comestível que protege frutas e vegetais da decomposição físico-química e microbiológica, com diversas vantagens como comestibilidade, biocompatibilidade, atoxicidade, degradabilidade, etc. O filme é uma embalagem flexível e extensível de superfícies homogêneas e lisas (imagem 2). Quando aplicados em frutas e hortaliças, eles vão atuar efetivamente para preservação dos alimentos devido à sua versatilidade, não toxicidade, atividade antimicrobiana, atividade antioxidante, biocompatibilidade e biodegradabilidade.

Figura 1- Manga com e sem revestimento obtido de mesocarpo do pequi (Caryocar brasiliense).

Figura 2 – Filme obtido do mesocarpo do pequi (Caryocar brasiliense).

Recentemente, na Universidade Zhenjiang, na China, o departamento de Engenharia Biológica e de Alimentos desenvolveu filmes colorimétricos incorporados com nanopartículas de ZnO, embalagens inteligentes para sinalizar e rastrear a qualidade dos alimentos em tempo real. Esses filmes colorimétricos são sensíveis ao pH, pois quando aplicados podem apresentar alterações de cor quando expostos a gases voláteis, presentes em alimentos deteriorados.

Referências:

CHINMA, CE; ARIAHU, CC; ALAKALI, JS Efeito da temperatura e umidade relativa sobre a permeabilidade ao vapor de água e propriedades mecânicas de filmes comestíveis à base de amido de mandioca e concentrado de proteína de soja. Journal of Food Science and Technology v. 52, n. 4, pág. 2380-2386, 2015.

Embrapa – Empresa Brasileira de Pesquisa Agropecuária Ministério da Agricultura, Pecuária e Abastecimento Embrapa Instrumentação Agropecuária.  O Uso de Biopolímeros como Revestimentos Comestíveis Protetores Para Conservação de Frutas in natura e Minimamente Processadas. 2009.

FLORES-LÓPEZ, María L. et al. Perspectivas sobre a utilização de revestimentos comestíveis e revestimentos nanolaminados para extensão do armazenamento pós-colheita de frutas e vegetais. Revisões de engenharia de alimentos, v. 8, n. 3, pág. 292-305, 2016.

HAN, Jung H. Filmes e revestimentos comestíveis: uma revisão. Inovações em embalagens de alimentos, p. 213-255, 2014.

HARDENBURG, R. E. Wax and Related Coatings for Horticultural Products: a bibliography. Agriculture Research Service Bulletin, 51-15, Washington, DC, 1967.

Huang, T.-W., Lu, H.-T., Ho, Y.-C., Lu, K.-Y., Wang, P., Mi, F.-L.Hide details. A smart and active film with tunable drug release and color change abilities for detection and inhibition of bacterial growth. Materials Science and Engineering C, Volume 118, January 2021.

Autoras: Itatiane Catarina Guerra, Geovana Rocha Plácido, Juliana Aparecida Célia e Glaydson Brasileiro Lopes de Jesus, todas do Instituto Federal Goiano, Campus Rio Verde.

4 min leituraA conservação de alimentos é o conjunto de métodos que possuem como objetivo prolongar a vida de prateleira dos alimentos. Entre os métodos, temos a aplicação de filmes e revestimentos comestíveis […]

4 min leitura
4

Gerenciamento de micotoxinas via espectroscopia NIR

4 min leitura

Não é de hoje que sabemos da importância do monitoramento de micotoxinas na agroindústria para a produção de rações. Há algum tempo também temos conhecimento do uso da tecnologia NIR para análises bromatológicas na indústria de alimentos e feed. O que talvez o amigo leitor não saiba ainda é que já é uma realidade o uso do NIR para analisar micotoxinas. No entanto, antes de apresentar as vantagens e desvantagens do uso deste método, quero fazer uma breve introdução sobre o tema.

As micotoxinas são metabólitos secundários produzidos por fungos. Quando ingeridas afetam o homem e animais de criação de forma individual ou sinérgica na presença de mais de uma micotoxina, podendo afetar vários órgãos, como o trato gastrointestinal e o fígado, além de comprometer o sistema imunológico, resultando essencialmente na redução da produtividade dos animais e na mortalidade em casos extremos. O milho brasileiro está frequentemente contaminado com diversas micotoxinas, principalmente as aflatoxinas (B1, B2, G1 e G2), fumonisinas (B1 e B2), zearalenona e deoxinivalenol. O trigo e seus derivados, cevada e demais cereais de inverno, têm frequente contaminação por deoxinivalenol e zearalenona.

A formação das micotoxinas ocorre durante o cultivo e armazenamento dos grãos ou da ração. A utilização de boas práticas agrícolas e de cuidados na limpeza, secagem e armazenamento dos grãos reduz a contaminação por micotoxinas. Depois de formada a micotoxina, métodos de descontaminação são muito onerosos, sendo até o momento inviáveis na prática da agroindústria. Métodos físicos, como máquinas de pré-limpeza e mesas densimétricas, em geral, reduzem a contaminação na massa de grãos.

A compra e utilização de matérias primas com baixos níveis de micotoxinas ainda é a melhor solução. No entanto, por questões econômicas, de disponibilidade, ou até mesmo por desconhecimento dos níveis de micotoxinas, nem sempre é possível utilizar grãos com concentrações de micotoxinas que não causeem efeitos prejudiciais à saúde e produção animal. Portanto, a utilização de aditivos adsorventes misturado na ração é uma forma de controle muito usada para minimizar os efeitos tóxicos das micotoxinas.

As micotoxinas possuem uma distribuição heterogênea na massa de grãos, ou seja, parte do lote no qual se quer avaliar a concentração pode ter níveis mais altos ou mais baixos do que outras partes. Além disso, a variabilidade de concentrações também pode acontecer em virtude do tipo de grão, safra, local de produção, entre outros fatores. Os fungos precisam ter condições para o seu crescimento e a produção das toxinas e por haver diferentes fatores, até mesmo em uma mesma lavoura, pode haver alta variabilidade na concentração das diferentes micotoxinas. Por isso é fundamental utilizar protocolos de coleta de amostras eficientes, de tal forma que a amostra coletada represente o lote todo.

Para controlar o risco das micotoxinas na cadeia de produção de grãos e produção animal, é indispensável a adoção de três etapas:

  • Amostragem representativa (Técnica do “furo na rosca”);
  • Frequência de análises e métodos de diagnóstico.
  • Tomada de decisão.

A amostragem é uma etapa fundamental pois representa em torno de 60 a 90% dos desvios nos resultados de micotoxinas. Afinal, se a amostra não for bem coletada, o seu resultado não irá ser representativo.

A frequência de análises é muito importante, pois precisamos ter uma amostra para cada lote de grãos que possuam a mesma origem, mesmo fornecedor, turno de produção ou alguma característica que caracterize uma certa homogeneidade do material. A metodologia de análise utilizada deve ser confiável, pois será com base no resultado emitido que serão tomadas as devidas decisões de controle.

A tomada de decisão deve ser orientada para reduzir de forma significativa os riscos atrelados ao consumo de uma matéria-prima contaminada com micotoxinas. Uma questão comum levantada é: risco associado em cada fase de produção X inclusão de adsorventes. No entanto, esta tomada de decisão é efetiva e economicamente viável quando tomada antes do consumo pelos animais, por isso o uso de uma tecnologia mais rápida e barata com NIR é uma solução muito interessante.

