4 min leitura
0

No verão, os alimentos estragam mais rápido?

4 min leitura

Em qualquer período do ano, temperaturas inadequadas são fatores de risco para os alimentos perecíveis. No entanto, é no período de verão, momento em que as temperaturas ficam bem mais altas, que os alimentos correm maior risco.

E por que isso acontece, mesmo quando o alimento está sob refrigeração? Os refrigeradores, congeladores e câmaras frias, independentemente de autosserviço (selfie) ou se ligados a um rack central, trabalham trocando calor com o ambiente. Isso significa que, em dias mais quentes, o equipamento fará um esforço maior do que em dias mais frios e gastará mais energia.

A incidência de calor externa devido ao sol que bate diretamente na parede onde o refrigerador está ou a interna, como é o caso da temperatura ambiente em um dia de muito calor, impacta diretamente nos alimentos perecíveis que estão dentro do equipamento refrigerado, seja pelo nível de geração de frio, pela troca térmica (assunto que você verá mais adiante) ou pela forma como ele é utilizado (carregamento de produtos, aberturas de porta etc.).

Como a amplitude térmica a vencer é maior e o equipamento precisa funcionar por mais tempo e com maior potência, a probabilidade de defeito aumenta no verão. Por isso é muito comum os técnicos de refrigeração ficarem ociosos no inverno e muito ocupados na época de calor.

Outro ponto relevante é que a temperatura dentro do refrigerador varia em até 6 graus. Isso significa que, se no ponto mais frio do equipamento o produto está a 0°C, no ponto mais quente provavelmente estará a 6°C. Sendo assim, é fundamental atentar-se à temperatura indicada pelo fabricante e a variação dentro do gabinete para configurar corretamente o equipamento.

Quanto mais adequada for a temperatura do produto, mais tempo você terá para agir em caso de problema. Um equipamento que opera a -18°C e quebra na madrugada dará muito mais horas para agir do que um operando a -12°C.

A influência da temperatura ambiente

Por definição, a temperatura ambiente é a temperatura do ar num determinado espaço. E ela é variável não só de região para região, como até mesmo dentro de um mesmo local devido a fatores externos.

Mas o que isso tem a ver com os alimentos perecíveis e as temperaturas do verão? Tudo. Em períodos de mais calor, a temperatura ambiente fica mais elevada e, mesmo que os alimentos estejam dentro de um equipamento refrigerado, a temperatura ambiente terá influência porque há troca térmica: quando você abre a porta de uma geladeira, o calor de fora entra e o frio de dentro sai.

Daí a importância de também manter uma temperatura ambiente ideal nos espaços que, de acordo com a Organização Mundial da Saúde, é de 23°C a 26°C. O monitoramento de temperatura ao longo do dia ajuda a não comprometer nem os produtos que sofrem oscilação térmica nem os equipamentos, que podem precisar de mais manutenção quando trabalham em excesso para gerar o frio necessário.

A SYOS oferece a todos os elos da cadeia do frio – indústria, transporte e ponto de venda – uma solução de monitoramento de temperatura a partir de sensores com inteligência artificial, que conseguem analisar os padrões de frio que chegam aos alimentos dentro dos equipamentos refrigerados. E a qualquer sinal de não conformidade, seja equipamento desligado, baixo rendimento ou rendimento crítico, um alarme é enviado via app ou WhatsApp para que uma ação imediata possa ser tomada.

Evite perder produtos no transporte ou durante sua transferência

Outro cuidado que se precisa ter é sobre como os alimentos são tratados ao longo de todo o processo, desde que saem da indústria até chegar a seu destino.

Durante o transporte, o monitoramento de temperatura tem como objetivo certificar que não haverá variação dentro das faixas de temperatura em que os produtos devem estar. Se foi estabelecido que o veículo tem que estar entre 0°C e 10°C, por exemplo, ao passar por regiões de temperaturas mais altas, o responsável precisa checar o frio que está circulando no caminhão para entender se há ou não necessidade de baixar a temperatura ou aumentar o fluxo do ar para ter mais circulação interna.

Ao fazer acompanhamento em tempo real, como o da SYOS via plataforma web ou aplicativo, é possível perceber a variação da temperatura quando algo diferente do padrão pré-estabelecido está acontecendo e receber um alerta indicando que a temperatura está variando. É a partir do alarme, em tempo real, que uma ação imediata pode ser tomada e salvar a carga, em vez de esperar que o produto chegue à ponta já em condições inadequadas, sendo rejeitado na entrega.

Vale dizer que não é só no embarque e no desembarque que as variações acontecem. Durante a transferência de produtos de uma câmara fria para a gôndola, de uma ilha que parou de funcionar para outro refrigerador, por exemplo, também pode haver perdas. Isso porque muitos alimentos são tão sensíveis que não é preciso muito tempo para que eles percam a qualidade ou tenham a embalagem comprometida, gerando percepção negativa nos clientes.

Como saber quando um alimento foi submetido a variação de temperatura?

Nem sempre é possível visualizar a olho nu que um alimento está em risco. Existem dois tipos de bactérias que alteram a qualidade dos produtos: uma é chamada de deteriorante e indica mudança de cor, textura e sabor, e nem sempre faz mal à saúde. A outra é chamada de patógeno, que causa risco à saúde, mas é difícil de ver a olho nu.

No entanto, se houve espaço para o microrganismo deteriorante se instalar nos alimentos, ou seja, se você já viu que tem algo diferente do padrão, é possível que os microrganismos patógenos também possam ter se desenvolvido ali. A melhor opção neste caso é descartar o alimento para que nem você ou seu cliente corram algum risco.

Se o produto estiver numa embalagem plástica é possível observar os aspectos do próprio alimento: se ele tiver formação de crosta de gelo nas laterais, se a embalagem estiver suada, se o papelão estiver com algum aspecto molhado ou mole significa que o produto passou por um descongelamento. Produto congelado precisa estar totalmente rígido, firme e qualquer situação diferente disso indica que o alimento não está em condição adequada.

Ter acompanhamento contínuo da temperatura faz com que seja possível tomar ações efetivas em tempo hábil. Não permita que a saúde dos seus clientes seja negligenciada; exija qualidade e ofereça segurança com a solução de monitoramento da SYOS. Para ter acesso a outros conteúdos como esse, acesse o Blog da SYOS.

Por Caroline Dallacorte, engenheira de alimentos e diretora de crescimento da SYOS

4 min leituraEm qualquer período do ano, temperaturas inadequadas são fatores de risco para os alimentos perecíveis. No entanto, é no período de verão, momento em que as temperaturas ficam bem mais […]

2 min leitura
0

Embalagem inovadora contribui para a segurança dos alimentos

2 min leitura

É cada vez mais comum as indústrias de alimentos adotarem embalagens inovadoras, uma vez que elas são o primeiro contato do consumidor com o produto. Para conseguir se destacar diante da vasta lista de concorrentes e oferecer algo novo, é necessário investir em uma embalagem que atraia o público-alvo. É importante ressaltar que, além de chamar a atenção, ela precisa preservar a qualidade e segurança do alimento.

Além da estética, as embalagens inovadoras conseguem contribuir em vários aspectos: sustentabilidade, posicionamento no mercado, agregação de valor, marketing, experiência ao cliente e o aumento na segurança de alimentos.

Existem tecnologias inovadoras no mercado para embalagens de alimentos. Segundo artigos de divulgação (veja mais aqui e aqui), uma delas é o feixe de elétrons ou E-beam, que realiza a esterilização da embalagem. O princípio, segundo a divulgação, é “usar um feixe de elétrons acelerados para afetar as propriedades de um material pré-polímero (monômero e/ou oligômero), quebrando suas ligações químicas. A interação dos elétrons do feixe com as moléculas de matéria que eles encontram modifica esta matéria através de reações de ionização. As consequências destas reações permitem destruir microrganismos, secar e endurecer monômeros ou reticular plásticos”.

Ainda citando o texto, “é um processo que endurece, reticula e esteriliza instantaneamente, permitindo um maior rendimento. Além disso, um único feixe pode substituir várias baterias de lâmpadas UV ou vários fornos”. Entre as inúmeras vantagens dessa tecnologia, a melhor é que ela “não utiliza em seu processo de produção fotoiniciadores, substâncias adicionadas para permitir a fotopolimerização em processos convencionais, evitando assim qualquer tipo de migração das substâncias” da embalagem para o alimento.

Mas independentemente da tecnologia utilizada, vale ressaltar que sempre devemos seguir os requisitos de segurança de alimentos para homologação dos fornecedores de embalagens, para que elas sejam adequadas para uso em alimentos.

As informações apresentadas são de fontes comerciais.

Imagem: Theagilityeffect

2 min leituraÉ cada vez mais comum as indústrias de alimentos adotarem embalagens inovadoras, uma vez que elas são o primeiro contato do consumidor com o produto. Para conseguir se destacar diante […]

3 min leitura
0

Dados confiáveis são essenciais para a segurança dos alimentos

3 min leitura

Vivemos em um mundo globalizado e a cadeia produtiva de alimentos ganhou dimensões jamais vistas. No seu prato pode haver ingredientes vindos de várias partes do mundo, e neste cenário, o Brasil tem um papel fundamental, pois é um estratégico player na exportação de alimentos, tanto commodities agrícolas quanto produtos industrializados.

Segundo Frank Yiannas, atual vice-comissário do FDA (Food and Drug Administration):

“Uma melhor segurança dos alimentos começa e termina com melhores dados”.

Dados confiáveis de rastreabilidade são essenciais não apenas para recall eficiente, mas também para análise de causa-raiz de eventos de DVAs (Doenças Veiculadas por Alimentos), ajudando a entender, analisar, corrigir e prevenir novas ocorrências.

A rastreabilidade começa com a coleta de dados. Tratando-se de cadeias de suprimentos complexas e multissetoriais que se estendem por todo um sistema global, a comunicação de dados é fundamental para a rastreabilidade rápida e eficaz de ponta a ponta.

Com esta visão, o FDA incorporou temas sobre compartilhamento, qualidade e análise de dados em cada um dos elementos principais do documento  “Nova era de segurança dos alimentos mais inteligente” que pode ser acessado aqui. Este é um projeto que adota uma nova abordagem para a segurança dos alimentos, alavancando a tecnologia e outras ferramentas e formas de trabalho para tornar a cadeia produtiva de alimentos mais segura, digital e rastreável.

Em poucas palavras, trata-se da adoção, mais do que esperada e lógica, de elementos da indústria 4.0 em suporte à segurança dos alimentos, entre eles:

Dispositivos de Internet das coisas (IoT) que facilitam a coleta de dados

Dispositivos conectados à internet para coletar dados de segurança e rastreabilidade de alimentos com o uso de sensores podem ser usados para monitorar as condições climáticas no campo, variáveis operacionais nos processos, limites de controle em pontos críticos e muito mais.

Os scanners de identificação por radiofrequência (RFID) podem ser usados para rastrear os movimentos de produtos alimentícios marcados, apoiando os esforços de rastreabilidade de alimentos do campo ao garfo.

A variedade de sensores, câmeras, scanners e outros dispositivos IoT capacitam os atores da indústria de alimentos a acessar e coletar dados com mais rapidez, confiabilidade e eficácia do que aqueles coletados com trabalho humano, e claro, reduzindo os riscos de erros e fraudes.

Os dados coletados por esses dispositivos podem ser usados para gerenciar desvios de segurança dos alimentos em tempo real, recuperar do mercado rapidamente produtos inseguros e criar modelos preditivos valiosos para os stakeholders do segmento alimentício.

Inteligência artificial (AI) para análise de dados aprimorada

Com grandes conjuntos de dados ao seu alcance, muitas organizações estão buscando como ferramenta-chave o uso da AI para analisar seus dados de segurança dos alimentos de forma mais assertiva.

As agências reguladoras também estão aproveitando a nova tecnologia de análise de dados. O FDA, por exemplo, planeja aplicar modelos preditivos aos produtos alimentícios regulamentados, pois se tiver uma base de dados confiável, há como os algoritmos ajudarem a prever riscos futuros e assim poder agir preventivamente.

A inteligência artificial permite uma capacidade de análise de dados muito mais ampla, combinando informações e extrapolando resultados pelo uso de modelos matemáticos preditivos.

À medida que a cadeia global de abastecimento de alimentos se torna cada vez mais ampla e complexa, a indústria de alimentos precisa se integrar, buscando a sinergia de soluções baseadas em dados confiáveis, expandindo a adoção de tecnologias que permitem a coleta, troca e análise de dados. Este é o futuro da segurança de alimentos, um caminho que já está sendo trilhado e que não tem mais volta.

Para se aprofundar um pouco mais sobre as tecnologias da Industria 4.0 que podem ser aplicadas à cadeia produtiva de alimentos, leia os artigos sobre os “Impactos da 4ª revolução industrial no segmento de alimentos parte 1parte 2“.

E você, como gerencia dados sobre a segurança dos alimentos? Deixe seu comentário!

3 min leituraVivemos em um mundo globalizado e a cadeia produtiva de alimentos ganhou dimensões jamais vistas. No seu prato pode haver ingredientes vindos de várias partes do mundo, e neste cenário, […]

2 min leitura
0

Soro de leite em revestimentos comestíveis: aspectos de segurança de alimentos

2 min leitura

O soro de leite é um subproduto da fabricação do queijo e tem se mostrado uma excelente opção para revestimentos comestíveis. Ele é rico em proteínas, possui propriedades antibacterianas, capacidade de formação de filme incolor e inodoro, além de biocompatibilidade com outros materiais que podem ser combinados a ele e oferecer características aprimoradas ao revestimento. Isso contribui com o ciclo de vida do alimento ao qual ele está sendo aplicado. As aplicações são reportadas em diferentes matrizes alimentares como carnes, queijos e frutas.

No entanto, quando tratamos de embalagens ou revestimentos de alimentos, devemos lembrar que o material estará em contato direto com os alimentos, sendo necessário considerar alguns aspectos:

  1. O soro de leite comum não é considerado um biopolímero promissor para a preparação de filmes, pois possui estrutura globular compacta e tamanho molecular pequeno. Para modificar essa condição, a solução precisa ser aquecida de 80 a 90°C por 10 a 30 minutos. Esse aquecimento resulta na desnaturação da proteína, expondo os grupos funcionais e hidrofóbicos do soro, formando uma rede química tridimensional que promove ligações intermoleculares e interações hidrofóbicas na secagem do filme. Quando a desnaturação da proteína não é realizada, filmes quebradiços são obtidos após o processo de secagem.
  2. O soro de leite deve ser declarado como alergênico, em atendimento às normas (Codex Alimentarius), por se tratar de um derivado lácteo no qual a presença dessa proteína pode atuar como um gatilho para o desenvolvimento de reações alérgicas.
  3. Aspectos regulatórios estão relacionados aos cuidados com a segurança de alimentos, como as boas práticas de produção, visto que são materiais que entram em contato com alimentos. Além disso, deve-se avaliar minuciosamente a composição do filme e a possibilidade de migração de componente do filme para o alimento, avaliação essa que deve ser baseada em valores previamente estabelecidos em normas legais. Ressalta-se que os aspectos regulatórios são baseados em formulações específicas de forma que cada composição e/ou aplicação requer avaliação individual.
  4. Outro fator a ser considerado para aplicação são os mercados restritivos decorrentes de certificações religiosas, como a certificação Kosher, cujas exigências avaliadas seguem a lei judaica, que não permite a mistura de carne e leite para consumo. Neste caso, o cliente deve ser cuidadosamente estudado previamente. Essa exigência corrobora a referente aos produtos alergênicos, sendo possível mensurar que a aplicação mais assertiva tanto para fins regulatórios quanto mercadológicos é na matriz láctea.

O que você acha dessa aplicação para o soro de leite?