A tecnologia NIR (Near infrared spectroscopy ou espectroscopia no infravermelho próximo) é uma metodologia de análise aplicada a uma ampla gama de pesquisas e processos industriais. Tornou-se popular na área de rações e alimentos como uma ferramenta econômica para mensurar a composição bromatológica dos alimentos, com o objetivo de otimizar processos e gerenciar custos. De maneira inovadora, o NIR foi recentemente aplicado para a estimativa da concentração de micotoxinas nas matérias-primas utilizadas na produção de ração.

Desvantagem

Elevado investimento inicial para aquisição de um equipamento NIR (infelizmente não há ainda uma tecnologia nacional disponível, então ficamos sempre dependentes do câmbio).

Vantagens

Execução simples da análise (diminui consideravelmente erros do analista);

– Agilidade na obtenção dos resultados das análises (comparado aos métodos ELISA e cromatografia por papel. Após a amostra moída é possível obter o resultado em menos de 1 minuto);

– Dispensa o uso de reagentes, pipetas e vidrarias (tecnologia limpa);

– Menor custo por análise (considerando que a empresa já possui um NIR);

– Aumento no número de amostras suportam resultados mais confiáveis. Como as micotoxinas são heterogeneamente distribuídas na massa de grãos, e a coleta de amostras representativas é um desafio constante na agroindústria. Aumentar a quantidade de amostras e análises do mesmo lote de grãos para análise aumenta a assertividade das informações analíticas geradas em relação à concentração real de micotoxinas. Com uma análise mais rápida e mais barata isto é uma grande vantagem.

Conclusão

O NIR já é amplamente utilizado na indústria de alimentos, tanto na área animal quanto na humana. Agora, o monitoramento micotoxicológico pode ser realizado na plataforma de recebimento de grãos e nos portos de importação e exportação, com a possibilidade de aplicar descontos ou bonificações de acordo com o grau de contaminação. A segregação de matérias-primas e o controle de estoques podem ser realizados com maior agilidade. O NIR pode ser usado na indústria de ração para gerenciar o risco de micotoxinas, subsidiando a tomada de decisões com relação à quando, quanto e quais aditivos antimicotoxinas usar, a fim de minimizar os efeitos tóxicos, garantir a produtividade pecuária e o bem-estar animal.

*Este texto teve a contribuição de meu amigo médico veterinário Adriano Mallmann, da Universidade de Santa Maria – RS.

Fonte da imagem: Florida International University

4 min leituraNão é de hoje que sabemos da importância do monitoramento de micotoxinas na agroindústria para a produção de rações. Há algum tempo também temos conhecimento do uso da tecnologia NIR […]

2 min leitura
0

Processamento de alimentos por tecnologia de alta pressão – Resumo de Palestra

2 min leitura

Este é o resumo da palestra ministrada no Happy FoodTech Tacta 2020. O blog Food Safety Brazil participou do evento online que reuniu especialistas e empreendedores da área de alimentos a fim de discutir novas tecnologias no setor. Destacamos neste post a palestra do Prof Marcelo Cristianini, da Unicamp.

Durante a palestra, o professor Marcelo apresentou resultados de pesquisas realizadas com alta pressão isostática (HPP – High Pressure Processing). A tecnologia de alta pressão é uma tecnologia emergente e que vem ao encontro dos anseios dos consumidores. O estilo de vida das pessoas tem mudado bastante, mesmo antes da pandemia, havendo preferência por produtos prontos para o consumo e fáceis de preparar.

Esta metodologia melhora a qualidade nutricional e prolonga o prazo de validade de alimentos industrializados. O emprego da alta pressão isostática (HPP – High Pressure Processing)  tem como objetivo a extensão da vida de prateleira de alimentos processados, com vistas a manter-lhes também as características nutricionais e sensoriais mais próximas possíveis do alimento in natura.

O processamento a alta pressão isostática consiste na aplicação uniforme de determinadas pressões em um produto.

É uma tecnologia de efeito homogêneo, que pode ser aplicada ao produto em sua embalagem final, independentemente do seu tamanho e geometria, que minimiza riscos de contaminação pois permite inativar microrganismos deteriorantes e patogênicos, não precisa de conservantes e tem baixa carga de resíduos, sendo ambientalmente amigável, e atende cada vez mais à demanda global, que anseia por saúde e bem-estar através do consumo de produtos com apelo “all natural”.

Condições de processamento

Pressão – 4,500 a 6,000 atm

Tempo – 1 a 3 min

Temperatura – 4 a 40°C

Esta tecnologia já existe mundo afora e no Brasil vem ganhando espaço entre as empresas, crescendo de forma exponencial e portanto com uma forte tendência de se consolidar.

Vantagens do método

  • Eliminação ou redução de microrganismos;
  • Causa danos mínimos aos produtos em termos nutricionais;
  • Apresenta alto potencial para o caso de alimentos termossensíveis;
  • Permite tratar o alimento em sua embalagem final;
  • Evita a perda de compostos termossensíveis;
  • Não altera significativamente as características sensoriais dos alimentos;
  • Maior prazo de validade (eliminando os microrganismos patogênicos e diminuindo os deteriorantes);
  • Possibilita reduzir ou até eliminar conservantes;
  • Permite a redução de sal e até de aditivos utilizados como conservantes, nos produtos processados;

O processamento por HPP permitiu a redução de até 25% de sal em um embutido de peru fatiado, sem comprometer a aceitação do consumidor e estendendo a vida de prateleira.

Produtos que podem ser submetidos ao processo

  • Frutas e bebidas à base de vegetais
  • Produtos processados (molhos para saladas, condimentos, etc.)
  • Refeições prontas
  • Carnes e aves
  • Carnes in natura
  • Frutos do mar

Segundo o palestrante, “as pesquisas mostram que a água de coco assim processada pode atingir validade de três a seis meses. No caso do queijo fresco, que não resiste um mês, conseguimos estender o prazo de validade para pelo menos três meses. O mesmo ocorre com os produtos cárneos fatiados e o blanquet de peru, por exemplo”.

Resumindo, Cristianini enfatiza: “A tecnologia por HPP permite obter produtos em que são preservados os aspectos nutricionais, com sabores próximos dos alimentos in natura, possibilita a diminuição do uso de sal, nos industrializados que o exigem, e até a redução e eliminação de conservantes.”

2 min leituraEste é o resumo da palestra ministrada no Happy FoodTech Tacta 2020. O blog Food Safety Brazil participou do evento online que reuniu especialistas e empreendedores da área de alimentos a […]

4 min leitura
6

A importância das embalagens bioativas e da própolis para conservação de alimentos

4 min leitura

As embalagens utilizadas para os alimentos vêm apresentando transformações positivas no decorrer do tempo, bem como as matérias primas utilizadas, os meios de produção em grande escala e os métodos para conservação das características principais de cada alimento produzido. Tudo isso em decorrência do aumento das informações e estudos relacionados aos temas relevantes para cada área da indústria de alimentos.

Uma embalagem considerada como ativa é aquela que exerce algum papel extra na preservação de alimentos, não se limitando ao de promover uma barreira inerte a influências externas. Isso acontece porque os constituintes do material, o produto e o ambiente interagem para prolongar a vida útil dos alimentos.

Alguns componentes ativos utilizados em embalagens como sachês e filmes plásticos absorvedores de etileno, sachês absorvedores de umidade, filmes que eliminam o excesso de umidade e controlam os níveis de oxigênio (O2), dióxido de carbono (CO2) e etileno, filmes com permeabilidade sensível à temperatura e embalagens antimicrobianas com emissores de dióxido de cloro, dióxido de enxofre, antioxidantes (impedem ou retardam as reações de oxidação) são exemplos de componentes de embalagens ativas, ao passo que os indicadores de tempo-temperatura, bem como os de amadurecimento e frescor são ótimos exemplos de componentes inteligentes.

Já as embalagens inteligentes funcionam como um indicador interno ou externo da qualidade do produto embalado, como de tempo e temperatura, para fornecer informações para o consumidor. Quando um alimento está se deteriorando, reações bioquímicas estão ocorrendo nele e muitas vezes são imperceptíveis, pois sua aparência se mantém como a de um produto fresco.

Além de apresentar diversas dessas características citadas anteriormente, as embalagens bioativas ou biofilmes também são ambientalmente corretas, pois são feitas do reaproveitamento de resíduos que seriam descartados na natureza e que se degradam facilmente no meio ambiente. Isso permite dizer que a embalagem bioativa é desenvolvida pensando também no futuro da sociedade, que consome cada vez mais alimentos processados e gera consequentemente uma maior quantidade de resíduos, o que causa prejuízos a médio e longo prazo para o planeta.

Os produtos e matérias primas utilizados para a produção de embalagens bioativas podem ser obtidos de diferentes polissacarídeos e fontes renováveis como fécula de mandioca, amido, gelatina, nanopartículas, quitosana e as pectinas, matriz polimérica base para o desenvolvimento dos biofilmes e que podem ser extraídas de frutas cítricas, algumas frutas do cerrado como o pequi. Existem também a pectina elaborada industrialmente, conhecida como comercial e outras fontes.

Há estudos em desenvolvimento para a produção de embalagem bioativa produzida com a pectina extraída do mesocarpo do pequi acrescida de extrato etanólico de própolis. Esse ingrediente confere o incremento de compostos bioativos, flavonoides, terpenos, álcoois e possui atividade antimicrobiana, com a função inicial de embalar alimentos, garantindo proteção contra microrganismos e mantendo por mais tempo suas características sensoriais originais e intactas do alimento a ser embalado.

Nesse contexto, entram as embalagens inteligentes, ativas e os biofilmes, adicionados ou não de componentes bioativos, para ajudar na identificação do ponto correto do produto, além de garantir maior vida de prateleira e evitar danos ao meio ambiente no momento do descarte das embalagens.

Em 2015, Luis Villaroya comprovou que devido às inúmeras propriedades encontradas na própolis, como antibacteriana, antiviral, antifúngica, antioxidante, anti-inflamatória, imunoestimulantes, propriedades anticancerígenas e pelo fato de os principais componentes serem geralmente reconhecidos como seguros para o consumo humano, além dos consumidores estarem em busca de produtos ecológicos, é que a própolis está ganhando popularidade como conservante natural para novas aplicações na indústria de alimentos e está sendo adicionada aos alimentos e bebidas como fonte de compostos bioativos para melhorar a saúde e consequentemente sua aplicação na produção das embalagens que  entrarão em contato direto com os alimentos produzidos.

A fim de implementar novos estudos e complementar informações científicas, desde 2000 Sforcin e colaboradores detectaram que para comprovar a eficácia da própolis como protetora dos alimentos embalados, a sua atividade antibacteriana é bem documentada contra diferentes bactérias como: Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli e Salmonella typhimurium. Embora os levantamentos apontem que a própolis seja principalmente ativa contra as bactérias Gram-positivas, que são inibidas com uma concentração menor de própolis do que as bactérias Gram-negativas, ela mantém sua característica antimicrobiana em todas as espécies.

Com todas as informações já publicadas e testadas e com as inúmeras novidades que irão surgir com os testes e estudos realizados pelo mundo, se tornará cada vez mais comum a utilização de embalagens completas, eficientes, inteligentes e ativas tanto na indústria de alimentos quanto em outros segmentos industriais.

Além do mais, as novas embalagens que se mostram cada vez mais importantes no mercado visam alcançar alguns objetivos principais como o de estender o prazo de validade dos alimentos, com qualidade e segurança, reduzir o desperdício de alimentos e reduzir a adição de conservantes artificiais ou substitui-los por substâncias naturais com função antimicrobiana.

Autoras: Lilianne Baldoino Monteiro1, Geovana Rocha Plácido2, Tainara Leal de Sousa3

1 Mestranda em Ciência e Tecnologia de Alimentos no Instituto Federal Goiano, Campus Rio Verde – Goiás.

2 Professora Doutora no Instituto Federal Goiano, Campus Rio Verde – Goiás.

3 Doutoranda em Biotecnologia e Biodiversidade, Universidade Federal de Goiás

Referências

LUIS-VILLAROYA, A.; ESPINA, L.; GARCÍA-GONZALO, D.; BAYARRI, S.; PÉREZ, C.; PAGÁN, R. Bioactive properties of a propolis-based dietary supplement and its use in combination with mild heat for apple juice preservation. International Journal of Food Microbiology, v.2015, p.90-97, 2015.

SARANTÓPOULOS, C.I.G.L.; MORAIS, B.B. Embalagens ativas e inteligentes para frutas e hortaliças. Boletim de Tecnologia e Desenvolvimento de Embalagens, v.21, n.1, p.1-7, 2009.

SFORCIN, JM, FERNANDES JR., A., LOPES, CAM, BANKOVA, V. E FUNARI, SRC. Efeito sazonal na atividade antibacteriana da própolis brasileira. Jornal de Etnofarmacologia, 73 (1-2), 2000.

4 min leituraAs embalagens utilizadas para os alimentos vêm apresentando transformações positivas no decorrer do tempo, bem como as matérias primas utilizadas, os meios de produção em grande escala e os métodos […]

4 min leitura
1

Embalagens, segurança dos alimentos e sustentabilidade

4 min leitura

As características dos materiais alimentícios determinam a sua forma de contenção, conservação, armazenamento, distribuição e consumo. Um determinado alimento demanda um ou mais tipos de embalagens desde a sua produção até o momento do seu consumo. Quando tratamos da indústria de processamento, as embalagens podem exercer funções primárias – de contato direto com o alimento; secundárias – responsáveis por agrupamento e/ou conveniência; e terciárias – associadas ao manuseio e/ou transporte.

A função primária de contenção está associada à conservação dos alimentos, pois os protege do contato direto com agentes físicos, químicos e biológicos que os levariam à deterioração precoce. Por outro lado, nas embalagens primárias existe uma grande preocupação com a segurança dos alimentos, pois os materiais adotados podem ser um risco à saúde humana ou causar modificações indesejáveis na composição ou nas características sensoriais dos alimentos, através da migração para os alimentos de componentes tóxicos ou contaminantes. Por isso, devem ser adotados materiais que impeçam a migração de tais componentes ou que atendam aos limites máximos estabelecidos pela Agência Nacional de Vigilância Sanitária (ANVISA). Dessa forma, poderíamos dizer que materiais inertes seriam os mais adequados para aplicação primária nas embalagens de alimentos.

Entretanto, estudos demonstram que algumas substâncias podem interagir com os alimentos de uma forma positiva, contribuindo com a preservação das suas características de interesse. Embalagens associadas a esses tipos de substâncias são chamadas de embalagens ativas. São exemplos desta categoria as embalagens de batatas fritas nas quais ocorre a substituição do gás oxigênio (catalisador de reação oxidativa) no seu interior pelo nitrogênio que é um gás inerte e previne a oxidação dos ácidos graxos resultantes do processo de fritura.