Imagem: Comung

2 min leituraO soro de leite é um subproduto da fabricação do queijo e tem se mostrado uma excelente opção para revestimentos comestíveis. Ele é rico em proteínas, possui propriedades antibacterianas, capacidade […]

3 min leitura
0

Food Safety Brazil no primeiro Congresso de Segurança e Qualidade de Alimentos (Unicamp)

3 min leitura

Nos dias 5 e 6 de dezembro ocorreu a primeira edição do Congresso de Segurança e Qualidade de Alimentos, realizado de forma online pela Unicamp (Faculdade de Engenharia de Alimentos – FEA).

Quem participou pôde acompanhar diversas apresentações intrigantes sobre temas distintos e muito pertinentes à qualidade e segurança de alimentos, ministradas por palestrantes bastante qualificados.

 Dê uma olhada na programação:

 

Abertura

Impact of globalisation and Big Data on food safety

Prof. Dr. József Baranyi (Univ. of Debrecen – Hungria)

Sessão 1

Aditivos alimentares: o papel da avaliação do risco no contexto regulatório

Profa. Dr. Adriana Pavesi (Unicamp – Brasil)

Sessão 2

Controle de biofilme em superfícies industriais

Prof. Dr. Manoel Simões – (Univ. do Porto – Portugal)

Sessão 3

Pathogens in the food chain and the one health perspective

Dra. Carmen Torres (Univ. de La Rioja – Espanha)

Sessão 4

Determinação de resíduos de agrotóxicos e medicamentos veterinários em alimentos

Dra. Sônia Claudia do Nascimento Queiroz (Embrapa)

Sessão 5

Microbial interactions within food ecossystems

Prof. Dr. Uelinton Manoel Pinto (FCF – USP)

Sessão 6

Bactérias Láticas: uma ferramenta para reduzir o potencial alergênico de proteínas alimentares

 Dra. Marcela  Albuquerque Cavalcante de Albuquerque – NEPP – Núcleo de estudos em Probióticos e Prebióticos

Sessão 7

Toxigenic fungi and mycotoxins in food: strategies  based on biocontrol to reduce their impact

Dra. Sofia Chulze (Univ. Nacional de Rio Cuarto – Argentina)

Sessão 8

Different tools for food authenticity control

Dra. Ilka Haase – Max Rubner Institut, Alemanha

Sessão 9

Plasma frio no controle de fungos e micotoxinas em alimentos

Profa. Dra. Liliana Rocha (Unicamp)

Sessão 10

Métodos analíticos e detecção de adulterações em alimentos brasileiros

Profa. Dra. Juliana Pallone (Unicamp)

Sessão 11

Pesquisa de matérias estranhas em alimento: um olhar para novas técnicas analíticas

Dra. Maria Isabel Andrekowski Fioravanti / Dra. Elaine Cristina De Mattos – Instituto Adolfo Lutz)

Sessão 12

Da avaliação do risco de contaminantes químicos dos alimentos à avaliação do risco-benefício – a tomada de decisão em segurança de alimentos

Prof. Dr. Ricardo Assunção (Instituto Universitário Egaz Moniz – Portugal)

Lógico que o Food Safety Brazil não iria perder a oportunidade de participar, e traz aqui alguns tópicos abordados

  

Impact of Globalisation and Big Data on Food Safety

József Baranyi (University of Debrecen & Hungarian University of Agriculture and Life Sciences)

 

Um assunto bastante atual foi tratado, aplicado à realidade das indústrias e à gestão de qualidade e segurança de alimentos.

O palestrante falou sobre tratamento de dados gerados em processo, e métodos de predição, análise e tomada de decisão. Estas metodologias, no âmbito de segurança de alimentos, podem ser utilizadas para diferentes finalidades, como avaliação da vida de prateleira e análise de tendência quanto a resultados de análises laboratoriais.

Ainda foi discutida como a globalização impacta a cadeia de produção de alimentos e a Segurança de Alimentos. Diversos desafios decorrem do conceito de cadeia de suprimentos global.

 

Aditivos alimentares: o papel da avaliação do risco no contexto regulatório

Profa. Dra. Adriana Pavesi (Unicamp – Brasil)

 

A palestrante explicou o processo de avaliação de risco para aprovação de novos aditivos. Temas como avaliação toxicológica e avaliação de exposição foram explicados, incluindo a atuação do JECFA (Joint FAO/WHO Expert Committee on Food Additives).

Também foi tratada a crescente preocupação da população mundial sobre o uso de aditivos em alimentos. Para se ter uma ideia, um estudo publicado pela OMS aponta o uso de aditivos alimentares em terceiro lugar entre as maiores preocupações em relação à Segurança de Alimentos na comunidade europeia, à frente de contaminação biológica.

Ao final, a palestrante apresentou rapidamente alguns artigos desenvolvidos pela Unicamp para avaliação de novos aditivos.

 

Determinação de resíduos de agrotóxicos e medicamentos veterinários em alimentos

Dra. Sônia Claudia do Nascimento Queiroz (Embrapa)

Foram discutidos os principais métodos para análise de agrotóxicos e medicamentos veterinários em alimentos, como HPLC, Cromatografia em fase gasosa e líquida e espectrometria de massa. Pontos positivos e negativos foram levantados pela palestrante. Além disso, alguns trabalhos realizados pelo Embrapa foram expostos e discutidos.

 

Da avaliação do risco de contaminantes químicos dos alimentos à avaliação do risco-benefício – a tomada de decisão em segurança de alimentos

Prof. Dr. Ricardo Assunção (Instituto Universitário Egaz Moniz – Portugal)

 

O palestrante apresenta uma forma alternativa de avaliar riscos em Segurança de Alimentos, o chamado Risk Benefit for EU. Esta metodologia, diferente de outras adotadas (como o APPCC), inclui o benefício nutricional do produto como contraparte, assim como fatores ambientais e sociais.

Foi apresentado um estudo prático sobre a adoção desta metodologia para frutas secas em Portugal.

 

Toxigenic fungi and mycotixin in food: Strategies based on biocontrol to reduce their impact

Dra. Sofia Chulze (Universidad Nacional de Rio Cuatro – Argentina)

 

Um estudo trazendo estratégias para redução de fungos toxigênicos em alimentos por meio de controle biológico por microrganismos antagonistas foi apresentado pela autora. A relação antagônica entre Aspergillus flavus toxigênicos AF(+) e não toxigênicos AF(-) gerou resultados promissores.

3 min leituraNos dias 5 e 6 de dezembro ocorreu a primeira edição do Congresso de Segurança e Qualidade de Alimentos, realizado de forma online pela Unicamp (Faculdade de Engenharia de Alimentos […]

7 min leitura
0

O ozônio tem outras aplicações na indústria de alimentos além de sanitizante?

7 min leitura

Como podemos ver no post “Cloro x Ozônio na Indústria de alimentos”, é permitido usar o ozônio como sanitizante na água e ele é 325 vezes mais rápido que o cloro a um custo similar.

Mas é só como sanitizante que se usa o ozônio?

Não. Ele tem várias outras aplicações na indústria de alimentos:

1. Na ETA – Estação de Tratamento de Água, para reduzir cor aparente, turbidez, metais pesados, pesticidas e material orgânico para que a água atinja os padrões de potabilidade necessários ao processamento de alimentos;

2. Na ETE – Estação de Tratamento de Efluentes, para reduzir DBO, DQO, cor aparente, turbidez, metais pesados, pesticidas, material orgânico e resíduos químicos específicos para que o efluente atinja os padrões exigidos pelos órgãos ambientais no Brasil para ser lançado na rede de esgoto ou nos rios e outros corpos de água;

3. Na redução de INSETOS nas matérias primas, produtos e processos das indústrias de alimentos;

4. Na redução de PESTICIDAS das matérias primas usadas na indústria de alimentos para que atendam aos LMRs – Limites Máximos de Resíduos, permitidos por lei no Brasil e no mundo

5. Na redução de MICOTOXINAS das matérias primas e produtos das indústrias de alimentos;

Vamos detalhar um pouco mais sobre cada uma dessas aplicações do ozônio.

  • Na ETA – Estação de Tratamento de Água

Esta aplicação foi bem explorada no artigo “Cloro x Ozônio na Indústria de alimentos” já mencionado acima.

  • Na ETE – Estação de Tratamento de Efluentes

O efluente proveniente de algumas operações de processamento de alimentos pode estar fortemente contaminado com material orgânico e resíduos químicos diversos.

Pesquisas demonstraram que uma degradação eficiente de contaminantes pode ser alcançada por meio da aplicação direta do ozônio em efluentes.

No Brasil os efluentes só podem ser lançados em corpos de água se atenderem aos parâmetros da resolução 430 de 2011 do CONAMA – Conselho Nacional do Meio Ambiente, pois seu descarte sem o tratamento adequado pode implicar em riscos para a saúde humana, além da degradação do meio ambiente. Isso porque, dependendo do setor de atuação, esses resíduos líquidos podem conter nível de material orgânico acima do permitido, o que aumentaria o consumo de oxigênio do corpo d´água, causando mortes dos peixes e demais seres aeróbios. Também pode conter pesticidas e outros contaminantes químicos provenientes de limpeza e desinfeção, resíduos de aditivos e coadjuvantes de processo danosos à nossa saúde e ao meio ambiente. O ozônio, com seu alto poder oxidante, degrada e desmonta essas moléculas trazendo o efluente aos padrões legais. Se o efluente tiver metais pesados como cádmio, cromo, manganês e níquel, o ozônio precipita-os, retirando-os da solução e permitindo que sejam retidos pelos filtros.

  • Na redução de INSETOS

Antes de mais nada, você pode estar se perguntando, mas sanitização não diz respeito a insetos? Não. Sanitização consiste em reduzir microrganismos críticos para a saúde pública em níveis considerados seguros. Então vamos falar em fumigação de insetos. Insetos consomem os alimentos, depreciam sua qualidade e podem trazer microrganismos.

A fumigação é um tipo de controle de pragas gasoso usado para controle de insetos (pragas) vivos presentes em produtos agrícolas. O ozônio tem grande eficácia sobre os insetos.

Veja na tabela abaixo a relação dos insetos mais comuns encontrados em grãos armazenados e a respectiva porcentagem de mortalidade sob tratamento com ozônio.

Grãos Insetos alvos Concentração do Ozônio Tempo de exposição Mortalidade Referência
Grão armazenado Duas espécies de Tribolium spp. (Coleoptera: Tenebrionidae) 45 ppmv 6.5 h 100% 6
Mistura de farinha/ fubá de milho Oryzaephilus surinamensis (L) 5 ppm 3 e 5 dias 100% 7
Grãos armazenados Tribolium confusum Tribolium castaneum e Sitophilus zeamais (Adulto) 50 ppmv 3 dias 100% 7
Milho T. castaneum (TC) Sitophilus zeamais (SZ) P. interpunctella (PI) 25 ppmv 5 dias 91,4% (TC) 99,9% (SZ) 77,0% (PI) 8
Milho Adulto- T. castaneum,

Adulto- S. zeamais, e

Larva– P. interpuntella

50ppmv 3 dias 92-100% 8
Milho Sitophilus zeamais. 50 ppm de ozônio (8L min-1) 48 h 100% 9
Milho Adultos de S. zeamais e T. castaneum 50 mg kg 1 23,76 e 64,19 h 95% 10
Trigo Sitophilus oryzae (L.) – adultos 25 e 50 ppmv 4 e 2 dias 100% 11
Trigo Tribolium castaneum-adultos 70 ppmv. 4 dias 100% 12
Trigo Ovos de P. interpunctella,

S. zeamais-adulto e S. oryzae-adulto

1800 ppm 180, 120 e 60 min 100% 13
Trigo Ephestia kuehniella (EK) e Tribolium confusum (TC) 13,88 mg/L Tratamento de liberação de ozônio com intervalo de 30 min por 5 h 90-100% (L, P e A de EK) 72,6% (L) 1,3-22,7% (E, P e A de TC) 14
Feijão-caupi Adultos de Callosobruchus maculatus

Pupa

500 ppmv 274,40 min

 

 

1.816,54 min

100%

 

 

100%

15
  • PESTICIDAS das matérias primas usadas na indústria de alimentos para que atendam aos LMRs – Limites Máximos de Resíduos, permitidos por lei no Brasil e no mundo

Entre os diversos métodos aplicados para a degradação de resíduos de agrotóxicos usuais, o tratamento químico com ozônio gasoso ou água ozonizada é uma tecnologia emergente com grande potencial e diversas vantagens. Muitas pesquisas têm sido realizadas com o ozônio gasoso para remoção de resíduos de agrotóxico em vegetais, frutas e grãos de cereais.

Veja na tabela abaixo os resultados da degradação de resíduos de agrotóxicos em alguns alimentos pelo ozônio:

Grãos tratados Tipo de toxicidade dos pesticidas Condições de tratamento Nível de redução Referência
Milho Pirimifos-metila 0,86 mg L -1 de ozônio gasoso, 60 min > 91% 22
Trigo Pirimifos-metila 60 mol mol 1 de ozônio gasoso, 30 min 71,1% 21
Deltametrina e Fenitrothion 60 mol mol 1 de ozônio por 60, 120 e 180 min 67,5%, 88,1% e 89,8% 21
Arroz Bifentrina e deltametrina 3 mg L 1 e fluxo contínuo de 1,0 L min 1por períodos definidos de até 10 h. 91,9% – Bifentrina

92,7% – Deltametrina

23

 

A eficiência do ozônio gasoso na degradação de resíduos de agrotóxicos deve-se em grande parte à sua capacidade de reagir com estruturas moleculares contendo ligações duplas, como compostos aromáticos e aminas.

  • Na redução de MICOTOXINAS das matérias primas e produtos das indústrias de alimentos

As micotoxinas são metabólitos secundários produzidos por uma grande variedade de espécies de fungos que causam as perdas nutricionais e a ingestão de alimentos que contenham micotoxinas pode causar graves efeitos sobre a saúde animal e humana.

O tratamento com ozônio gasoso tem demonstrado eficiência em reduzir contaminação por aflatoxina B1 em figos secos e patulina em sucos de maçã.

O ozônio também é útil na detoxificação e eliminação de micotoxinas em grãos de amendoim, milho, trigo e ração para aves.

Entretanto, dependendo do tipo e quantidade de micotoxina já formada e do alimento, não se consegue reduzir ao nível aceitável sem afetar algo no alimento e, como os fungos Alternaria sp., Aspergillus sp., Aureobasidium sp., Cladosporium sp., Geotrichum sp., Mucor sp., Penicillium brevicompactum, Stachybotris chartarium, Trichoderma viride, Ulocladium sp., Botrytis cinerea, Fusarium verticillioides e Colletotrichum magna já demonstraram serem sensíveis ao ozônio em vários estudos efetuados, a melhor estratégia é reduzir ou eliminar esses fungos bem no comecinho de seu aparecimento. Existem formas de aplicação do ozônio imediatamente após a colheita ou mesmo antes da colheita, em casas de vegetação ou descontaminar o solo dos canteiros.

Literatura citada

  1. HUANG, C.P., DONG, C. AND TANG, W.Z. (1993) ADVANCED CHEMICAL OXIDATION: ITS PRESENT ROLE AND FUTURE POTENTIAL IN HAZARDOUS WASTE TREATMENT, WASTE MANAGEMENT, 13(5/7): 361–77.
  2. RICE, R.G. (1986) APPLICATION OF OZONE IN WATER AND WASTEWATER TREATMENT, IN RICE, R.G., BOLLYKY L.J. AND LACY, W.J. (EDS) ANALYTICAL ASPECTS OF OZONE TREATMENT OF WATER AND WASTEWATER, CHELSEA, MI: LEWIS PUBLISHERS, PP. 7–26
  3. USHARANI, K., MUTHUKUMAR, M., & KADIRVELU, K. (2012). EFFECT OF PH ON THE DEGRADATION OF AQUEOUS ORGANOPHOSPHATE (METHYLPARATHION) IN WASTEWATER BY OZONATION
  4. BELTRAN, F.J. (2004) OZONE REACTION KINETICS FOR WATER AND WASTEWATER SYSTEM, NEW YORK, NY: CRC PRESS CLL.
  5. EVANS, F.L. (1972) OZONE IN WATER AND WASTEWATER TREATMENT, ANN ARBOR, MI: ANN ARBOR SCIENCE PUBLISHERS.
  6. ERDMAN, H. E. (1980). OZONE TOXICITY DURING ONTOGENY OF TWO SPECIES OF FLOUR BEETLES, TRIBOLIUM CONFUSUM AND T. CASTANEUM. ENVIRONMENTAL ENTOMOLOGY, 9(1), 16-17.
  7. MASON, LINDA J., C. P. WOLOSHUK, AND D. E. MAIER. “EFFICACY OF OZONE TO CONTROL INSECTS, MOLDS, AND MYCOTOXINS.” IN INTERNATIONAL CONFERENCE ON CONTROLLED ATMOSPHERE AND FUMIGATION IN STORED PRODUCTS, ED BY DONAHAYE EJ, NAVARRO, S., VARNAVA, A., PRINTCO, LTD, NICOSIA, CYPRUS, PP. 665-670. 1997.
  8. KELLS, STEPHEN A. ET AL. EFFICACY AND FUMIGATION CHARACTERISTICS OF OZONE IN STORED MAIZE. JOURNAL OF STORED PRODUCTS RESEARCH, V. 37, N. 4, P. 371-382, 2001.
  9. FARONI, LRD, PEREIRA, AM, SOUSA, AH, SILVA, MTC, & URRICHI, WI (2007). INFLUENCE OF MAIZE GRAIN MASS TEMPERATURE ON OZONE TOXICITY TO SITOPHILUS ZEAMAIS (COLEOPTERA: CURCULIONIDAE) AND ON THE QUALITY OF OIL EXTRACTED FROM OZONIZED GRAINS. AT THE IOA CONFERENCE AND EXHIBITION (VOL. 1, PP. 1-6). VALENCIA: IOA.
  10. ROZADO, A.F., FARONI, L.R., URRUCHI, W.M., GUEDES, R.N. AND PAES, J.L., 2008. OZONE APPLICATION AGAINST SITOPHILUS ZEAMAIS AND TRIBOLIUM CASTANEUM ON STORED MAIZE. REVISTA BRASILEIRA DE ENGENHARIA AGRÍCOLA E AMBIENTAL, 12(3), PP.282-285.
  11. BONJOUR, EL, JONES, CL, NOYES, RT, HARDIN, JA, BEEBY, RL, ELTISTE, DA, & DECKER, S. (2008). EFICÁCIA DO OZÔNIO CONTRA INSETOSPRAGA EM TRIGO ARMAZENADO EM CAIXAS DE AÇO PARA GRÃOS. IN PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON CONTROLLED ATMOSPHERE AND FUMIGATION IN STORED PRODUCTS (PP. 522-529).
  12. BONJOUR, EL, OPIT, GP, HARDIN, J., JONES, CL, PAYTON, ME E BEEBY, RL, 2011. EFICÁCIA DA FUMIGAÇÃO COM OZÔNIO CONTRA AS PRINCIPAIS PRAGAS DE GRÃOS EM TRIGO ARMAZENADO. JOURNAL OF ECONOMIC ENTOMOLOGY, 104 (1), PP.308-316.
  13. MCDONOUGH, MARISSA X. ET AL. OZONE APPLICATION IN A MODIFIED SCREW CONVEYOR TO TREAT GRAIN FOR INSECT PESTS, FUNGAL CONTAMINANTS, AND MYCOTOXINS. JOURNAL OF STORED PRODUCTS RESEARCH, V. 47, N. 3, P. 249-254, 2011
  14. I?IKBER, A. A., & ÖZTEKIN, S. (2009). COMPARISON OF SUSCEPTIBILITY OF TWO STOREDPRODUCT INSECTS, EPHESTIA KUEHNIELLA ZELLER AND TRIBOLIUM CONFUSUM DU VAL TO GASEOUS OZONE. JOURNAL OF STORED PRODUCTS RESEARCH, 45(3), 159-164.
  15. PANDISELVAM, R., THIRUPATHI, V., MOHAN, S., VENNILA, P., UMA, D., SHAHIR, S., & ANANDAKUMAR, S. (2019). GASEOUS OZONE: A POTENT PEST MANAGEMENT STRATEGY TO CONTROL CALLOSOBRUCHUS MACULATUS (COLEOPTERA: BRUCHIDAE) INFESTING GREEN GRAM. JOURNAL OF APPLIED ENTOMOLOGY, 143(4), 451-459.
  16. IKEURA, H.; KOBAYASHI, F.; TAMAKI, M. REMOVAL OF RESIDUAL PESTICIDE, FENITROTHION, IN VEGETABLES BY USING OZONE MICROBUBBLES GENERATED BY DIFFERENT METHODS. JOURNAL OF FOOD ENGINEERING, V. 103, N. 3, P. 345-349, 2011.
  17. SOUZA, LAUANA PELLANDA ET AL. OZONE TREATMENT FOR PESTICIDE REMOVAL FROM CARROTS: OPTIMIZATION BY RESPONSE SURFACE METHODOLOGY. FOOD CHEMISTRY, V. 243, P. 435-441, 2018
  18. HELENO, F. F., DE QUEIROZ, M. E. L., NEVES, A. A., FREITAS, R. S., FARONI, L. R. A., & DE OLIVEIRA, A. F. (2014). EFFECTS OF OZONE FUMIGATION TREATMENT ON THE REMOVAL OF RESIDUAL DIFENOCONAZOLE FROM STRAWBERRIES AND ON THEIR QUALITY. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH, PART B, 49(2), 94-101
  19. RODRIGUES, ALESSANDRA APARECIDA ZINATO ET AL. USE OF OZONE AND DETERGENT FOR REMOVAL OF PESTICIDES AND IMPROVING STORAGE QUALITY OF TOMATO. FOOD RESEARCH INTERNATIONAL, P. 108626, 2019
  20. SAVI, G.D.; PIACENTINI, K.C.; BORTOLOTTO T.; SCUSSEL, V.M. DEGRADATION OF BIFENTHRIN AND PIRIMIPHOSMETHYL RESIDUES IN STORED WHEAT GRAINS (TRITICUM AESTIVUM L.) BY OZONATION. FOOD CHEMISTRY, N.203, P.246–251, 2016
  21. SAVI, GD, PIACENTINI, KC E SCUSSEL, VM, 2015. REDUÇÃO DE RESÍDUOS DE DELTAMETRINA E FENITROTION EM GRÃOS DE TRIGO ARMAZENADOS PELO OZÔNIO GASOSO. JOURNAL OF STORED PRODUCTS RESEARCH, 61, PP.65-69.
  22. FREITAS, ROMENIQUE DA SILVA ET AL. DEGRADATION KINETICS OF PIRIMIPHOSMETHYL RESIDUES IN MAIZE GRAINS EXPOSED TO OZONE GAS. JOURNAL OF STORED PRODUCTS RESEARCH, V. 74, P. 1-5, 2017.
  23. AVILA, MARIANE BR ET AL. OZONE AS DEGRADATION AGENT OF PESTICIDE RESIDUES IN STORED RICE GRAINS. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, V. 54, N. 12, P. 4092-4099, 2017
  24. VON GUNTEN, U. (2003). OZONATION OF DRINKING WATER: PART I. OXIDATION KINETICS AND PRODUCT FORMATION. WATER RESEARCH, 37(7), P. 1443-1467
  25. ZORLUGENÇ, B. ET AL., THE INFLUENCE OF GASEOUS OZONE AND OZONATED WATER ON MICROBIAL FLORA AND DEGRADATION OF AFLATOXIN B1 IN DRIED FIGS. FOOD AND CHEMICAL TOXICOLOGY, V. 46, N. 12, P. 3593-3597, 2008.
  26. CATALDO, F. OZONE DECOMPOSITION OF PATULIN-A MICOTOXIN AND FOOD CONTAMINANT. OZONE: SCIENCE AND ENGINEERING, V. 30, N.3, P. 197-201, 2008
  27. ALENCAR, ERNANDES RODRIGUES ET AL. EFFICACY OF OZONE AS A FUNGICIDAL AND DETOXIFYING AGENT OF AFLATOXINS IN PEANUTS. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, V. 92, N. 4, P. 899-905, 2012.
  28. SAVI, GEOVANA D. ET AL. FUMONISINS B1 AND B2 IN THE CORNMILLING PROCESS AND CORNBASED PRODUCTS, AND EVALUATION OF ESTIMATED DAILY INTAKE. FOOD ADDITIVES & CONTAMINANTS: PART A, V. 33, N. 2, P. 339-345, 2016.
  29. TORLAK, E.; AKATA, I.; ERCI, F.; UNCU, A.T. USE OF GASEOU OZONE TO REDUCE AFLATOXIN B1 AND MICROORGANISMS IN POULTRY FEED. JOURNAL OF STORED PRODUCTS RESEARCH, V.68, P.44-49, 2016.

7 min leituraComo podemos ver no post “Cloro x Ozônio na Indústria de alimentos”, é permitido usar o ozônio como sanitizante na água e ele é 325 vezes mais rápido que o […]

5 min leitura
0

A segurança de alimentos da carne cultivada em laboratório (visão da FAO)

5 min leitura

Se por um lado o consumo de alimentos plant-based está em ascensão no mercado, por outro, a demanda por carne também cresce. Como a intensificação da produção animal não combina com sustentabilidade, por aspectos ambientais, segurança dos alimentos e bem-estar animal, a tecnologia de carne cultivada em laboratório, ou mais tecnicamente falando, o cultivo de células, é a forma de ter acesso a proteínas com as mesmas características sem precisar de criação e abate em larga escala. Outros nomes para a tecnologia: carne artificial, in vitro ou sintética.

Em 1932, Winston Churchill afirmou: “Vamos escapar do absurdo de cultivar uma galinha inteira para comer o peito ou asa, cultivando essas partes separadamente em um meio adequado”. Após décadas de pesquisa e desenvolvimento, a tecnologia amadureceu e essa ideia tornou-se realidade. A produção pode ser feita por meio de cultivo in vitro de células animais, que depois são transformadas em alimentos cuja composição pode ser equivalente à de produtos animais convencionais sem a necessidade do animal inteiro.

Desde os estudos iniciais no início dos anos 2000, as metodologias de produção de alimentos baseadas em células foram bem caracterizadas, o que significa que agora estão prontas para passar de laboratórios para escala de produção. Em 2013, o primeiro hambúrguer bovino produzido por essa tecnologia foi apresentado ao mundo. Em dezembro de 2020, os primeiros nuggets de frango à base de células foram aprovados por uma autoridade competente em Singapura (veja a página da agência regulatória de lá sobre o assunto, a SFA). Em novembro de 2021, havia pelo menos 76 empresas desenvolvendo produtos similares em todo o mundo. Muitos tipos de produtos e commodities, como vários tipos de carnes, aves, peixes, produtos aquáticos, laticínios e ovos estão em fase de comercialização futura.

Aqui no Food Safety Brazil está imperdível a entrevista: Gestão de segurança de alimentos em carne cultivada: entrevista com a pesquisadora Aline Silva.

Você sabe como é o processo?

  1. Seleção de células do animal de origem
  2. Produção: As células selecionadas na etapa 1 podem se multiplicar em biorreatores; as células podem ser ancoradas a microportadores ou a um suporte para organizar os tecidos em uma estrutura 3D.
  3. Preparação celular
  4. Proliferação celular
  5. Diferenciação celular
  6. Colheita do produto
  7. Processamento de alimentos: Os produtos colhidos podem ser processados posteriormente para moldá-los nas formas desejadas e/ou ser combinados com outros ingredientes para comercialização.

Se você quer ver a explicação em vídeo, assista este.

Quais podem ser os perigos/preocupações potenciais de segurança de alimentos da carne cultivada?

Linhas celulares de origem

As linhas celulares iniciais desejadas são muitas vezes provenientes de um animal vivo ou abatido selecionado, seguido de isolamento celular. Uma alternativa comum é usar células-tronco pluripotentes induzidas (IPS), células adultas reprogramadas que podem se diferenciar em qualquer tipo de célula. Embora as IPS tenham sido bem estudadas em camundongos desde sua descoberta, os protocolos de diferenciação para várias células animais, como as de bovinos e frango, permanecem indefinidos.

A chance de ocorrência de zoonoses infecciosas e doenças transmitidas por alimentos é consideravelmente reduzida quando comparada à produção pecuária convencional, mas maiores considerações devem ser dadas ao uso de soro animal nos meios de cultura, que podem introduzir patógenos incluindo vírus, bactérias, parasitas, bem como príons. No entanto, a detecção precoce de infecções celulares por meio de monitoramento cuidadoso pode limitar bastante esses riscos. Além disso, como para qualquer processo de produção de alimentos, é fundamental seguir as boas práticas de higiene (BPH) ao longo de todo o processo de produção.

A totalidade da produção de alimentos à base de células pode ser feita em um ambiente bem controlado sem o risco de contaminação por fezes ou fontes externas. No entanto, a aplicação de antibióticos durante algumas das etapas de produção ainda pode ser realizada. Consequentemente, os resíduos podem permanecer no produto final como resíduo antimicrobiano

Componentes do meio de crescimento

Meios de cultura à base de soro animal, especialmente aqueles com soro fetal bovino (SFB), são atualmente a opção mais comum; e podem apresentar maior risco de contaminação microbiológica. Esses perigos podem ser gerenciados e controlados pelo monitoramento adequado dos principais patógenos.

Além disso, tem havido um esforço substancial no desenvolvimento de meios isentos de soro animal para superar as preocupações em torno do SFB, e atualmente existem pelo menos 100 formulações de meios diferentes disponíveis.

Superfícies de contatos

Para que as células aumentem de tamanho e gerem fibras musculares, elas são presas a suportes 3D, que exercitam fisicamente as células. Os suportes podem ser sintéticos ou compostos de materiais comestíveis, estes últimos podem ser preferíveis, pois não precisam ser removidos do produto final

A maioria dos biomateriais usados como suportes na produção de alimentos à base de células não são conhecidos por causar reações alérgicas no consumo. Atenção especial deve ser dada para garantir que materiais derivados de fontes conhecidas de alergênicos não sejam introduzidos inadvertidamente. Como exemplo, quitina ou quitosana podem desencadear reações alérgicas em indivíduos que também são alérgicos a crustáceos.

Mudanças nas propriedades físico-químicas

Para obter crescimento celular exponencial e densidade celular ótima, as linhagens celulares iniciais são constantemente subcultivadas. Como em todas as linhagens celulares que podem se propagar ao longo de muitas gerações, pode haver o risco de que a deriva genética ou epigenética possa ocorrer e isso precisa ser monitorado adequadamente.

Crioprotetores

Crioprotetores como inulina e sorbitol podem ser usados para armazenamento celular. Deve-se tomar cuidado para que não ocorra transferência para o produto final em concentrações que possam causar risco aos consumidores.

Contaminação microbiológica em todo o processo

Como em todas as técnicas de processamento e fermentação de alimentos, a limpeza das operações, o monitoramento contínuo e a estrita adesão às BPF são fundamentais para evitar a contaminação microbiológica, que pode ocorrer em qualquer etapa do processo de produção da carne cultivada. A aplicação do sistema de análise de perigos e pontos críticos de controle (APPCC) também é considerada eficaz.

Legislação para comercialização de carne cultivada

Se os produtos alimentares à base de células se enquadrarem numa categoria que exija avaliações de segurança de acordo com os cenários regulatórios atuais, é responsabilidade das autoridades competentes estabelecer os procedimentos para essas avaliações. Além disso, se os consumidores exigirem rotulagem especial para a carne cultivada, é responsabilidade das autoridades competentes estabelecer uma política clara. A rotulagem geralmente não é uma questão simples de gerenciar, pois quase sempre exige a quantificação dos ingredientes/produtos.

Assim, neste caso, a política precisará definir um limite de quanto do alimento foi produzido por meio de técnicas baseadas em células para fins de rotulagem.

Qual é o caminho a seguir?