Ainda destacando tecnologias de embalagens que têm contato direto com os materiais alimentícios, as embalagens inteligentes se propõem a monitorar dados através de sensores, como parâmetros de qualidade (temperatura e grau de amadurecimento) e apresentá-los aos consumidores em tempo real. Além do fornecimento de informações mais confiáveis, outro grande benefício desta tecnologia seria a prevenção do manuseio inadequado e consequente prevenção de perdas e desperdícios. Exemplificando: na seleção de frutas, muitos consumidores costumam pressioná-las para identificação de seu grau de amadurecimento, comprometendo a qualidade de um ou mais itens nesse processo, o que representa uma parcela importante das perdas nas redes varejistas.

Além disso, embalagens inteligentes também apresentam vantagens do ponto de vista da rastreabilidade, o que faz delas uma solução com potencial de uso no que chamamos Indústria 4.0. Nessa indústria os dispositivos inteligentes, capazes de armazenar, monitorar e compartilhar informações de processos e produtos com segurança e rapidez são elementos fundamentais. Assim, os dispositivos associados às embalagens podem garantir informações de interesse para produtores e consumidores.

Muitos estudos motivam a ampliação do uso dessas tecnologias em virtude das vantagens já mencionadas. Entretanto, também chamam a atenção para barreiras como custo, maquinabilidade e aspectos regulatórios, por exemplo. No que tange às questões de custo e maquinabilidade, com o amadurecimento de pesquisas, é possível que possamos superá-las, num futuro próximo.  No aspecto regulatório, voltamos à questão supracitada da segurança dos alimentos, relacionada aos materiais aplicados nas embalagens, e por isso essas novas tecnologias precisam estar regulamentadas pela ANVISA.

Até então, somente a União Europeia regulamenta esses tipos de embalagens, especificamente pela (EC) 450/2009. O Brasil e muitos outros países ainda não dispõem de regulamento específico, alguns apenas baseiam-se nos padrões europeus ou no conceito Generally Recognized as Safe (GRAS) adotado pela Food and Drug Administration (FDA) para aprovar materiais em contato com os alimentos. Espera-se que os órgãos regulamentadores dos diferentes países atualizem suas normas à medida que a demanda por essas tecnologias aumente em seus mercados.

Além disso, o fator sustentabilidade também é parte do desafio. De acordo com a Aliança de Embalagens Sustentáveis da Austrália, podemos definir uma embalagem como sustentável com base em 4 critérios: i) efetividade – referente ao custo-benefício para todos na cadeia de produção; ii) eficiência – referente à utilização de recursos (materiais, energia, etc.) da forma mais eficiente possível; iii) sistema cíclico – referente à capacidade das embalagens serem “recuperadas” pela indústria ou pelo ambiente; e iv) segurança – referente ao uso de materiais não poluentes ou tóxicos, que não provoquem danos aos humanos e ao ambiente.

Atualmente, os principais materiais utilizados (vidro, plástico, metal, cartonados), quando descartados, representam um grande problema do ponto de vista ambiental, pois não conseguem ser reabsorvidos pelo ambiente num prazo razoável, ou recuperados pela indústria em sua totalidade. Isso tem feito com que grandes empresas e universidades desenvolvam pesquisas para identificação de materiais sustentáveis. Entre as soluções mais exploradas estão os biopolímeros, que podem substituir polímeros derivados do petróleo, e quando associados a sistemas de compostagem apresentam baixo impacto ambiental.

Ainda poderíamos tratar das múltiplas funcionalidades das embalagens nas etapas de logística e venda, por exemplo, mas isso seria material para um outro texto. O intuito aqui é destacar a importância das embalagens no mundo alimentício e, principalmente, chamar atenção para os desafios de segurança dos alimentos e sustentabilidade. As soluções que têm sido propostas estão em constante discussão e aprimoramento, elas precisam atender aos diferentes requisitos apresentados. Precisamos de materiais seguros para embalagens ativas, inteligentes e sustentáveis que favoreçam um padrão de qualidade diferenciado, minimizando perdas e desperdícios, talvez até eliminando a necessidade de outros conservantes, e reduzindo o impacto ambiental como um todo.

Mariana Costa é engenheira de alimentos, especialista em Gestão de Projetos.

Referências:

http://www.sustainablepack.org/

http://portal.anvisa.gov.br/registros-e-autorizacoes/alimentos/produtos/embalagem

Packaging Technology and Science (2012) – Framework for Sustainable Food Packaging Design

Atas de Saúde Ambiental (2016) – A Importância das Embalagens para Alimentos – Aspectos Socioeconômicos e Ambientais 

4 min leituraAs características dos materiais alimentícios determinam a sua forma de contenção, conservação, armazenamento, distribuição e consumo. Um determinado alimento demanda um ou mais tipos de embalagens desde a sua produção […]

5 min leitura
7

Tecnologia de aerossolização na indústria de alimentos: uma alternativa para desinfecção de ambientes, equipamentos e alimentos

5 min leitura

Durante a produção, os alimentos podem ser expostos à contaminação microbiológica oriunda de superfícies e do ambiente, resultando em problemas de deterioração e de segurança dos alimentos. As técnicas convencionais de higienização são suficientes para eliminar contaminações nos equipamentos e superfícies, contudo não eliminam necessariamente todos os microrganismos presentes no ambiente, podendo resultar, em alguns casos, em uma recontaminação recorrente do equipamento e consequentemente do alimento.

Neste cenário, o processo de aerossolização (conhecido também como nebulização química) apresenta-se como uma tecnologia promissora para produção de alimentos seguros, podendo ser utilizada tanto na desinfecção de ambientes em diferentes áreas – como armazenamento e em câmaras de resfriamento – quanto para a descontaminação superficial de produtos. Esta tecnologia consiste na dispersão de líquido como uma névoa fina no ar, com partículas de tamanho menor que 5 mm, diferentemente da técnica de atomização na qual as partículas possuem diâmetro > 30 mm.

Na indústria de alimentos, a aerossolização apresenta grande destaque na descontaminação de ambientes que requerem alta higiene, como laticínios, produção de vegetais minimamente processados e de refeições prontas. As dispersões de névoas finas possibilitam a redução do volume de solução química devido a sua grande difusão e dispersão no ambiente, resultando na cobertura 3D do espaço, sem promover aumento na umidade relativa do ambiente. Diversas substâncias desinfectantes como soluções cloradas, ácido peracético e a água oxigenada têm sido utilizadas em combinação com esta tecnologia. Além disso, novos estudos têm demonstrado alternativas ao uso de substância química, como a aplicação de óleos essenciais na desinfecção superficial de alimentos.

Durante a aplicação da técnica, deve-se isolar a área não permitindo a entrada de pessoas, uma vez que a aerossolização de substâncias químicas pode causar problemas respiratórios. Para garantir a eficácia da ação química, em geral, aplica-se o produto por pelo menos 15 a 45 minutos, sendo que após este período deve-se aguardar cerca de 45 a 60 minutos para permitir a sedimentação das gotículas e, consequentemente, a liberação da área para entrada do pessoal. A diferença no tempo de tratamento é influenciada por diferentes fatores, como: tipo de produto aplicado, a concentração do produto, o tipo de equipamento, volume do ambiente a ser tratado e a qualidade microbiológica desejável.