A maioria dos perigos potenciais nesta tecnologia não é nova. Assim, é importante aprender com várias experiências passadas e considerar a aplicação efetiva do paradigma de análise de risco.  Ao adotar várias metodologias de avaliação de segurança estabelecidas em uma variedade de campos disciplinares, como farmacêutica e biotecnologia de alimentos, incluindo tecnologias convencionais e modernas, vários perigos podem ser sistematicamente identificados e avaliações de segurança relevantes podem ser conduzidas adequadamente. Existem também muitas ferramentas de mitigação de risco disponíveis na área de segurança, como boas práticas (GHP, BPF, GCCP e HACCP) e princípios e metodologias gerais para a avaliação da segurança  de todo o alimento final. Embora existam muitas ferramentas existentes que podem ser úteis para a avaliação de segurança, etapas adicionais podem ser necessárias para alguns processos ou produtos particularmente novos. Portanto, com produtos alimentares à base de células, é importante focar as diferenças significativas dos alimentos existentes para que possam ser estabelecidas metodologias eficazes para avaliar a segurança de todos os elementos.

Este é um resumo do capítulo New food sources and food production systems – Cell Based, do  relatório Thinking About the Future of Food Safety – a foresight report, da FAO, que pode ser lido na íntegra aqui.

Leia também o resumo de outras partes deste relatório aqui no blog.

Quais são os perigos de uma alimentação à base de plantas?

Algas marinhas – implicações de segurança dos alimentos segundo a FAO

Fonte da imagem: Lab-Grown Meat

5 min leituraSe por um lado o consumo de alimentos plant-based está em ascensão no mercado, por outro, a demanda por carne também cresce. Como a intensificação da produção animal não combina […]

5 min leitura
0

A segurança das águas-vivas como alimento

5 min leitura

As águas-vivas são invertebrados marinhos abundantes em águas oceânicas frias e quentes, ao longo das costas e em águas mais profundas.

As agregações de águas-vivas são uma característica natural de um ecossistema marinho saudável com flutuações periódicas em sua ocorrência.

Embora faltem dados para mostrar se a população global destas espécies está aumentando, há um consenso geral de que, nas últimas décadas, certas regiões têm um aumento significativo no número e duração das florações de água-viva e fora de seus habitats naturais.

As condições trazidas pelas mudanças climáticas – aquecimento dos mares, acidificação dos oceanos – bem como outras, como o aumento do número de plânctons e o esgotamento de oxigênio por eventos de eutrofização, podem ser propícios a esses aumentos populacionais e expansões geográficas. A sobrepesca remove os principais predadores (atum vermelho, espadarte, tartarugas marinhas) e competidores, permitindo que certas populações de águas-vivas se desenvolvam.

Em todo o mundo, as florações de águas-vivas têm sido um problema, bloqueando redes de pesca e destruindo fazendas de aquicultura. Elas forçaram o fechamento temporário de usinas de energia na Suécia e Israel e de uma usina de dessalinização em Omã, bloqueando tubulações que trazem água do mar. A proliferação de águas-vivas também afetou as economias costeiras e a saúde pública ao infestar destinos turísticos populares.

O que está impulsionando o recente interesse no consumo de água-viva?

 

O crescimento populacional de águas-vivas cria um ciclo vicioso: elas atacam ovos e larvas de peixes, bem como competem pela mesma fonte de alimento que o estoque de peixes que já são afetados pela pesca excessiva. Tentativas de capturar e remover as águas-vivas, juntamente com a diversificação da pesca sustentável para alimentar uma população global crescente, podem exigir a criação de mercados comerciais para águas-vivas em várias regiões globais.

Ou seja, uma solução para administrar o excesso desta praga nos oceanos, seria consumi-la.

Embora comer água-viva possa parecer pouco convencional a muitos, as águas-vivas, de fato, são consumidas em alguns lugares da Ásia como parte da culinária tradicional há gerações e são valorizadas por seus benefícios à saúde. As espécies comestíveis tendem a ter baixo teor de carboidratos e lipídios, alto teor de proteínas (representadas principalmente pelo colágeno) e vários minerais.

Enquanto algumas espécies de águas-vivas podem ser tóxicas para os seres humanos, existem outras que são seguras para consumo.

A pesca de água-viva pode ser encontrada em vários países asiáticos, como Japão, Malásia, República da Coreia e Tailândia, com indústrias de exportação também encontradas na Austrália, Argentina, Namíbia, Bahrein, Nicarágua, México e Estados Unidos da América, entre outros. Embora a captura marinha total de Rhopilema spp. e Stomolophus meleagris  foi estimada em aproximadamente 300.000 toneladas em 2018, não há dados confiáveis sobre estatísticas abrangentes de captura de água-viva.

Quais são as implicações de segurança de alimentos das águas-vivas?

 

Perigos microbiológicos

As medusas frescas tendem a estragar-se facilmente à temperatura ambiente e, portanto, tendem a ser processadas de forma relativamente rápida após a captura. Isso reduz os riscos associados à contaminação microbiológica. De acordo com estudos, nenhum patógeno de origem alimentar foi associado às águas-vivas.

No entanto, pesquisas sobre a diversidade da comunidade bacteriana associada às águas-vivas mostram a presença de gêneros bacterianos potencialmente patogênicos – Vibrio, Mycoplasma, Burkholderia e Acinetobacter, Staphylococcus, entre outros. Isso demonstra que as águas-vivas podem servir como vetores de bactérias patogênicas implicadas em afetar a saúde humana.

Comentário da autora do post: as boas práticas de manipulação (ou melhor, a falta delas) podem causar contaminação por diversos patógenos. Assista este vídeo para avaliar os riscos.

Perigos químicos

Metais pesados: A bioacumulação de poluentes do ambiente marinho é uma questão de preocupação de segurança em águas-vivas.

Em um estudo com Cassiopea maremetens, descobriu-se que o acúmulo de metais em águas-vivas começou dentro de 24 horas após a exposição à água tratada. Altas concentrações de cobre foram observadas, atingindo mais de 18% acima das concentrações ambientais. Uma pesquisa na Espanha envolvendo alumínio, titânio, cromo, manganês, ferro, níquel, cobre, zinco, arsênico, cádmio e chumbo por Rhizostoma pulmo mostrou que a bioconcentração desses elementos na água-viva, em relação à concentração de metais na água do mar, foi alta, especialmente de arsênio. Este risco reforça a importância de realizar um monitoramento constante da água onde as águas-vivas são capturadas ou criadas.

Toxinas de algas: Um único caso de suspeita de envenenamento por ciguatera após a ingestão de água-viva importada foi relatado na literatura publicada. Mais pesquisas serão necessárias para explorar este risco potencial. Não foram encontrados na literatura outros relatos de intoxicação, por toxinas marinhas, com o consumo de água-viva comestível.

Potencial alergênico: Pesquisas mostram que pessoas com histórico de reações alérgicas a crustáceos, cefalópodes e/ou peixes podem comer água-viva com segurança e sem reações adversas. A maioria das reações alérgicas ao consumo de água-viva foi registrada em pessoas que foram previamente picadas pelo invertebrado. No entanto, existem alguns casos de anafilaxia pós-ingestão de água-viva registrados em indivíduos sem histórico de serem picados por água-viva. Os alergênicos nas águas-vivas que causam essas reações alérgicas no consumo ainda não foram identificados.

Outros perigos químicos da fase pós-colheita:

Uma maneira tradicional de processar água-viva emprega uma solução de salmoura contendo alúmen. Assista este vídeo para entender o processo.

Este processo desidrata a água-viva e diminui o pH, podendo estender a vida de prateleira se a água-viva for mantida em uma temperatura adequada após o processamento. Existem preocupações quanto à quantidade de alumínio retido em produtos de água-viva como resultado do uso de alúmen. Um estudo analisando a exposição alimentar ao alumínio, na China, observou altos níveis de alumínio nas águas-vivas prontas para consumo e produtos à base delas. Embora os níveis máximos não tenham sido estabelecidos pelo Codex Alimentarius, alguns países asiáticos estabeleceram limite para o alumínio (100 mg/kg em peso seco), especificamente para águas-vivas. Além disso, o JECFA determinou uma ingestão semanal tolerável provisória (PTWI) de 2 mg/kg de peso corporal para alumínio, com estimativas de exposição dietética ao alumínio (não incluindo água-viva).

Altos níveis de alumínio na dieta têm sido sugeridos para desempenhar um papel em problemas de desenvolvimento em bebês e crianças pequenas, bem como danos no fígado, toxicidade reprodutiva, doença inflamatória intestinal e risco potencial de desenvolver doença de Alzheimer em adultos.

Perigos físicos

As águas-vivas, como outros organismos marinhos, ingerem plásticos (macro, micro e nano) de seu ambiente, facilitando sua transferência para o nível trófico e potencialmente representando riscos físicos. Embora as implicações dos microplásticos na saúde humana ainda não sejam bem compreendidas, qualquer risco potencial de exposição humana a microplásticos por meio do consumo de água-viva precisará ser explorado por meio de mais estudos.

Qual é o caminho a seguir?

O consumo de água-viva comestível não é prevalente nos países ocidentais devido à falta de demanda do mercado por estes alimentos, bem como pela ausência de métodos de processamento adequados e pela falta de padrões nacionais de segurança e qualidade.

A pesquisa sobre técnicas alternativas de processamento para eliminar o alúmen, por exemplo, usando alta temperatura, pode abrir mercados potenciais.  Além disso, a avaliação completa dos perigos de segurança  associados à colheita, processamento e consumo de água-viva ajudará a estabelecer práticas adequadas de higiene e fabricação, bem como desenvolver estruturas regulatórias relevantes para o setor.

Embora possa ser tentador explorar esse recurso marinho como alimento, é importante notar que as populações de águas-vivas podem ser extremamente variáveis em sua abundância de ano para ano, o que pode tornar os investimentos em infraestrutura para criar novos centros de processamento bastante desafiadores. Poucas espécies de água-viva são comestíveis e, portanto, nem todas podem ser manejadas pela pesca. Além disso, apenas um pequeno subconjunto de espécies de água-viva forma florações. Concentrar-se em algumas espécies pode não ser ambientalmente sustentável, pois aumenta as chances de sobrepesca, a menos que sejam implementadas estratégias de manejo adequadas. Por exemplo, Rhopilema esculentum, comercialmente importante, é sujeita a aumento de estoque na China, onde medusas jovens são criadas e liberadas na Baía de Liaodong do Mar de Bohai. Isso ocorre em resposta às flutuações naturais em sua população, bem como à sobrepesca. Além disso, é essencial promover a pesquisa de águas-vivas por meio de uma abordagem baseada em ecossistemas para avançar no conhecimento e na modelagem preditiva de florações de águas-vivas, bem como implementar planos estratégicos de monitoramento e gerenciamento para desenvolver esse recurso como fonte de alimento sustentável .

Este é um resumo do capítulo New food sources and food production systems – Jellyfish, do  relatório Thinking About the Future of Food Safety – a foresight report, da FAO, que pode ser lido na íntegra aqui.

Leia também o resumo de outras partes deste relatório aqui no blog:

Algas marinhas – implicações de segurança dos alimentos segundo a FAO

Preferências dos consumidores, padrões de consumo e a segurança dos alimentos

Mudanças climáticas e o futuro da segurança dos alimentos – perspectiva da FAO

Fonte da imagem: Euronews

5 min leituraAs águas-vivas são invertebrados marinhos abundantes em águas oceânicas frias e quentes, ao longo das costas e em águas mais profundas. As agregações de águas-vivas são uma característica natural de […]

4 min leitura
0

Insetos como fonte de alimentos: a perspectiva da FAO

4 min leitura

Os insetos fazem parte da dieta humana, em diferentes regiões do mundo, há séculos. Seu consumo não está apenas ligado à nutrição, mas também decorre de várias práticas socioculturais e crenças religiosas. Os insetos comestíveis são classificados como “nova fonte de alimentos” em recente publicação da FAO.

Isso ocorre porque, embora tenham sido consumidos em regiões específicas do mundo, atualmente há um interesse crescente em incorporar produtos à base de insetos em alimentos consumidos de forma ampla, incluindo os países ocidentais onde o consumo de insetos não é popular.

Nutricionalmente, os insetos comestíveis podem ser uma boa fonte de proteína, fibra alimentar, ácidos graxos benéficos e micronutrientes como ferro, zinco, manganês e magnésio.

No entanto, os perfis nutricionais dos insetos tendem a ser dependentes da espécie. A venda de insetos comestíveis cultivados ou coletados na natureza pode oferecer oportunidades econômicas para as comunidades rurais por meio da diversificação dos meios de subsistência.

Enquanto a maioria dos insetos comestíveis são colhidos na natureza, o cultivo de insetos em larga escala, tanto para alimentação humana quanto para alimentação animal, está aumentando devido à facilidade de cultivo de insetos e preocupações crescentes sobre os impactos ambientais da pecuária. Embora as avaliações do ciclo de vida estejam disponíveis para poucas espécies de insetos, seu cultivo geralmente está associado a menos uso da terra e da água e níveis mais baixos de emissões de gases de efeito estufa comparado à pecuária convencional. Isso torna esta fonte de alimentos atraente do ponto de vista da sustentabilidade ambiental. Algumas das espécies de insetos de importância comercial incluem moscas-soldado pretas, larvas de farinha amarelas, grilos, gafanhotos e moscas domésticas.

Quais as implicações à segurança dos alimentos?

Os benefícios que este setor em desenvolvimento pode trazer devem ser ponderados em relação aos potenciais desafios, um dos quais é determinar possíveis aspectos de segurança dos alimentos que possam impactar a saúde dos consumidores. Tal como acontece com outros alimentos, os insetos comestíveis podem estar associados a certos riscos à segurança, e uma avaliação completa dos riscos ajudará a estabelecer padrões apropriados para o setor. Algumas das principais implicações de segurança de alimentos para a produção e consumo de insetos comestíveis foram abordadas em detalhes em uma recente publicação da FAO: Looking at edible insects from a food safety perspective. Challenges and opportunities for the sector (2021).

Em geral, os riscos de segurança associados a esta nova fonte de alimentos depende da espécie de insetos, substratos (ou ração) para insetos, e como são criados, colhidos, processados, armazenados e transportados. Insetos coletados na natureza e consumidos crus podem apresentar riscos de segurança maiores do que aqueles criados e processados sob condições higiênicas controladas. A microbiota de insetos pode abrigar patógenos de origem alimentar, por exemplo, bactérias formadoras de esporos como Bacillus cereus sensu stricto (s.s.) e outras como Salmonella sp. e Campylobacter sp.

Mais estudos sobre as espécies microbianas que normalmente compõem a microbiota de insetos comercialmente importantes são necessários, pois os insetos são frequentemente consumidos em sua totalidade. A manipulação inadequada e o armazenamento não higiênico de insetos comestíveis também podem levar a problemas de contaminação após os métodos de processamento. Branqueamento, secagem ou fritura têm sido usados para eliminar patógenos de origem alimentar. Leia também o post aqui do blog: Contaminantes biológicos associados aos insetos na alimentação humana.

Algumas alternativas aos substratos convencionais estão sendo testadas, por exemplo, resíduos de alimentos, subprodutos agrícolas e até esterco pecuário, não só para promover uma economia circular, mas também para reduzir os custos econômicos associados à criação de insetos. No entanto, a qualidade e a segurança dos substratos precisam ser cuidadosamente monitoradas quanto a quaisquer contaminantes (biológicos e químicos) que possam conter, pois o teor de nutrientes e a segurança dos insetos produzidos dependem dos substratos utilizados para a criação. Pesticidas usados em produtos agrícolas e resíduos de antimicrobianos no esterco também podem ser encontrados em insetos se forem criados nesses substratos. O acúmulo de metais pesados (cádmio, chumbo, arsênio, etc.) depende de vários fatores, como contaminação ambiental, espécie de insetos, tipo de metal, bem como dos substratos utilizados.

Alguns dos outros perigos químicos potenciais que podem ser encontrados associados a vários insetos comestíveis são retardadores de chama, dioxinas, aminas aromáticas heterocíclicas, entre outros. Mais detalhes sobre esses contaminantes podem ser encontrados na publicação da FAO já citada.

A determinação do potencial alergênico de insetos comestíveis e o efeito do processamento na alergenicidade necessitam de mais pesquisas. Indivíduos alérgicos a crustáceos (camarão, lagostim etc.) podem ser mais vulneráveis a reações alérgicas a insetos e a alimentos à base de insetos.

Alergias reativas cruzadas podem ser causadas por certos pan-alergênicos, como arginina quinase e tropomiosina, que são comuns em artrópodes. Além disso, a sensibilização a alergênicoss ainda desconhecidos de insetos pode ocorrer e, portanto, requer mais pesquisas

O que virá pela frente?

O interesse por nova fonte de alimentos (e ração) está aumentando em resposta à crescente conscientização sobre os impactos ambientais da produção de alimentos, que precisarão ser intensificados diante do aumento da população global. Isso está impulsionando o desenvolvimento do setor de insetos comestíveis, com a produção em massa de várias espécies de insetos em andamento em diferentes regiões.

Os insetos comestíveis podem ter o potencial de proporcionar uma série de benefícios, principalmente nutricionais, ambientais e socioeconômicos. No entanto, para integrar com sucesso insetos comestíveis em nossos sistemas alimentares, a perspectiva de segurança dessa fonte  precisará de considerações cuidadosas, algumas das quais foram descritas na publicação da FAO.

A caracterização dos perigos de segurança de alimentos permitirá a criação de práticas higiênicas específicas para espécies de insetos para criação, processamento e distribuição. Também abrirá caminho para o desenvolvimento de padrões e estruturas regulatórias internacionais, que também é uma das principais barreiras no estabelecimento de mercados para insetos e produtos à base de insetos.

Este é um resumo do capítulo New food sources and food production systems – Insects, do  relatório Thinking About the Future of Food Safety – a foresight report, da FAO, que pode ser lido na íntegra aqui.

Leia também o resumo de outras partes deste relatório aqui no blog:

Algas marinhas – implicações de segurança dos alimentos segundo a FAO

Preferências dos consumidores, padrões de consumo e a segurança dos alimentos

Mudanças climáticas e o futuro da segurança dos alimentos – perspectiva da FAO

Leia a entrevista aqui do blog: Insetos como alimento: entrevista com Thelma Lucchese Cheung.

4 min leituraOs insetos fazem parte da dieta humana, em diferentes regiões do mundo, há séculos. Seu consumo não está apenas ligado à nutrição, mas também decorre de várias práticas socioculturais e […]

7 min leitura
0

Algas marinhas – implicações de segurança dos alimentos segundo a FAO

7 min leitura

As algas marinhas são tradicionalmente usadas como alimento em países asiáticos (por exemplo, China, Japão e Coreia) e têm ganhado maior interesse do consumidor nos últimos anos, impulsionado, em parte, pela indústria de alimentos saudáveis. Já são usadas como aditivos alimentares. É o caso do ágar da carragena e dos alginatos.

Por que a utilização de algas marinhas está ganhando interesse?

Dois fatores-chave estão impulsionando o crescente interesse na utilização de algas marinhas: maior atenção às fontes de alimentos nutritivas e sustentáveis; e versatilidade em termos de aplicações em diversas indústrias, como farmacêutica e cosmética, além da alimentação animal.

Características nutricionais

Em humanos: As algas marinhas são constituídas de minerais (ferro, cálcio, iodo, potássio, selênio) e vitaminas, principalmente A, C e B12. Elas também são uma das únicas fontes veganas de ácidos graxos ômega-3. Também tendem a ser ricas em fibras alimentares solúveis, e algumas podem ser boas fontes de proteína.

Certos componentes bioativos de várias espécies de algas marinhas têm sido sugeridos para conferir propriedades anti-inflamatórias, prebióticas e antioxidantes.  Têm sido usadas como medicamentos na Ásia, como vermífugos e para tratar a deficiência de iodo.

Alimentação Animal: Pesquisas mostraram que a adição de algas como Asparagopsis taxiformis às dietas de bovinos pode reduzir drasticamente as emissões de metano entérico (perto de 80%). As algas marinhas podem ser um ingrediente alternativo sustentável e adequado tanto na alimentação animal quanto na aquicultura.

A produção de algas marinhas

O suprimento global de algas frescas vem de duas fontes: estoques selvagens e aquicultura. Em 2018, as algas marinhas cultivadas representaram 97,1% em volume do total de 32,4 milhões de toneladas de algas aquáticas coletadas e cultivadas combinadas.

O cultivo de microalgas, que são espécies de algas unicelulares, também é realizado em várias partes do mundo para diversas aplicações: suplementos alimentares, extração de compostos bioativos, corantes naturais de alimentos, ração animal, entre outros.

A produção de microalgas pode ser localizada em áreas que não podem ser empregadas na agricultura, fazendo uso de terras não cultiváveis. O cultivo de microalgas também pode ser potencialmente usado para tratamento de águas residuais.

Quais são as implicações de segurança de alimentos a serem consideradas?

Dado que a produção de algas marinhas deverá aumentar globalmente para atender à crescente demanda como fonte alternativa de nutrientes, isso merece atenção especial para as várias questões de segurança que podem surgir. Alguns dos principais perigos de segurança de alimentos que devem ser considerados são discutidos abaixo.

Perigos microbiológicos

A contaminação microbiana pode ocorrer durante o crescimento, cultivo, colheita, processamento e manuseio e armazenamento de algas marinhas. Algas marinhas costeiras podem atuar como reservatórios para populações de Vibrio parahaemolyticus e Vibrio vulnificus, contudo são espécies bacterianas relativamente sensíveis aos processos de aquecimento e secagem e, portanto, podem não sobreviver aos sistemas de processamento. No entanto, como as algas marinhas podem ser consumidas cruas, os riscos microbianos de tais patógenos marinhos permanecem relevantes. Os riscos potenciais decorrentes de patógenos formadores de esporos (Clostridium spp. e Bacillus spp.) ainda não foram totalmente explorados.

Surtos de doenças transmitidas por alimentos de algas marinhas podem ocorrer se as fazendas de aquicultura não tiverem medidas apropriadas para manter a higiene e as boas práticas, como sanitários adequados e lavagem das mãos para os funcionários. A localização das fazendas também é importante, por exemplo, se as fazendas estiverem nas proximidades de vida selvagem.

Surtos de norovírus têm sido associados ao consumo de algas marinhas em vários países.

Perigos químicos

Metais pesados: as algas marinhas podem bioacumular altos níveis de metais pesados, como arsênico, chumbo, cádmio e mercúrio do ambiente aquático. Esses metais pesados podem vir tanto de atividades antrópicas (mineração, processamento petroquímico, resíduos eletrônicos, resíduos urbanos) quanto de causas naturais (atividades vulcânicas).

Os consumidores podem estar expostos a metais pesados presentes nas algas marinhas através do consumo direto ou indiretamente através da cadeia alimentar. Por exemplo: consumindo peixes que bioacumulam os metais ao se alimentarem de algas. Existem alguns fatores que contribuem para o processo de bioacumulação: localização geográfica, estágio da colheita (as folhas mais jovens podem não conter tanto metal pesado quanto as mais velhas), e a capacidade de absorção intrínseca das espécies de algas em questão.

Nas algas marinhas, o arsênio pode existir nas formas inorgânicas e orgânicas, sendo o primeiro considerado mais tóxico. Enquanto a faixa típica de concentração de As nos oceanos varia entre 1–3 µg l-1, o conteúdo total de As (AsT) nas algas marinhas pode ser 1.000–50.000 vezes maior do que na água circundante. Os membros de Phaeophyta tendem a acumular mais arsênio, seguidos por Rhodophyta e Cholorophyta. Existem algumas evidências que sugerem que a aplicação de fertilizantes à base de algas marinhas no solo pode aumentar gradualmente a quantidade de compostos orgânicos e inorgânicos no solo tratado, desencadeando preocupações de segurança.

Foi relatada uma faixa de concentrações de cádmio em algas marinhas destinadas ao consumo humano, tanto abaixo do limite de detecção (0,001 µg/mL) mas também atingindo 9,8 mg/mL. Enquanto o cádmio foi encontrado em níveis mais altos em algas vermelhas do que em algas marrons, o caso do mercúrio é o oposto.

O acúmulo de chumbo em algas marrons e verdes foi relatado em um local com alta atividade antrópica. Os níveis de chumbo relatados variam de <0,05 mg/kg a 2,44 mg/kg de peso seco. A exposição humana ao chumbo proveniente do consumo destas algas pode ser considerada mínima.

Embora o teor de iodo das algas varie consideravelmente de acordo com a espécie, muitas podem ter uma capacidade significativa de bioacumulação de iodo. Isso pode resultar em alto teor do mineral, às vezes até 100 vezes maior do que os vegetais terrestres. Portanto, são considerados alimentos ricos em iodo e, dependendo dos volumes consumidos, podem causar ingestão excessiva, apresentando potenciais riscos à saúde. Os métodos de pós-processamento também podem influenciar as concentrações de iodo e, portanto, a exposição humana.

Poluentes orgânicos persistentes (POP): Como as algas marinhas têm um teor de lipídios muito baixo, as concentrações de poluentes lipossolúveis, como dioxinas e bifenilos policlorados (PCBs), tendem a ser baixas. No entanto, esses produtos químicos podem se concentrar em algas marinhas se forem cultivados em áreas com alta contaminação química.

Dioxinas como as dibenzo-p-dioxinas policloradas (PCDDs) que ocorrem devido à contaminação industrial (incinerador municipal, usinas de energia, entre outras) têm sido encontradas em algas comumente consumidas como Undaria e Ecklonia. Além disso, os PCBs foram absorvidos e concentrados em algumas algas marinhas, como Ulva.

Ficotoxinas: Existem preocupações de segurança decorrentes do potencial acúmulo de toxinas marinhas (ou ficotoxinas) por algas marinhas. As ficotoxinas são produzidas por espécies de microalgas nocivas que podem estar inadvertidamente presentes em áreas onde as algas são colhidas. O crescimento de cianobactérias filamentosas em algas comestíveis e a produção de toxinas de dinoflagelados oportunistas que podem ser isoladas de algas marinhas foram sinalizadas como questões emergentes de preocupação.

Os riscos de proliferação de algas tóxicas são de maior preocupação em condições induzidas pelas mudanças climáticas como o aumento da temperatura do mar e a acidificação dos oceanos.

Algumas toxinas marinhas como palitoxina (PTX), ácido domóico (DA) e análogos, ciguatoxinas e iminas cíclicas (ICs) podem ser encontradas associadas a algas marinhas. Da mesma forma, Gambierdiscus toxicus, produtor de ciguatoxina, pode viver em associação epífita com algas marrons, vermelhas e verdes. Várias fontes marinhas, incluindo algas marinhas, foram relatadas como causadoras de intoxicação amnésica por mariscos, que é causada por DA, uma potente neurotoxina.

Alergenicidade: Reações alérgicas ao consumo de algas vermelhas (Chondrus crispus, Palmaria palmata) foram identificadas. No entanto, há informações limitadas sobre o potencial alergênico das proteínas presentes nas algas marinhas. A análise proteômica revelou o potencial alergênico de certas proteínas de algas (aldolase A, tiorredoxina h, troponina C, entre outras) encontradas em Ulva sp.  Nori seca (Porphyra sp.) possui um componente imunorreativo que é idêntico à massa da tropomiosina, um alérgeno conhecido, comumente encontrado em crustáceos. Além disso, as algas marinhas são cultivadas em suportes que podem estar expostos a organismos incrustantes, incluindo crustáceos, que são alérgenos de risco potencial.

Outros perigos químicos: agroquímicos como pesticidas e herbicidas podem entrar no ambiente marinho através de campos agrícolas.

As medidas de monitoramento ajudarão a determinar se esses produtos químicos podem entrar na cadeia alimentar por meio de fazendas de aquicultura de algas marinhas costeiras.

Os radionuclídeos podem ser um perigo potencial de algas marinhas colhidas de uma área que sofreu incidentes nucleares. Por exemplo: o incidente de Fukushima em 2011 no Japão. De acordo com os níveis de orientação para radionuclídeos em alimentos estabelecidos pelo Codex Alimentarius, os limites podem variar de 10 Bq/kg a 10.000 Bq/kg, com base em radionuclídeos específicos. A capacidade das algas de acumular baixos níveis de radionuclídeos do ambiente marinho as torna adequadas em programas de biomonitoramento para descargas de radionuclídeos. As algas marinhas utilizadas para tais fins não devem ser posteriormente utilizadas para consumo humano ou animal.

Os fármacos utilizados tanto para humanos quanto para animais podem ser encontrados no meio marinho por meio de fontes como descarte de resíduos, efluentes, resíduos da aquicultura, pecuária, entre outros. As informações sobre a presença de compostos farmaceuticamente ativos em algas são limitadas. Algas Saccharina latissima e Laminaria digitata coletadas perto de gaiolas de salmões mostraram a presença de quatro compostos farmaceuticamente ativos: azitromicina (antibiótico), metroprolol, propranolol e diazepam (medicamento psiquiátrico), em níveis acima do limite de detecção. Evidências experimentais mostram que o cloranfenicol, furaltadona e sulfatiazol podem ser absorvidos por U. lactuca, com cloranfenicol exercendo um potencial efeito promotor de crescimento sobre as algas marinhas.

As algas marinhas podem utilizar nitrogênio e derivados de nitrogênio (nitratos) para seus ciclos biológicos. O consumo de certas algas pode expor os consumidores a altos níveis de nitratos. A atual ingestão diária aceitável de nitrato, conforme determinado pelo Comitê Conjunto FAO/OMS de Especialistas em Aditivos Alimentares (JECFA) é de 3,7 mg/kg de peso corporal por dia (FAO e OMS, 2002). Nitratos de várias fontes alimentares podem ser convertidos em nitritos em nossos corpos.

Tanto os nitratos quanto os nitritos podem contribuir para a formação de um grupo de compostos conhecidos como nitrosaminas, alguns dos quais são cancerígenos. Atualmente, não existe legislação que regule o teor de nitratos nas algas marinhas.

Perigos físicos

Perigos físicos, como pedras e pedaços de conchas, podem estar presentes nas algas colhidas. O processamento e a embalagem de algas marinhas podem apresentar outros perigos, como peças de metal ou vidro. Os micro e nanoplásticos podem aderir às algas no ambiente aquático, o que pode representar potenciais problemas de contaminação física na cadeia alimentar. No entanto, esta área tem informações limitadas com muitas lacunas de conhecimento sobre a ocorrência de micro e nanoplásticos em algas marinhas colhidas na natureza e cultivadas, bem como os impactos subsequentes na saúde dos consumidores.

Qual é o caminho a seguir?

Sem uma avaliação completa dos riscos de segurança dos alimentos das algas marinhas, o desenvolvimento de leis e regulamentos será difícil, especialmente em regiões onde o setor está apenas começando a surgir, impedindo o desenvolvimento. Embora haja um comércio global de algas marinhas, não há padrões ou diretrizes do Codex que abordem especificamente as preocupações de segurança nesta fonte de alimento. Algumas das lacunas significativas nas regulamentações para riscos de segurança em algas marinhas, juntamente com uma visão mais detalhada das várias preocupações serão publicadas pela FAO.

O aumento da produção de algas marinhas para atender a demanda do mercado é um desafio para o setor. Ainda faltam dados de longo prazo sobre os impactos ambientais do cultivo de algas marinhas em escala industrial. Será necessário equilibrar os benefícios potenciais da produção de algas marinhas com os riscos ambientais para garantir que as capacidades de carga dos ambientes receptores não sejam excedidas. Além disso, deve-se tomar o máximo de cuidado para não introduzir espécies não nativas em uma área, pois isso pode impactar a biodiversidade local.