Como forma de verificar a eficiência da técnica, deve-se realizar o monitoramento por meio de análises microbiológicas, como swabs, técnica de sedimentação em placas, entre outras.

Aplicações da tecnologia na indústria de alimentos

Frutas e verduras:

Existe uma necessidade crítica não atendida de melhorar a segurança microbiana de frutas e legumes frescos, com intuito de aumentar seu shelf life. Neste sentido, recentes estudos têm sido reportados, obtendo sucesso na utilização da aerossolização de diferentes produtos.

Entre esses estudos, pesquisadores observaram uma redução de aproximadamente 3 logs (UFC/cm-2) na contagem de cepas de E. coli O157: H7 e Listeria na superfície de espinafre, alface e tomate, após a aerossolização da curcumina em combinação com a radiação de luz UV-A. Em outro estudo foi observada a efetividade do dióxido de cloro aerossolizado na redução da E.coli O157: H7, Salmonella Typhimurium e Listeria monocytogenes em cenouras lavadas, obtendo uma redução entre 1,3 a 1,5 log UFC/g.

Em folhas de alface aerossolizadas com ácido peracético (40 ppm) por 10, 30 ou 60 min foram observadas reduções entre 0,3 a 3,8 log UFC/cm2 na população de cepas de Escherichia coli O157: H7, Listeria monocytogenes e Salmonella Typhimurium. Outro estudo reportou uma redução de até 6 log UFC/g na inativação da Escherichia coli O157:H7 em espinafre fresco aerossolizado com uma mistura de isotiocianato de alilo, peróxido de hidrogênio, ácido acético e ácido lático, durante seu armazenamento refrigerado.

Desinfecção de equipamentos e ambientes:

Outro grande potencial de uso desta tecnologia é na desinfecção de superfícies de equipamentos e de ambientes de processamento. Na desinfecção de ambientes e equipamentos, estudos têm observado sucesso quando aplicadas aerossolização de soluções químicas, como peróxido de hidrogênio e ácido peracético.

Em ambientes de latícinios, como salas de processamento de queijo e envase, a aerossolização com peróxido de hidrogênio (5 – 15 % por 20 min) se apresenta como uma técnica eficaz na inativação de microrganismos transportados pelo ar, como fungos e bactérias. Já em relação à inativação da Listeria monocytogenes, a aerossolização com peróxido de hidrogênio (5% contendo 0,005% de prata) em um ambiente de 36 m³ mostrou ser eficaz, resultando na redução de 5 logs na população destes microrganismos.

Em superfícies de aço inox (tipo 304, 5 x 2 cm), a aerossolização com peróxido de hidrogênio (0,25 e 0,5%) após 60 min resultou na redução de mais de 3 logs na população de Escherichia coli O157:H7, Salmonella Typhimurium e Listeria monocytogenes. Já em biofilmes formados em aço inox, com uma mistura de Escherichia coli O157:H7, Salmonella Typhimurium e Listeria monocytogenes, a aerossolização por 50 min usando ácido peracético (200 e 400 ppm) foi mais eficaz (redução de 4-5 logs) quando comparada ao hipoclorito de sódio a 100 ppm (redução de 1-2 logs)

Conclusão

A partir dos resultados dos recentes estudos sobre a técnica de aerossolização, observa-se que esta tecnologia pode auxiliar na redução da carga microbiana, tanto na superfície de alimentos, quanto para desinfecção de equipamentos e ambientes. Em geral, as soluções mais utilizadas são o ácido peracético e o peróxido de hidrogênio, sendo as concentrações e os tempos dependentes de fatores diversos, como equipamento, volume da área a ser processada, tempo, entre outros. Assim, esta tecnologia pode auxiliar e melhorar a segurança microbiológica dos alimentos processados.

Autores: Larissa Garcias de Assunção e Leandro Pereira Cappato.

Texto enviado por Leandro Pereira Cappato, Doutor em Ciência e Tecnologia de Alimentos, Professor do Instituto Federal Goiano.

Fonte da imagem: Holchem

Referências

OLIVEIRA, Erick Falcão de; TIKEKAR, Rohan; NITIN, Nitin. Combination of aerosolized curcumin and UV-A light for the inactivation of bacteria on fresh produce surfaces. Food Research International, [s.l.], v. 114, p.133-139, dez. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.foodres.2018.07.054.

CHO, Jong-lak; KIM, Chong-kyung; PARK, Jiyong; KIM, Jeongmok. Efficacy of aerosolized chlorine dioxide in reducing pathogenic bacteria on washed carrots. Food Science And Biotechnology, [s.l.], v. 26, n. 4, p.1129-1136, 20 jul. 2017. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10068-017-0139-6.

OH, Se-wook; DANCER, Genisis Iris; KANG, Dong-hyun. Efficacy of Aerosolized Peroxyacetic Acid as a Sanitizer of Lettuce Leaves. Journal of Food Protection, [s.l.], v. 68, n. 8, p.1743-1747, 1 ago. 2005. International Association for Food Protection. http://dx.doi.org/10.4315/0362-028x-68.8.1743.

HUANG, Yaoxin; YE, Mu; CHEN, Haiqiang. Efficacy of washing with hydrogen peroxide followed by aerosolized antimicrobials as a novel sanitizing process to inactivate Escherichia coli O157: H7 on baby spinach. International Journal Of Food Microbiology, [s.l.], v. 153, n. 3, p.306-313, fev. 2012. Elsevier BV. http://dx.doi.org/10.1016/j.ijfoodmicro.2011.11.018.

MØRETRØ, Trond; FANEBUST, Helge; FAGERLUND, Annette; LANGSRUD, Solveig. Whole room disinfection with hydrogen peroxide mist to control Listeria monocytogenes in food industry related environments. International Journal Of Food Microbiology, [s.l.], v. 292, p.118-125, mar. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.ijfoodmicro.2018.12.015.

OH, S.-w.; GRAY, P.m.; DOUGHERTY, R.h.; KANG, D.-h.. Aerosolization as novel sanitizer delivery system to reduce food-borne pathogens. Letters In Applied Microbiology, [s.l.], v. 41, n. 1, p.56-60, jul. 2005. Wiley. http://dx.doi.org/10.1111/j.1472-765x.2005.01711.x.

MASOTTI, Fabio; VALLONE, Lisa; RANZINI, Silvia; SILVETTI, Tiziana; MORANDI, Stefano; BRASCA, Milena. Effectiveness of air disinfection by ozonation or hydrogen peroxide aerosolization in dairy environments. Food Control, [s.l.], v. 97, p.32-38, mar. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.foodcont.2018.10.022.

CHOI, Na-young; BAEK, Seung-youb; YOON, Jae-hyun; CHOI, Mi-ran; KANG, Dong-hyun; LEE, Sun-young. Efficacy of aerosolized hydrogen peroxide-based sanitizer on the reduction of pathogenic bacteria on a stainless steel surface. Food Control, [s.l.], v. 27, n. 1, p.57-63, set. 2012. Elsevier BV. http://dx.doi.org/10.1016/j.foodcont.2012.02.027.

PARK, Sang-hyun; CHEON, Ho-lyeong; PARK, Ki-hwan; CHUNG, Myung-sub; CHOI, Sang Ho; RYU, Sangryeol; KANG, Dong-hyun. Inactivation of biofilm cells of foodborne pathogen by aerosolized sanitizers. International Journal Of Food Microbiology, [s.l.], v. 154, n. 3, p.130-134, mar. 2012. Elsevier BV. http://dx.doi.org/10.1016/j.ijfoodmicro.2011.12.018.