A implementação de uma abordagem One Health para o cultivo de algas marinhas apoiará um maior desenvolvimento do setor, garantindo uma produção sustentável e mitigando possíveis desvantagens.

Este é um resumo do capítulo New food sources and food production systems – Seeweds, do  relatório Thinking About the Future of Food Safety – a foresight report, da FAO, que pode ser lido na íntegra aqui.

Fonte da imagem: was.org

Leia também o resumo de outras partes deste relatório aqui no blog.

Preferências dos consumidores, padrões de consumo e a segurança dos alimentos

Mudanças climáticas e o futuro da segurança dos alimentos – perspectiva da FAO

7 min leituraAs algas marinhas são tradicionalmente usadas como alimento em países asiáticos (por exemplo, China, Japão e Coreia) e têm ganhado maior interesse do consumidor nos últimos anos, impulsionado, em parte, […]

2 min leitura
0

Sensores impressos em 3D para análise de alimentos

2 min leitura

Com o objetivo de tornar os processos mais ágeis e seguros, a indústria está buscando soluções que envolvam a impressão em 3D. Os sensores impressos são uma dessas soluções: fabricados com materiais biocompatíveis, eles podem ser utilizados para detectar contaminantes variados em alimentos, como metais pesados, pesticidas, patógenos, micotoxinas, deterioração, alérgenos, adulterações, bem como para a análise sensorial. Interessante, não é mesmo?      

A impressão 3D é uma abordagem na qual o design gerado digitalmente pode ser fabricado em um objeto físico por impressão baseada na deposição controlada digitalmente de sucessivas camadas de materiais até que uma estrutura final seja feita. Apresenta características vantajosas como versatilidade, simplicidade, reprodutibilidade, precisão e custo baixo custo.

Dessa forma, laboratórios que trabalham em aplicações de química analítica adotaram vantajosamente a técnica para fabricar uma ampla gama de ferramentas, desde hardware de laboratório comum a sistemas fluídicos, plataformas de tratamento de amostras, estruturas de detecção e dispositivos analíticos totalmente funcionais, com o intuito de atender a crescente ênfase na detecção precisa.

É importante ressaltar que os métodos convencionais de análise de alimentos geralmente envolvem técnicas analíticas baseadas em laboratório, como espectroscopia de infravermelho com transformada de Fourier (FTIR), cromatografia líquida de alto desempenho-espectrometria de massa e enzima ensaio imunossorvente ligado (ELISA). Apesar da robustez destes métodos para detectar ameaças à segurança de alimentos, eles exigem instrumentação específica, pessoal treinado e preparação extensa de amostras, além de serem caros e demorados, tornando-os incompatíveis para monitoramento no local.

Nessa visão, torna-se importante o desenvolvimento de métodos de análise rápidos, sensíveis, baratos, portáteis e fáceis para o monitoramento da segurança do alimento in situ e em tempo real. A impressão 3 D vem ao encontro desta demanda, pois  permite criar protótipos analíticos funcionais completos, que podem ser fabricados no local rapidamente, além da possibilidade de personalização de acordo com sua aplicação, e com custos reduzidos se comparados aos processos de fabricação convencionais, que consomem muita energia e geram grandes quantidades de resíduos. Apresentamos abaixo algumas aplicações:

Percebe-se a praticidade na detecção de diferentes parâmetros importantes na garantia da segurança de alimentos, mostrando que a ciência e tecnologia podem ser utilizadas com maestria para facilitar o controle de qualidade na indústria de alimentos.

Além disso, esta técnica vem apresentando rápida evolução devido à ampla variedade de materiais que podem ser utilizados para a impressão (polímeros, compósito e cerâmica), diversas áreas de aplicação (saúde, alimentação, entre outras) e tecnologias atualmente disponíveis para prototipagem (fotopolimerização, projeção de luz digital, ligação de pó, sinterização seletiva a laser, extrusão, laminação e escrita direta a tinta) altamente acessível e biocompatível.

Essa é uma tecnologia que vale a pena ser observada com atenção!

2 min leituraCom o objetivo de tornar os processos mais ágeis e seguros, a indústria está buscando soluções que envolvam a impressão em 3D. Os sensores impressos são uma dessas soluções: fabricados […]

5 min leitura
2

Legislação sobre ozônio em alimentos

5 min leitura

O uso de ozônio em alimentos vem sendo cada vez mais divulgado na cadeia produtiva de alimentos, demonstrando sua enorme eficácia e diversidade de aplicações. Veja por exemplo, aqui, o artigo da palestra do Vilvaldo Mason da MyOzone no V Workshop do Food Safety Brazil em junho de 2022 em Goiânia. Entretanto, o ozônio ainda é pouco utilizado na indústria de alimentos.

Uma das razões é que muitos desconhecem a legislação sobre ozônio em processamento de alimentos no Brasil e ficam inseguros de estarem usando uma tecnologia que poderia ser embargada pelas autoridades sanitárias. Este artigo tem o objetivo de esclarecer essas dúvidas.

Segundo Colm O’Donnell, autor do livro Ozone in Food Processing (Ed. Wiley Blackwell, 2012), no ano de 1997, um grupo de especialistas em ciência da alimentação, tecnologia do ozônio e outros campos relacionados, declararam o ozônio como aditivo seguro. Com base nesse estudo, em 2002, os Estados Unidos regulamentaram o uso do ozônio em alimentos através da USDA regra final do ozônio 17/12/2002, FSIS Diretiva 7120.1 e também do FDA Registro Federal Vol. 66 Nº. 123. Nestes documentos o ozônio foi declarado como aditivo seguro, obtendo aprovação como GRAS (Generally Recognized As Safe) pelo FDA e pelo USDA para contato direto com ambientes, equipamentos e produtos alimentares. Essa declaração é a referência de países como Japão, Austrália, França e Canadá. Portanto, não há limite máximo de ozônio nos alimentos nos EUA, pois o ozônio não deixa resíduos.

Diversos segmentos da indústria de alimentos vêm requerendo que a ANVISA faça o mesmo no Brasil. A legislação que rege os protocolos de ozonização tem sido desenvolvida em resposta à evolução do uso do ozônio pelas indústrias de alimentos e atualmente as legislações brasileiras sobre ozônio na produção de alimentos são:

  1. Portaria 888 de maio de 2021 da ANVISA sobre potabilidade da água;
  2. IN 18 de maio de 2009 do MAPA sobre produtos para desinfecção de alimentos orgânicos;
  3. IN 02 de 2008 do MAPA sobre o uso do ozônio na remoção de agrotóxicos;
  4. NR 15 de 1978 do Ministério do Trabalho sobre limites de exposição humana ao gás ozônio.

1) Portaria 888 de maio de 2021 da ANVISA sobre potabilidade da água

Desde 2011, com a publicação da Portaria 2914, a ANVISA já autorizava a aplicação de ozônio para tratamento de água. A referida portaria foi atualizada pela Portaria nº 888 de 04 de maio de 2021, que trata do “Controle e vigilância da água para consumo humano” que é o padrão de referência para o tratamento de água no Brasil. Seguem os trechos da portaria 888 sobre o ozônio:

Art. 30 Para sistemas e soluções alternativas coletivas de abastecimento de água com captação em mananciais superficiais (…)

  • 2º No caso de desinfecção com o uso de ozônio, deve ser observado o produto, concentração e tempo de contato (CT) de 0,34 mg min/L para temperatura média de água igual a 15°C.
  • 3º Para valores de temperatura média da água diferentes de 15ºC, deve-se proceder aos seguintes cálculos para desinfecção com ozônio:

I – Para valores de temperatura média abaixo de 15ºC: duplicar o valor de CT a cada decréscimo de 10ºC; e II – Para valores de temperatura média acima de 15ºC: dividir por dois o valor de CT a cada acréscimo de 10ºC.

Art. 31 Os sistemas ou soluções alternativas coletivas de abastecimento de água supridas por manancial subterrâneo com ausência de contaminação por Escherichia coli devem adicionar agente desinfetante (…)

  • 3º No caso da desinfecção com o uso de ozônio, deve ser observado o produto, concentração e tempo de contato (CT) de 0,16 mg.min/L para temperatura média da água igual a 15ºC.

2) IN 18 de maio de 2009 do MAPA sobre produtos para desinfecção

O Ministério da Agricultura já regulamentou o ozônio como uma das tecnologias autorizadas para desinfecção de produtos orgânicos no Brasil. A Instrução Normativa 18 permite de forma clara o uso do ozônio em produtos orgânicos, sem qualquer limitação de uso.

3) IN 02 de 2008 do MAPA sobre o uso do ozônio na remoção de agrotóxicos

Esta IN fala sobre a obrigatoriedade de remover com sistema de ozônio os resíduos de agrotóxicos das aeronaves utilizadas para aplicá-los. Segue o trecho da IN:

“o sistema de oxidação de agrotóxicos da água de lavagem das aeronaves agrícolas deverá conter: (…) ozonizador com capacidade mínima de produzir um grama de ozônio por hora; reservatório para oxidação que deverá ter capacidade mínima de quinhentos litros, ser em Poli Cloreto de Vinila (PVC), para que não ocorra reação com o ozônio, ser redonda para facilitar a circulação da água de lavagem, com tampa para evitar contato com a água de lavagem; e d) VII as canalizações deverão ser em tubo PVC, para que não ocorra reação com o ozônio, e com diâmetro de cinquenta milímetros; o ozonizador previsto na alínea b, do inciso anterior, deverá funcionar por um período mínimo de seis horas, para cada carga de quatrocentos e cinquenta litros de restos e sobras de agrotóxicos remanescentes da lavagem e limpeza das aeronaves e equipamentos; dentro do reservatório de oxidação, deverá ser instalada a saída do ozonizador, na sua parte inferior, para favorecer a circulação total e permanente da água de lavagem e com dreno de saída na parte superior do reservatório de oxidação”.

4) NR 15 de 1978 do Ministério do Trabalho sobre limites de exposição humana ao gás ozônio

Nas atividades ou operações nas quais os trabalhadores ficam expostos a agentes químicos, a caracterização de insalubridade ocorrerá quando forem ultrapassados os limites de tolerância constantes do Quadro 1 do ANEXO 11 da NR 15, que prevê que o ser humano pode ficar exposto à concentração máxima de 0,08 ppm de ozônio gasoso por 48 h semanais.

Portanto, podemos concluir que, no caso do Brasil, está permitido o uso do ozônio em água e o uso do gás ozônio diretamente em alimentos orgânicos.

Outras extensões de uso devem ser previamente solicitadas à ANVISA. Nesse caso é sempre interessante a empresa fazer um estudo científico com alguma instituição reconhecida para documentar a segurança do processo e a não alteração do alimento.

E, para finalizar, conforme o parecer da GACTA – Gerência de Ações da Ciência e Tecnologia de Alimentos da ANVISA, está permitido o uso dos equipamentos de geração de ozônio pelas indústrias de alimentos. Veja abaixo o email da ANVISA após reunião da Brasilozônio com a GACTA:

Momento petição de avaliação extensão de uso de aditivo alimentar ou coadjuvante de tecnologia, instruída conforme “Guia de Procedimentos para Pedidos de Inclusão e Extensão de Uso de Aditivos Alimentares e Coadjuvantes de Tecnologia de Fabricação na Legislação Brasileira”. Os códigos de assunto de petição que devem ser utilizados são os seguintes: Para extensão de uso de aditivo alimentar: 4113 Avaliação de extensão de uso de aditivos alimentares, exceto espécies botânicas. Para extensão de uso de coadjuvante de tecnologia: 4111 Avaliação de extensão de uso de coadjuvantes de tecnologia, exceto enzimas. Após a avaliação pela área técnica, caso o posicionamento seja favorável, o aditivo deve ser incluído na legislação sanitária por meio de publicação. 

5 min leituraO uso de ozônio em alimentos vem sendo cada vez mais divulgado na cadeia produtiva de alimentos, demonstrando sua enorme eficácia e diversidade de aplicações. Veja por exemplo, aqui, o […]

7 min leitura
0

Gestão de segurança de alimentos em carne cultivada: entrevista com a pesquisadora Aline Silva

7 min leitura

O processo de produção de carne cultivada é multidisciplinar e inclui conhecimentos em engenharia de alimentos, engenharia de tecidos e de bioprocessos, bem como biologia celular, bioquímica e genética. Recentemente, a produção de carne cultivada, utilizando as técnicas de engenharia de tecido muscular, vem despontando como importante método para a produção de carne em laboratório.

A engenharia de tecidos envolve engenharia de materiais, biologia e medicina para criar tecidos e órgãos funcionais em laboratório.  As técnicas de engenharia de tecidos têm sido utilizadas há muito tempo para desenvolver soluções biomédicas, principalmente para aplicações em medicina regenerativa. Um dos maiores objetivos da área é a produção de tecidos e órgãos em laboratório, eliminando a fila de transplantes e ajudando na cura de doenças. Como é uma área muito explorada, muitos avanços científicos já foram alcançados e há um número gigantesco de publicações sobre esse tema na literatura científica, com soluções diversas para aplicações biomédicas.  Na área de Engenharia de Tecidos, pode-se destacar a engenharia de tecido muscular esquelético, que consiste no cultivo de células musculares lisas, estriadas esqueléticas e estriadas cardíacas.

Para reproduzir em laboratório a estrutura complexa do tecido muscular e produzir carne, a engenharia de tecidos busca, em primeiro lugar, compreender a estrutura natural do tecido muscular. Para a produção de carne cultivada, ainda é necessário compreender como a estrutura muscular se relaciona às características da carne (que são diferenciais na suculência da carne), como propriedades nutricionais, sabor, textura, quantidade e distribuição de células de gordura, células de músculo e fibras. Nessa perspectiva, o engenheiro de tecidos enxerga um bife como um composto de fibras musculares organizadas dentro do tecido conjuntivo, sendo sua composição aproximada de 90% de fibras musculares, 10% tecidos conjuntivos e gordurosos e 0,3% de sangue. As fibras individuais são resultado da fusão dos miotubos, que são os blocos de construção da carne cultivada e podem ser obtidos a partir de células-tronco musculares isoladas de um animal vivo, por um processo de biópsia. A produção de carne cultivada envolve a expansão do número dessas células em biorreator, a subsequente proliferação e diferenciação das células (transformação de células-troncos em miotubos) em um scaffold no interior de um biorreator contendo meio de cultura de células e fatores de crescimento, seguido pela colheita da carne, conforme resumido no esquema da figura abaixo.

Figura 1: Processo de produção de carne cultivada versus processo de produção de carne convencional

Todos os dias, novas soluções tecnológicas são adicionadas ao processo de produção de carne cultivada, seja para melhorar aspectos como sabor, textura ou maciez, para viabilizar a produção de carne estruturada ou para reduzir o custo e aumentar a escala de produção.

Em síntese, a Figura 2 descreve a produção de carne cultivada de forma resumida, dividida em 4 etapas principais:

(1) a aquisição de células-tronco por biopsias de animais;

(2) expansão em grande escala (proliferação) das células-tronco em biorreatores;

(3) diferenciação induzida de células tronco em miofibrilas, adipócitos ou outros tipos de células maduras e estruturação em scaffolds;

(4) coleta da carne cultivada para posterior processamento em um produto cárneo.

Figura 2: Etapas da produção de carne por cultura de células.
Imagem: Estudo Regulatorio sobre Proteinas Alternativas no Brasil – Carne Cultivada • The Good Food Institute Brasil

A composição do meio de cultivo será determinante para garantir a eficiência do processo, principalmente relacionada à proliferação e diferenciação celular. O produto de carne cultivada pode ser apresentado ao consumidor em forma de hamburguer, nuggets, almôndegas, ou mesmo intactas, como bifes ou pedaços de frango. Ainda, dependendo do produto desejado, pode ser considerada a adição de outras substâncias, como aromatizantes, aglutinantes, aditivos produzidos por fermentação ou compostos a base de planta

Para entender melhor o processo produtivo e a segurança deste tipo de alimento, entrevistamos a pesquisadora Aline Bruna da Silva.