5 min leituraDurante a produção, os alimentos podem ser expostos à contaminação microbiológica oriunda de superfícies e do ambiente, resultando em problemas de deterioração e de segurança dos alimentos. As técnicas convencionais […]

2 min leitura
1

Pesquisadores alemães desenvolvem teste rápido de detecção de Salmonella

2 min leitura

Qualquer pessoa pode ter uma gastroenterite por salmonela, mas bebês, crianças, idosos e pessoas com imunodeficiências são mais suscetíveis. Para essas pessoas, a doença gastrointestinal pode levar a complicações graves. Até recentemente, para se detectar a presença de salmonela em alimentos, as técnicas microbiológicas tradicionais podem levar até quatro dias. Um novo teste rápido foi desenvolvido por pesquisadores da Fraunhofer que detecta a presença de salmonela em até 8 horas.

O fato de as técnicas microbiológicas tradicionais serem demoradas torna-se um grande problema para os fabricantes de alimentos, que não podem esperar tanto tempo pelos resultados antes de comercializarem seus produtos. Se uma contaminação for encontrada em algum alimento, a empresa pode ter que fazer um recall, o que gera custos adicionais. Por isso, métodos de detecção mais rápidos são necessários.

Devido à essa necessidade, o laboratório alemão de microbiologia e análise de alimentos SELEKTIS GmbH e uma equipe de pesquisadores do Instituto Fraunhofer de Terapia Celular,  Imunologia, Bioanalítica e Bioprocessos (Fraunhofer  IZI-BB) estão  desenvolvendo um teste rápido que é capaz de determinar se os alimentos estão contaminados com salmonela em menos de oito horas.

Processo de enriquecimento reduzido para 4-6 horas

Na técnica tradicional de detecção de salmonela, o enriquecimento da bactéria consome muito tempo. O enriquecimento envolve o cultivo e a propagação das bactérias, em um meio de cultura líquido, para que haja uma contagem bacteriana suficientemente alta para detecção subsequente. Esse processo dura cerca de 18 horas, sendo necessários mais três dias para o enriquecimento seletivo e a incubação das bactérias em meio de cultura líquido, para o crescimento de uma cultura bacteriana em placas de ágar e para o teste sorológico.

Com o novo teste, os pesquisadores conseguiram reduzir o processo de enriquecimento de 18 horas para quatro a seis horas. Isso foi alcançado usando uma técnica inovadora para cultivar a bactéria.  Foi criada uma cultura rápida com condições de crescimento otimizadas para as salmonelas. Por meio desse método inovador e otimizado de enriquecimento, o DNA das salmonelas é amplificado e detectado automaticamente, aumentando a concentração das bactérias a tal ponto que se pode detectá-las usando métodos biológicos moleculares após algumas horas.

Sistema automatizado para preparação de amostras e detecção de patógenos

Embora as técnicas de detecção biológica molecular já sejam usadas em laboratórios, elas raramente são empregadas em processos totalmente automatizados – e até agora não em pesquisa em alimentos. Esse novo sistema irá executar automaticamente todos os procedimentos que são feitos manualmente, como cultivo, enriquecimento, replicação e detecção biológica molecular. No futuro, todos os componentes necessários serão integrados em um dispositivo compacto – 40 x 40 centímetros de tamanho. Usando algumas técnicas biológicas moleculares especiais, os pesquisadores do Fraunhofer IZI-BB podem pular certas etapas de purificação de DNA, simplificando e acelerando significativamente o processo.

Assim, o novo teste rápido deve ser capaz de detectar uma única bactéria dentro de seis a oito horas.  Uma grande vantagem é que o teste também poderá ser aplicado a outros patógenos de alimentos. Para fazer isso, as moléculas de captura apenas precisam ser adaptadas a outros organismos usando um computador e bancos de dados de genes.

Fonte: Rapid test to detect salmonella in food.  https://www.fraunhofer.de/en/press/research-news/2020/february/rapid-test-to-detect-salmonella-in-food.html

2 min leituraQualquer pessoa pode ter uma gastroenterite por salmonela, mas bebês, crianças, idosos e pessoas com imunodeficiências são mais suscetíveis. Para essas pessoas, a doença gastrointestinal pode levar a complicações graves. […]

7 min leitura
3

Tecnologia de luz UV pode melhorar a qualidade e segurança de sucos, bebidas e produtos lácteos

7 min leitura

O crescente consumo de bebidas lácteas e sucos naturais de frutas e vegetais é atribuído aos benefícios à saúde. Muitos desses produtos são vendidos como “totalmente naturais”, “feitos com ingredientes orgânicos”, com poucas calorias e açúcar, ricos em nutrientes e constituintes bioativos. Para alcançar esses atributos, estes alimentos precisam ser minimamente processados em termos de temperatura de tratamento térmico e exposição ao oxigênio. Um exemplo é o crescimento da indústria e do consumo dos sucos tratados a frio. Estes sucos precisam de maior estabilidade, segurança e extensão do prazo de validade por pelo menos algumas semanas. A pasteurização é tratamento térmico utilizado na preservação eficaz, mas pode afetar negativamente os parâmetros nutricionais e de qualidade. Uma estratégia alternativa de processamento não térmico é o uso de processamento de alta pressão (HPP). No entanto, a HPP está associada a altos custos operacionais, além de exigir uma grande quantidade de espaço e uso de embalagens plásticas.

A luz ultravioleta-C (UV-C) é outra alternativa não térmica emergente que oferece tratamento contínuo e economia de energia e flexibilidade de embalagem. Além disso, o UV-C a 254 nm é eficaz contra todos os patógenos de origem alimentar, microbiota natural, fungos e leveduras, com impacto mínimo na qualidade e nos atributos nutricionais. Para alcançar a eficiência do tratamento com UV-C em produtos com baixa transmissão de UV (UVT), como a maioria dos sucos e produtos lácteos, foram desenvolvidas novas abordagens de aplicação do processo.

No caso da água, a UVT atinge valores de 90% ou mais; para sucos claros, o UVT normalmente é inferior a 30% e chega a zero para sucos turvos. Devido a isso, regimes de escoamento laminar ou turbulento, a utilização de misturadores estáticos ou escoamento secundário em tubos em espiral devem ser empregados para que os fótons de luz atinjam todo o volume do produto.

O primeiro sistema UV foi desenvolvido nos EUA em 2001 baseado em tubos em espiral onde o líquido era escoado em fluxo turbulento e lâmpadas de mercúrio de baixa pressão emitiam a luz UV-C uniformemente em sucos de frutas. O desafio atual permanece porque, como a dose de UV-C não foi estabelecida pelas agências reguladoras, o processo deve ser desenvolvido com base no cumprimento de requisitos de processamento do produto ou no efeito técnico pretendido.

Isso pode envolver uma redução do patógeno-alvo do produto para atender à Análise de Perigos e Pontos Críticos de Controle (HACCP) e extensão da vida útil, eliminando esporos ou organismos deteriorantes. Isso significa que a dose operacional real de UV-C pode variar para diferentes alimentos, como sucos, bebidas e ingredientes líquidos, e depende muito da composição do produto, coeficiente de absorção, características reológicas, carga microbiana inicial e requisitos de redução dessa carga. Além disso, a dose de UV-C deve ser otimizada para obter os melhores atributos nutricionais e sensoriais de qualidade. Depois que a dose operacional de UV-C é estabelecida, seus efeitos nas enzimas e na estabilidade da suspensão do produto devem ser considerados.