Aline é professora no Departamento de Engenharia de Materiais do Centro Federal de Educação Tecnológica de Minas Gerais (CEFET MG) e possui doutorado em Ciência e Engenharia de Materiais, pela UFSCar. Atualmente lidera um projeto de pesquisas para desenvolvimento de tecnologias de carne cultivada com financiamento internacional do The Good Food Institute (GFI).

Food Safety Brazil: Quais são os maiores desafios e facilidades em termos de gestão de segurança de alimentos em carne cultivada?

Aline: O maior desafio é que se trata de uma tecnologia nova em plena evolução e que envolve conhecimentos de diversas áreas. Uma boa parte dos insumos que estão sendo utilizados na obtenção de carne cultivada foi desenvolvida para aplicações na indústria farmacêutica e em pesquisa cientifica. Cada ingrediente vai precisar ser avaliado criteriosamente, a começar pelas células, depois o meio de cultura (alimento para as células) que ainda está sendo desenvolvido, além de outros insumos como os scaffolds (material usado como suporte para crescimento e diferenciação das células em cultivo), nutrientes para enriquecer o seu valor nutricional etc. Além dos consumíveis, boa parte dos bioprocessos ou etapas desses bioprocessos são novidade para a indústria alimentícia. O processo de obtenção da carne cultivada é bastante complexo e composto de diversas etapas. O processo tem início com a seleção do animal doador das células, passando pela extração e seleção das células, expansão (aumento do número de células) em um biorreator, contendo meio de cultura adequado, depois armazenamento dessas células para gerar um banco de células e garantir os insumos para preparação da carne sem a necessidade de usar mais animais, e,  por último, o cultivo dessas células juntamente com os scaffolds em condições adequadas (temperatura, oxigenação, etc) simulando o que ocorre dentro do organismo de um animal. Após essa etapa ainda temos a coleta da carne, a embalagem e o armazenamento para o consumidor final. Cada uma dessas etapas deverá ser monitorada durante o processo produtivo de carne cultivada, e os pontos críticos de controle deverão ser apontados de maneira específica para cada tipo de produto e processo. Devido à sua complexidade, uma análise de segurança adequada vai precisar de equipes bastante multidisciplinares, para destacar os perigos e pontos de atenção. Por outro lado, uma vez realizado esse trabalho, o processo de obtenção da carne cultivada será muito mais controlado do que o da produção de carne convencional, e os riscos de contaminação serão minimizados em comparação com os métodos tradicionais, tornando o processo extremamente seguro.  Além disso, o processo de produção de carne cultivada deve gerar menor impacto ambiental, o que justifica o investimento nessa área.

Food Safety Brazil: Quais os marcos regulatórios necessários?

Aline: No Brasil, o Departamento de Inspeção de Produtos de Origem Animal do Ministério da Agricultura, Pecuária e Abastecimento (DIPOA/MAPA) e a Gerência Geral de Alimentos da Agência Nacional de Vigilância Sanitária (GGALI/Anvisa) serão responsáveis por analisar os pedidos de aprovação de produtos de carne cultivada. Nesse sentido, o Good Food Institute Brasil vem atuando para apoiar o trabalho desses órgãos e fomentar as discussões sobre a segurança e qualidade na produção de carne cultivada. As discussões sobre o tema tiveram início em junho de 2021, através de um workshop organizado pelo GFI para as equipes técnicas do DIPOA/MAPA e da GGALI/Anvisa. Ainda em 2021, o GFI contratou o ITAL para o desenvolvimento de um estudo regulatório sobre carne cultivada que levasse em consideração o atual marco regulatório para alimentos no Brasil. As conclusões do estudo regulatório sugerem que o regulador se concentre mais no protocolo de submissão de novos produtos que em parâmetros mínimos e máximos relacionados ao produto acabado. Esse protocolo de submissão ao agente regulador deve conter informações detalhadas sobre o processo produtivo, sistema de controle da produção e dos riscos identificados, ingredientes, insumos e coadjuvantes utilizados, características do produto, análise de risco do seu uso como alimento, bem como a denominação do produto, finalidade de uso e recomendação de consumo indicada. O relatório deve também apontar as metodologias analíticas para avaliação do produto e dos insumos utilizados, se pertinente.

Food Safety Brazil: Se comparasse os perigos num APPCC de carne “tradicional” e carne cultivada, quais seriam os aspectos mais importantes?

Aline: As informações científicas a respeito de segurança de alimentos para carne cultivada ainda estão em desenvolvimento. No entanto, o que podemos antecipar é que provavelmente haverá menos perigos no processo de produção da carne cultivada do que temos na carne. A chance de infecções zoonóticas transmitidas por alimentos, por exemplo, é muito reduzida em comparação à carne convencional, já que o processo de produção da carne cultivada é todo controlado em um sistema fechado. É claro que a avaliação da segurança deverá ser realizada. Um dos pontos de atenção, por exemplo, seria o momento de coleta das células. Coletar células de um animal saudável e de maneira adequada é muito importante para evitar contaminações no cultivo das células em etapas posteriores do processo. Essas e outras questões são mencionadas, por exemplo, no trabalho desenvolvido recentemente pela FAO.

Food Safety Brazil: A forma de preparo pelo consumidor, deverá ser diferente? Vai ser possível comer hambúrguer cultivado mal passado com tranquilidade?

Aline: A carne cultivada é uma carne para consumo humano, com as mesmas características da carne convencional, produzida por meio da tecnologia de cultivo celular, sem a necessidade de criar ou abater animais, conforme já descrevi na primeira questão. A produção da carne é realizada a partir da cultura das células em ambiente cuidadosamente controlado, que fornece temperatura favorável, oxigênio suficiente e nutrientes para que as células cresçam e se dividam e, eventualmente, se diferenciem em um tecido idêntico ao da carne obtida a partir da agropecuária tradicional. Portanto, o produto resultante é uma carne real, ou apenas carne, como deve ser mencionada daqui a algum tempo quando a tecnologia for difundida e aceita pelo consumidor. Assim, espera-se que o preparo pelo consumidor seja também parecido ao que se faz com a carne obtida a partir da agropecuária tradicional. No entanto, é importante mencionar que poderá haver condições microbiológicas diferentes resultantes do processo de produção de carne cultivada, portanto, esse ponto deverá ser avaliado antes de termos uma resposta final.

Food Safety Brazil: Carne cultivada é mais interessante para consumidor final ou para o mercado entre empresas (B2B)?

Aline: Com o avanço da tecnologia e escalonamento dos bioprocessos para produção de carne cultivada, a disponibilidade e variedade de carne para o consumidor final será maior. O custo de produção de frango, boi ou salmão deve ser o mesmo, o que vai facilitar o acesso do consumidor a carnes mais nobres e selecionadas, sem pagar mais por isso. Além disso, o consumidor saberá a procedência do produto, que será produzido em ambiente controlado. Por último, o consumidor final saberá que não foi preciso sacrificar um animal para consumir a carne e a produção reduziu o impacto ambiental. Tudo isso deve tornar a carne cultivada muito interessante para o consumidor final.

Você já conhecia a tecnologia de produção de carne cultivada? Deixe nos comentários o que você achou sobre o tema!

Para saber mais, leia também:

GFI Brasil apresenta panorama sobre a indústria de carne cultivada em publicação inédita

Carne cultivada – perspectivas e oportunidades para o Brasil

Referências

1 Stephens, N. In vitro meat: zombies on the menu? Scripted: A Journal of Law, Technology and Society. 7, 394–401, 2010.
2 GaluskY, W. Technology as responsibility: failure, food animals, and lab-grown meat. Journal of Agricultural and Environmental Ethics. 27, 931–948, 2014.
3 Post, M.J. Cultured meat from stem cells: challenges and prospects. Meat Science 92, 297–301, 2012.                            4 Handral, H. K. et. al. 3D Printing of cultured meat products. Critical reviews in food science and nutrition, 2020.

Imagem em destaque: UNEMAT (Universidade do Estado de Mato Grosso)

7 min leituraO processo de produção de carne cultivada é multidisciplinar e inclui conhecimentos em engenharia de alimentos, engenharia de tecidos e de bioprocessos, bem como biologia celular, bioquímica e genética. Recentemente, […]

3 min leitura
1

Ozônio na indústria de alimentos – V Workshop Food Safety Brazil

3 min leitura

 

Nos dias 08 e 09 de junho ocorreu em Goiânia o V Workshop Food Safety Brazil, trazendo palestras e mesas redondas com temas de grande relevância para a segurança dos alimentos. Entre elas, tivemos a palestra “Ozônio na indústria de alimentos”, ministrada por Vivaldo Mason Filho, diretor da myOZONE.

Vivaldo iniciou sua palestra trazendo à tona a questão da fome e a deficiência nutricional que assola populações ao redor do globo, apresentando dados da publicação The state of food security in the world de 2019, da Food and Agriculture Organization of the United Nations (FAO). Segundo ele, não é preciso aumentar a produção de alimentos, mas sim garantir que ele esteja seguro e em condições de consumo durante toda a cadeia de distribuição.

É nessa condição que se aplica o ozônio na indústria de alimentos, trazendo vantagens como:

  • Eliminação de microrganismos, com foco nos patógenos e deteriorantes;
  • Desinfecção de equipamentos, ambientes, embalagens e alimentos;
  • Ação inseticida para alimentos e ambientes de produção;
  • Degradação de micotoxinas e agrotóxicos;
  • Obtenção de melhora de cor, aroma e sabor de alimentos. Segundo Vivaldo, um exemplo prático deste ponto é o realce da cor laranja de cenouras, trazendo de volta seu aspecto de frescor.

Regulamentação

A utilização do ozônio na indústria de alimentos é regulamentada nos Estados Unidos desde 2002 pelos órgãos responsáveis, FDA e USDA. Segundo Vivaldo, tais regulamentações não determinam limite máximo para sua aplicação, visto que o ozônio não deixa residual no alimento.

O diretor da myOZONE apresentou também as regulamentações aplicáveis aqui no Brasil. Entre elas, a Portaria 888 de 2021 da ANVISA, indicando o uso do ozônio para o tratamento e obtenção de água potável.

Tanto a ANVISA quanto o MAPA reconhecem o uso do gás ozônio, podendo ser aplicado em embalagens e ambientes na ausência de pessoas, na condição de atmosfera modificada. O MAPA listou o ozônio como produto de limpeza e desinfecção permitido para contato com alimento orgânico na Instrução Normativa 18 em 2009. Além disso, a IN 02 de 2008 já considerava sua aplicação para remoção de agrotóxicos em efluentes.

Aplicações

Além de trazer as fases da reação do ozônio, Vivaldo mostrou que sua aplicação vai além do tratamento da água e efluentes. O ozônio pode ser aplicado na lavagem de superfícies na indústria, nas limpezas do tipo CIP, na lavagem de alimentos, inclusive no enxágue de garrafas.

Ozonio_Palestra_myOZONE

Com a pandemia do coronavírus, foi destinado muito esforço pela myOZONE no desenvolvimento da metodologia de aplicação via névoa. Esse estudo tinha o intuito de minimizar o seu potencial de contaminação. Diante disso, a possibilidade de se utilizar esse mesmo formato em oportunidades na indústria de alimentos veio à tona. Foi então que Mason Filho apresentou alguns exemplos da aplicação do ozônio via névoa na indústria de alimentos. Entre eles, a desinfecção de frutas, câmaras de barreira sanitária e desinfecção de ambientes como granjas.

Ozonio_Palestra_myOZONE_2

  • Vivaldo Mason Filho é administrador de empresas e especialista em análise de sistemas pela PUCCAMP. É também especialista e mestre em engenharia pela USP, empresário e especialista na implantação de ozônio para indústrias de alimentos, e atual vice-presidente da Associação Brasileira de Ozônio – ABRAOZÔNIO.

Para mais informações sobre este tema, acesse o site da myOZONE. Acompanhe também o pod cast Papo de Ozônio pelas plataformas Spotify e Youtube. Além disso, não deixe de ler as publicações aqui na Food Safety Brazil:

Acompanhe aqui no blog toda a cobertura do V Workshop Food Safety Brazil na prática – Atualizações regulatórias e normativas de segurança de alimentos e o impacto na cadeia produtiva.

3 min leitura  Nos dias 08 e 09 de junho ocorreu em Goiânia o V Workshop Food Safety Brazil, trazendo palestras e mesas redondas com temas de grande relevância para a segurança […]

4 min leitura
0

Embalagens inteligentes: da informação ao consumidor à segurança dos alimentos

4 min leitura

O mercado de embalagens inteligentes está em ascensão, com previsão estimada de atingir o valor de US$26,7 bilhões até 2024. Seu destaque se deve às funções adicionais que possuem, que vão além da função primária de proteger o alimento, como se percebe na figura abaixo:

Figura 1 – Funções das embalagens inteligentes na indústria de alimentos. Fonte: autora 

A incorporação de agentes bioativos para prolongar a vida útil dos alimentos pode ser realizada pela adição de componentes que liberariam ou absorveriam substâncias no alimento embalado ou no ambiente ao redor do alimento. Esses componentes variam de acordo com a aplicação da embalagem, mas geralmente são compostos naturais provenientes de óleos essenciais (canela, cravo, pimenta, lavanda, tomilho, etc.), extrato de frutas (manga, abacaxi, laranja, limão, mirtilo, etc.), extrato de vegetais (brócolis, cenoura, couve, rabanete, repolho roxo, etc.), extrato de plantas (alecrim, sálvia, capim limão, etc.), polifenóis de chá, microalgas, própolis, entre outros.

Os indicadores de frescor são uma abordagem de embalagem inteligente e econômica que é aplicada para a detecção e monitoramento em tempo real de frescor ou deterioração de produtos, atuando como sensores indicadores de tempo, temperatura, pH, umidade, oxigênio e microbiologia. Sua aplicação está diretamente relacionada às características do produto, bem como às principais mudanças ao longo de sua deterioração, visando ativar o sensor colorimétrico indicador de frescor. A informação reportada é de suma importância, considerando que a olho nu é difícil distinguir alimentos frescos de alimentos parcialmente ou totalmente deteriorados.

Já as informações sobre a rastreabilidade são demandadas tanto por clientes como por regulamentos vigentes, aplicáveis a setores específicos. Geralmente, a rastreabilidade envolve o rastreamento de etapas produtivas, limitadas à avaliação de um elo específico, possuindo fluxo desde a recepção ao produto final, ou do produto final à recepção. É embasada pela IN 51/2018 e RDC 24/2015, da Anvisa. No entanto, em alguns casos é necessário rastrear toda a cadeia produtiva, como está previsto na INC 02/2018, aplicável a produtos vegetais frescos destinados à alimentação humana, visando controle de resíduos de agrotóxicos. Para tal, utilizam-se tecnologias para facilitar o rastreamento de dados, como o QR code, que reúne informações detalhadas no produto fornecidas pelos diferentes elos de toda a cadeia produtiva relacionada. Essa ferramenta pode ser relacionada à indústria 4.0 devido ao nível de tecnologia aplicado, aliada a preceitos como inovação, eficiência e customização a partir da automação de dados, com foco na produtividade, utilizando a inteligência artificial para a produção inteligente.

Os Objetivos de Desenvolvimento Sustentável (ODS) foram pré-estabelecidos pela ONU em 2015 e representam um plano de ação global para eliminar a pobreza extrema e a fome, além de pretender oferecer educação de qualidade, proteger o planeta e promover sociedades pacíficas e inclusivas até 2030. As embalagens inteligentes enquadram-se no ODS 2 (Fome Zero e Agricultura sustentável) devido à tecnologia de conservação de alimentos empregada, garantindo mais alimentos disponíveis à população, ODS 3 (Saúde bem-estar) considerando as propriedades antimicrobianas e antioxidantes, que além de monitorar o grau de deterioração do alimento, podem inibir crescimento microbiano, e assim, garantir um alimento seguro ao consumidor, ODS 9 (Indústria, Inovação e Infraestrutura), devido à oportunidades de inovação pelas indústrias, guiadas pelo apelo das novas tendências alimentares exigidas pelos consumidores.