Usando um novo sistema comercial, diversos estudos foram realizados para estabelecer e validar a dose operacional de UV-C para várias categorias de bebidas, como sucos de frutas e vegetais, chás, produtos lácteos e xaropes de sacarose e frutose. A nova tecnologia UV-C emite fótons de luz para todo o volume do líquido quando ele é bombeado em um fluxo turbulento através de uma tubulação de polímero plástico. Outra característica dessa tecnologia é que a potência de saída UV-C e, consequentemente, as doses de UV-C podem ser ajustadas para cada produto de várias maneiras, com o uso de lâmpadas com potência diferente e o ajuste da corrente (amperagem) da lâmpada sem alterar a geometria da câmara do reator (por exemplo, diâmetro do tubo, diâmetro da bobina, número de lâmpadas UV, distância das lâmpadas da bobina).

Dois tipos de lâmpadas de mercúrio de baixa pressão (LPA e LPM) e com saídas de 320 e 75 W foram testadas para aplicações específicas. No sistema testado, a irradiação UV-C é medida e controlada com dois sensores. Os sensores UV-C são instalados na câmara considerando a geometria do tubo e a direção da luz UV-C incidente das lâmpadas circundantes. Isso permite não apenas monitorar a irradiação UV-C, mas também medir com precisão a potência de saída das lâmpadas e avaliar a dose absorvida pelo produto tratado. As formulações dos produtos podem ser salvas no programa do sistema e podem ser usadas para ajustar os níveis de dose de UV-C para cada produto. Os sensores de temperatura controlam as temperaturas do ar e do produto na câmara UV-C.

Condições de operação do processamento UV-C

O desenvolvimento de um novo processo baseado em UV-C exige primeiramente o estabelecimento de uma dose operacional adequada, uma etapa de validação para garantir que a dose de UV recomendada seja aplicada com segurança ao produto e avaliação da eficiência na redução da carga microbiana.

Aplicações

Sucos

Os sucos de frutas e vegetais tratados a frio compõem um crescente mercado de sucos premium devido ao seu alto valor nutricional e benefícios à saúde. Os sucos são tratados usando tecnologias não térmicas que são consideradas opções de processamento mais avançadas, sem produtos químicos e sem calor. A tecnologia UV-C é eficaz contra patógenos comuns presentes em sucos, microflora natural, fungos e leveduras e prolonga sua vida útil.

Uma variedade de sucos de frutas inoculados com diferentes tipos de bactérias (Escherichia coli ATCC 35208, leveduras e esporos de Bacillus atrophaeus) foram tratados com 100% da potência de luz UV-C. Os testes foram conduzidos usando 10 tipos de sucos ácidos (pH < 4,6), incluindo sucos de maçã (límpido e turvo), laranja (límpido e turvo), tropical, cereja, mirtilo, amora e uva. Também foram testados cinco tipos de sucos com baixo teor de ácido (pH > 4,6), como água de coco, suco de espinheiro marítimo, de cenoura, de grama de trigo e de aipo.

Os resultados dos testes na redução microbiana dos sucos inoculados com E. coli ATCC 35208 mostraram que o tratamento UV pode atingir uma faixa de redução logarítmica (LCR) de no mínimo, 5,0 em sucos tropicais e 8,1 em suco de maçã.

O tratamento com 100% de exposição a UV-C resultou em uma redução nas contagens totais da microflora natural em sucos de vegetais, de 3,7 e 3,9 logs, respectivamente, além de 2,1 logs para fungos e leveduras. E. coli, bactérias do ácido lático e coliformes não foram detectadas em nenhuma das amostras de suco verde tratadas com UV-C. Os tratamentos com reduziram de 1,0 a 3,0 log na contagem desses microrganismos em sucos de frutas. Além disso, o tratamento UV-C foi eficaz na redução dos esporos de B. atrophaeus no suco de espinheiro marítimo e na água de coco.

Leite

O tratamento UV-C também é uma tecnologia promissora para o processamento de laticínios, como um processo seguro, energeticamente eficiente e econômico. O tratamento com UV-C pode ser empregado como um método alternativo de pós-pasteurização para reduzir a contagem microbiana além da pasteurização normal e aumentar a vida útil do leite pasteurizado em pelo menos 30% sob refrigeração. O principal objetivo do processo combinado é alcançar uma vida útil prolongada sem expor o leite a altas temperaturas comuns no tratamento regular. Uma pesquisa mostrou que o tratamento UV-C do leite de vaca e cabra foi eficaz contra a microflora aeróbica, E. coli, Bacillus cereus e esporos de Bacillus subtilis. O efeito dessa combinação de tratamentos foi testado utilizando luz UV-C nos níveis de energia de 100 e 20%.

O maior nível de energia UV-C resultou em maiores reduções na contagem de todos os tipos de organismos testados. A inativação mais eficiente da microflora natural do leite ocorreu com E. coli ATCC 35208, B. cereus e esporos de Bacillus subtilis. A redução nas contagens de B. cereus e esporos de Bacillus subtilis foram menores no leite de cabra. Um teste triangular (painel de nove pessoas) foi usado para determinar se havia uma diferença perceptível nas qualidades sensoriais entre amostras de leite de vaca tratadas com níveis de energia de 100 e 20%. Verificou-se que o leite de vaca tratado com a maior energia resultou na formação de sabor estranho. Nenhuma mudança notável foi encontrada pela maioria dos provadores quando o leite de vaca pasteurizado foi tratado com luz UV a 20%.

Regulamentação

Outra vantagem da tecnologia UV-C para sucos e produtos lácteos é que ela foi aprovada pela Food and Drug Administration (FDA) dos EUA, Health Canada e a Autoridade Europeia para a Segurança Alimentar (EFSA).

  • 2000: O FDA alterou os regulamentos de aditivos alimentares para garantir o uso seguro da radiação UV a 254 nm para reduzir patógenos e outros microrganismos em sucos. Foi determinado que a quantidade de irradiação UV necessária para a redução de patógenos dependeria do tipo de suco, da carga microbiana inicial e do design do sistema de irradiação. Portanto,  o FDA não especificou uma dose mínima ou máxima de UV, mas concluiu que isso deve ser definido para cada tipo de produto e de maneira consistente com as Boas Práticas de Fabricação.
  • 2004: a Health Canada determinou que não há preocupações com a segurança e não há objeções em relação à venda de cidra e suco de maçã tratados com UV-C para a redução na carga microbiana.
  • 2016: EFSA concluiu que o tratamento UV do leite pasteurizado para produzir produtos com maior vida de prateleira e aumentar o teor de vitamina D é seguro nas condições de uso especificadas, o que abriu novas oportunidades para a comercialização de tecnologia adicional para aplicações em produtos lácteos.
  • 2017: A agência israelense de regulamentação de alimentos aprovou o uso de luz UV para reduzir a carga microbiana no leite pasteurizado. O comitê aprovou um pedido para tratar o leite pasteurizado com luz UV de 200 a 300 nm, usando um regime de fluxo turbulento. O leite tratado deve estar livre de contaminação microbiana e será rotulado de acordo com a regulamentação israelense como “tratado com UV”.
  • 2018: A Health Canada concluiu que os sucos tratados com a tecnologia UV não são considerados novos alimentos e são seguros para o consumo, uma vez que não há grandes mudanças na composição nutricional e na segurança química.

Conclusão

O status regulatório do tratamento com luz UV-C para sucos e laticínios e o crescente mercado de bebidas premium abrem novas oportunidades para o desenvolvimento e a comercialização dessa tecnologia em escala industrial. As indústrias de alimentos que desejam investir e testar essa tecnologia devem entender as vantagens e limitações do processo. Ao monitorar os parâmetros do produto, as condições de tratamento UV podem ser adaptadas para evitar o excesso de processamento e o desenvolvimento de sabores estranhos. Os sistemas de processamento UV também devem ser integrados à linha de produção para evitar a contaminação cruzada e alcançar a vida útil máxima do produto.

Traduzido e adaptado de:  KOUTCHMA, Tatiana. Advances in UV-C Light Technology Improve Safety and Quality Attributes of Juices, Beverages, and Milk Products. Food Safety Magazine, fev./mar. 2019. Disponível em: https://www.foodsafetymagazine.com/magazine-archive1/februarymarch-2019/advances-in-uv-c-light-technology-improve-safety-and-quality-attributes-of-juices-beverages-and-milk-products/

7 min leituraO crescente consumo de bebidas lácteas e sucos naturais de frutas e vegetais é atribuído aos benefícios à saúde. Muitos desses produtos são vendidos como “totalmente naturais”, “feitos com ingredientes […]

3 min leitura
0

Avanços na detecção de adulteração de mel

3 min leitura

De acordo com a Instrução Normativa n° 11, de 20 de outubro de 2000, que regulamenta técnicas de identidade e qualidade do mel, do Ministério da Agricultura, Pecuária e Abastecimento (MAPA), o mel de Apis mellifera  é uma elaboração natural das abelhas, procedente do néctar das flores, fragmentos das plantas ou de secreções de insetos sugadores de frações vivas das plantas que as abelhas coletam, modificam, associam com outras substâncias específicas, depositam e deixam maturar nos favos das colmeias. É o adoçante natural mais antigo e seu consumo aumentou significativamente nas últimas duas décadas devido ao seu alto valor nutricional e propriedades medicinais.

O mel é um alimento natural, composto principalmente de açúcares e outros constituintes, como enzimas, aminoácidos, ácidos orgânicos, carotenoides, vitaminas, minerais e substâncias aromáticas. É rico em flavonoides e ácidos fenólicos que possuem uma ampla gama de efeitos biológicos e atuam como antioxidantes naturais. A composição, cor, aroma e sabor do mel dependem principalmente das flores, regiões geográficas, clima e espécies de abelhas envolvidas em sua produção e também são afetados pelas condições climáticas, processamento, manipulação, embalagem e tempo de armazenamento.

O Codex Alimentarius e a Diretiva do Conselho da Comissão Europeia enfatizaram que o mel deve ser isento de qualquer ingrediente alimentar, incluindo aditivos alimentares ou quaisquer outras adições quando comercializado como mel ou usado em qualquer produto destinado ao consumo humano. O mel deve ser inalterado por materiais orgânicos ou inorgânicos estranhos à sua composição natural, higiênico e puro para preservar suas propriedades nutritivas.

A disponibilidade limitada e o alto preço do mel aumentaram o interesse em sua adulteração. Os parâmetros de identidade e qualidade do mel são considerados úteis para detectar essas possíveis adulterações e também para confirmar as condições de higiene para a manipulação e armazenamento do mel. A adulteração do mel ocorre pela adição direta de xaropes produzidos a partir de beterraba, xarope de milho com alto teor de frutose, xarope de maltose ou pela adição de outros xaropes obtidos do amido por tratamento térmico, enzimático ou ácido, ou alimentando excessivamente as colônias de abelhas com esses xaropes durante o período de coleta do néctar.

Durante as últimas três décadas, várias novas técnicas foram desenvolvidas para identificar adulterantes específicos do mel. Algumas técnicas são específicas, como quando a composição química do adulterante é semelhante ao mel. Tradicionalmente, os adulterantes de mel são detectados por métodos físico-químicos. A adulteração de mel por xarope de açúcar invertido e xarope de açúcar de cana pode ser detectada com determinações químicas, incluindo HMF, glicose, sacarose, frutose e atividade diastásica.

Como a detecção de adulteração de mel é complexa, métodos avançados de detecção de adulterantes foram desenvolvidos. Os métodos utilizados até 2014 para a detecção de adulterantes do mel eram: análise eletroquímica, métodos enzimáticos, cromatografia em camada delgada, análise isotópica do carbono, análise química por injeção de fluxo , cromatografia em fase gasosa, cromatografia líquida de alta eficiência (HPLC), cromatografia de troca iônica, espectroscopia no infravermelho por transformada de Fourier (FTIR), calorimetria diferencial de varredura (DSC), espectroscopia de infravermelho próximo (NIRS),  espectroscopia de infravermelho médio (DRIFTS), cromatografia em fase gasosa junto com  espectrometria de massa(GC-MS), cromatografia de troca aniônica de alto desempenho (HP) com método de detecção amperométrica pulsada (HPAEC-PAD) e espectrometria de massa de razão isotópica acoplada a um analisador elementar e ressonância magnética nuclear de baixo campo.

Métodos mais recentes utilizados para detectar adulterantes de mel incluem microscopia combinada com PCR em tempo real (Polymerase chain reaction quantitative real time), espectroscopia de fluorescência tridimensional acoplada à calibração multivariada, sensor de deslocamento de fibra óptica, língua eletrônica e ressonância magnética nuclear (NMR). No entanto, nenhum dos métodos até o momento pode ser usado para identificar todos os adulterantes no mel simultaneamente.

Recentes avanços no uso da metabolômica na ciência de alimentos ganharam atenção, pois podem ajudar a identificar marcadores que podem diferenciar o adulterante do alimento. O papel da metabolômica na detecção de adulterantes no mel é uma das novas áreas que foram exploradas recentemente, pois o aumento do uso de múltiplos adulterantes dificultou a detecção usando métodos estabelecidos anteriormente.

O desenvolvimento da tecnologia de biossensores também é uma nova abordagem para a detecção de adulterações em mel. Um nariz eletrônico possui uma variedade de sensores potenciométricos com seletividade diferencial para detectar odores de diferentes compostos. A tecnologia do nariz eletrônico em combinação com modelos de reconhecimento de padrões tem sido usada para várias aplicações, incluindo indústrias de alimentos e adulteração em mel.

Embora tenha havido um avanço constante de técnicas para detectar mel adulterado, é necessário intensificar esforços para desenvolver métodos analíticos inovadores e de ponta que permitam uma verificação fácil e rápida da autenticidade do mel.

Referências

SE, Kuan Wei et al. Detection techniques for adulterants in honey: Challenges and recent trends. Journal Of Food Composition And Analysis, [s.l.], v. 80, p.16-32, jul. 2019.

NAILA, Aishath et al. Classical and novel approaches to the analysis of honey and detection of adulterants. Food Control, [s.l.], v. 90, p.152-165, ago. 2018.

WU, Liming et al. Recent advancements in detecting sugar-based adulterants in honey – A challenge. Trac Trends In Analytical Chemistry, [s.l.], v. 86, p.25-38, jan. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.trac.2016.10.013.

3 min leituraDe acordo com a Instrução Normativa n° 11, de 20 de outubro de 2000, que regulamenta técnicas de identidade e qualidade do mel, do Ministério da Agricultura, Pecuária e Abastecimento […]

Compartilhar
Pular para a barra de ferramentas