Além disso, a ciência está voltada para esta temática, pois houve um aumento de 21,14% na  publicação de artigos sobre esse tema no período entre 2015 e 2021 (figura 2).

Figura 2 – Publicações anuais de artigos contendo as palavras chave “smart packaging” na base de dados da Scopus entre 2015 e 2021 –  Fonte: Bibliometrix

Ao avaliar as palavras-chave escolhidas pelos autores nestes artigos, percebe-se que entre as palavras mais citadas, encontram-se biopolímeros de fontes renováveis, como amido (starch), gelatina (gelatina) e quitosana (chitosan). Estes geralmente são utilizados para elaboração de embalagem biodegradável, possuindo como uma de suas principais vantagens em relação aos polímeros de origem sintética (petróleo), a biodegradabilidade,  pois os sintéticos levam anos para se degradar e causam impactos ambientais irreversíveis devido à quantidade presente no ambiente. Neste sentido, além dos ODS mensurados para as embalagens inteligentes, quando elas são elaboradas a partir de polímeros biodegradáveis, contribuem com o ODS 14 e 15, preservando  vidas na água e na terra, pela redução do impacto ambiental, respeitando as gerações futuras.


Figura 3 – Nuvem de palavras-chave citadas pelos autores em artigos contendo as palavras chave “smart packaging” na base de dados da Scopus entre 2015 e 2021. Fonte: Bibliometrix 

Além do viés ambiental, percebe-se a presença das palavras qualidade de alimentos (food quality) e sensores (sensor), indicando a utilização dessas embalagens para monitoria de frescor em alimentos, conforme já reportado.

Pelo exposto, percebe-se que as embalagens inteligentes estão relacionadas com informações ao consumidor, produtor e autoridades, referentes à rastreabilidade ou ao frescor do alimento, e também são utilizadas para garantir a segurança dos alimentos, uma vez que além de auxiliar na monitoria do ciclo de vida, permitem maior durabilidade dos alimentos.

Referências

BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução RDC nº 24, de 09 de junho de 2015. Diário Oficial da União [República Federativa do Brasil], Brasília, DF, 9 jun. 2015, p. 1-12.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa n° 51, de 1 de outubro de 2018. Diário Oficial da União [República Federativa do Brasil], Brasília, DF, 8 out. 2018. Seção 1, p. 15.

BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Instrução Normativa Conjunta – INC n. 2, de 7 de fevereiro de 2018. Diário Oficial da União [República Federativa do Brasil], Brasília, DF, 8 fev. 2018. Seção 1, p. 26-149.

MUNDO, Transformando Nosso. A Agenda 2030 para o Desenvolvimento Sustentável. Recuperado em, v. 15, p. 24, 2016.

SCHAEFER, Dirk; CHEUNG, Wai M. Smart packaging: Opportunities and challenges. Procedia CIRP, v. 72, p. 1022-1027, 2018. 

4 min leituraO mercado de embalagens inteligentes está em ascensão, com previsão estimada de atingir o valor de US$26,7 bilhões até 2024. Seu destaque se deve às funções adicionais que possuem, que […]

3 min leitura
1

Embalagens comestíveis para frutas e vegetais: aspectos de segurança de alimentos

3 min leitura

Nas últimas décadas houve aumento significativo da poluição e um dos motivos é o uso de materiais plásticos e filmes à base de petróleo para embalar alimentos, inclusive frutas e vegetais. Em busca de soluções para essa crescente problemática, bem como pela necessidade incessante de encontrar meios para prolongar a vida útil de alimentos frescos, novas tecnologias de embalagens comestíveis biodegradáveis vêm ganhando destaque e têm feito bastante sucesso.

Frutas e vegetais desempenham um papel importante na nutrição saudável devido às suas vitaminas, minerais, antioxidantes e fibras, sendo prioridade na lista de compras do consumidor. O principal problema na preservação destes alimentos é a sua vida útil curta, porém a extensão da vida de prateleira em frutas e vegetais pode ser alcançada pela utilização de embalagens adequadas e por métodos de preservação apropriados.

Filmes e revestimentos comestíveis são definidos como camadas finas de materiais que podem ser ingeridos por serem atóxicos, aplicadas em produtos alimentícios e que desempenham um papel importante na sua conservação, distribuição e comercialização. Algumas de suas funções são proteger o produto de danos mecânicos, atividades físicas, químicas e microbiológicas. Por formar uma barreira entre o alimento e o ambiente circundante, reduzem a interação com fatores  de deterioração e prolongam a durabilidade das frutas e hortaliças, mesmo em temperatura ambiente. Em outro artigo já publicado neste blog, falamos um pouco sobre essa técnica.

Um bom revestimento comestível deve ser transparente, ter boa adesão ao fruto ou vegetal em que será aplicado, não deve ser perceptível ao paladar, mas principalmente não pode ser tóxico, portanto sua ingestão deve ser segura. As coberturas e filmes comestíveis devem ainda ser produzidas segundo as Boas Práticas de Fabricação de alimentos.

Devido às suas características renováveis e biodegradáveis, espera-se que as embalagens comestíveis, derivadas principalmente de biopolímeros e aditivos de qualidade alimentar, substituam completamente as embalagens sintéticas usadas para conservar alimentos. Veja algumas opções de materiais que vêm sendo propostos pela EMBRAPA neste outro post.

Não existem legislações específicas no Brasil para embalagens comestíveis, mas como não incrementam o valor nutricional dos alimentos, podem ser classificadas como aditivos. A Portaria nº 540, de 27 de outubro de 1997, da Agência Nacional de Vigilância Sanitária (ANVISA), conceitua aditivo alimentar como qualquer ingrediente adicionado intencionalmente aos alimentos, sem propósito de nutrir, porém com o objetivo de modificar as características físicas, químicas, biológicas ou sensoriais, durante a fabricação, processamento, preparação, tratamento, embalagem, acondicionamento, armazenagem, transporte ou manipulação de um alimento.

Os filmes e revestimentos comestíveis são eficientes para manter a qualidade pós-colheita dos alimentos minimamente processados, e podem ser usados também para gerenciar perdas de vários frutos climatéricos e não climatéricos durante toda cadeia produtiva, do produtor ao consumidor. Além disso, esse tratamento promove proteção extra às frutas e vegetais no tocante à contaminação por microrganismos patógenos ou por insetos que podem trazer tanto prejuízos do ponto de vista econômico, como problemas à saúde de quem os consome.

Além disso, podem  também ter a função de transportar substâncias que trarão benefícios não só para o alimento em si, mas também para o consumidor, pois por meio do encapsulamento de compostos bioativos, pode-se desenvolver novos produtos com efeito nutracêutico ou funcional.

Com isso, a indústria alimentícia pode contar com uma alternativa natural vantajosa para embalar diversos tipos de alimentos, minimizando as perdas pós-colheitas de forma segura. Esta técnica também mantem o sabor, o frescor, a aparência e a qualidade nutricional de frutas e vegetais, além de contribuir com o planeta, reduzindo o impacto ambiental que o descarte das embalagens plásticas causa ao nosso meio ambiente.

Autores: Adriana Sousa e Silva Carvalho e Geovana Rocha Plácido, do Instituto Federal Goiano

Imagem: www.wokingham-tc.gov.uk/plastic-wrapped-fruit-vegetables/

Referências:

ANVISA – Agência Nacional de Vigilância Sanitária. Regulação de aditivos alimentares e coadjuvantes de tecnologia no Brasil. Acesso em 12/02/2022.

FALGUERA, V., QUINTERO, J. P., JIMÉNEZ, A., MUÑOZ, J. A., & IBARZ, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292-303.

LI, S., MA, Y., JI, T., SAMEEN, D. E., AHMED, S., QIN, W., … & LIU, Y. (2020). Cassava starch/carboxymethylcellulose edible films embedded with lactic acid bacteria to extend the shelf life of banana. Carbohydrate Polymers, 248, 116805.

SIQUEIRA, A. P. O. (2012). Uso de coberturas comestíveis na conservação pós-colheita de goiaba e maracujá-azedoUniversidade Estadual do Norte Fluminense.

SHIVANGI, S., DORAIRAJ, D., NEGI, P. S., & SHETTY, N. P. (2021). Development and characterisation of a pectin-based edible film that contains mulberry leaf extract and its bio-active components. Food Hydrocolloids, 121, 107046.

XIAO, J., GU, C., ZHU, D., HUANG, Y., LUO, Y., & ZHOU, Q. (2021). Development and characterization of an edible chitosan/zein- cinnamaldehyde nano-cellulose composite film and its effects on mango quality during storage. LWT, 140, 110809.

3 min leituraNas últimas décadas houve aumento significativo da poluição e um dos motivos é o uso de materiais plásticos e filmes à base de petróleo para embalar alimentos, inclusive frutas e […]

3 min leitura
0

Aquecimento ôhmico: tecnologia alternativa para conservação de sucos

3 min leitura

O aquecimento ôhmico é uma importante tecnologia emergente ou inovadora utilizada para a conservação de vários tipos de alimentos, incluindo os sólidos, líquidos e pastosos, como: sucos, leite, sopas, e no descongelamento de carnes, por exemplo. A tecnologia de aquecimento ôhmico é um processo de aquecimento em que a corrente elétrica passa através dos alimentos, atuando como um resistor elétrico. A geração de calor no alimento ocorre devido ao efeito Joule, convertendo a energia elétrica em energia térmica, sendo que a taxa de aquecimento está diretamente relacionada à condutividade elétrica.

Processos térmicos convencionais (como pasteurização e esterilização) são as técnicas mais utilizadas para garantir a segurança microbiológica de alimentos processados. Contudo, tais processos apresentam certas desvantagens, como: degradação de compostos termossensíveis, alterações indesejáveis nos atributos sensoriais e consumo de combustíveis fósseis para geração do calor.

Neste contexto, o aquecimento ôhmico é uma alternativa viável, apresentando certas vantagens em relação aos processo convencionais, como:

  • Ausência de superfícies para transferência de calor;
  • Aquecimento rápido e uniforme, sendo possível o aquecimento da fase líquida e sólida à mesma velocidade, minimizando a perda de qualidade devido ao sobreprocessamento;
  • Redução significativa dos processos de fouling quando comparado com o processamento tradicional (ex.: pasteurização de ovos líquidos);
  • Eficiência energética bastante superior aos processos tradicionais, o que se traduz em poupanças significativas de energia;
  • Tecnologia com baixo impacto ambiental;

Como qualquer outra tecnologia, o aquecimento ôhmico também apresenta algumas desvantagens, como a dificuldade de controlar a taxa de aquecimento do produto, devido à alteração da condutividade elétrica dos alimentos durante seu aquecimento. Outra desvantagem é a aplicação em alimentos com altos teores de gordura, pois são substâncias não condutoras, resultando em uma não uniformidade na geração de calor. Este fato pode representar um risco para segurança microbiológica, devido ao aparecimento de zonas frias durante o processamento.

No tocante ao efeito de inativação microbiana, algumas pesquisas reportam que, além do efeito térmico de inativação, o processo pode resultar em um efeito adicional não térmico sobre o microrganismo, possibilitando o desenvolvimento de processo com menor intensidade térmica, sem comprometer a eficácia para a segurança do alimento. Contudo, apesar de algumas pesquisas reportarem esse efeito, segundo o IFT/FDA, essa evidência ainda não é suficiente para ser considerada no desenvolvimento de processos de conservação. Desta forma, o processamento de conservação pelo aquecimento ôhmico se baseia no efeito térmico, assim como nos processos convencionais.

Entre as diferentes categorias de alimentos, o aquecimento ôhmico é uma tecnologia bem promissora para a pasteurização e conservação de sucos, devido às características intrínsecas das frutas, como: alto teor de sólidos solúveis, baixo teor de gordura, presença de vitaminas e outros compostos termossensíveis. O aquecimento ôhmico tem sido aplicado em diversas frutas, sucos e purês de vegetais, promovendo menores deteriorações de alguns compostos de interesse (como carotenoides, antioxidantes e vitamina C), quando comparado ao tratamento térmico convencional.

Em suco de acerola, pesquisadores observaram que a decomposição da vitamina C durante a pasteurização com aquecimento ôhmico com baixa voltagem foi menor quando comparada ao tratamento convencional. Já para suco de cenoura, a pasteurização pelo aquecimento ôhmico minimizou a degradação da capacidade antioxidante total do suco, em comparação ao suco pasteurizado pelo processo convencional. Além disso, o nível de aceitação entre os consumidores foi maior para o suco tratado pelo aquecimento ôhmico.

No que se refere à segurança dos alimentos, inocuidade do produto e características sensoriais desejáveis, o aquecimento ôhmico é promissor e deve ser visto com bons olhos por parte de pesquisadores e profissionais do ramo alimentício.

Autores: Alcides Neves Filho¹, Celso Martins Belisário², Geovana Rocha Plácido², Cláudia Leite Munhoz³, Leandro Pereira Cappato²

¹Discente do programa de Mestrado profissional em Tecnologia de Alimentos – IFGoiano – Rio Verde, ²Docentes do programa de Mestrado profissional em Tecnologia de Alimentos – IFGoiano – Rio Verde, ³Docente do IFMS – Coxim

Imagem: foto de Bruno Scramgnon no Pexels

Referências

CAPPATO, L. P. et al. (2017). Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends in Food Science & Technology, v. 62, p. 104-112.

MERCALI, G. D. et al. (2013). Degradation kinetics of anthocyanins in acerola pulp: Comparison between ohmic and conventional heat treatment. Food Chemistry, 136, 853e857

RODRÍGUEZ, L. M et al. (2021). Negri et al. Comparison of the quality attributes of carrot juice pasteurized by ohmic heating and conventional heat treatment. LWT, v. 145, p. 111255.

3 min leituraO aquecimento ôhmico é uma importante tecnologia emergente ou inovadora utilizada para a conservação de vários tipos de alimentos, incluindo os sólidos, líquidos e pastosos, como: sucos, leite, sopas, e […]

4 min leitura
0

Novas embalagens podem garantir sustentabilidade e segurança aos alimentos minimamente processados

4 min leitura

A maioria dos plásticos à base de petróleo usados para embalagens de alimentos não são degradáveis e causam muitos problemas ambientais associados ao descarte, incluindo danos ao ecossistema. Esses materiais não são renováveis e seu preço está aumentando devido à instabilidade gerada pelo esgotamento iminente dos recursos petrolíferos. Assim, há uma busca cada vez maior por materiais alternativos para a produção de novas embalagens que possam competir efetivamente com aquelas não renováveis e não biodegradáveis, principalmente em custos, propriedades físicas e sustentabilidade.

Os consumidores estão em busca de alimentos com boas qualidades sensoriais e que não ofereçam risco à saúde. O tipo de embalagem é essencial, pois tem como função preservar os nutrientes, diminuir a contaminação microbiana durante o transporte e armazenamento e permitir o aumento da vida de prateleira. Sua funcionalidade deve ser capaz de manter o frescor e segurança dos alimentos e garantir a qualidade sem a necessidade de aditivos sintéticos e conservantes, ou ao menos, diminuir o uso destes. Além disso, a embalagem tem um papel significativo na redução do desperdício.

Novas tecnologias para embalagens alimentícias estão sendo testadas, como embalagens em atmosfera modificada e embalagens ativas.

Por definição, a embalagem ativa é conceituada como um modo de embalagem em que o produto e o ambiente interagem para prolongar a vida útil, aumentar a segurança e as propriedades sensoriais do alimento. Já a embalagem com atmosfera modificada é conhecida por apresentar alterações nas proporções de gases contidas no ambiente do alimento embalado, com retirada ou substituição desta atmosfera por uma mistura de gases, como dióxido de carbono e nitrogênio.

A embalagem ativa desempenha um papel importante na determinação da vida útil de alimentos, prevenindo danos que podem ser gerados por processos fisiológicos (por exemplo, oxidação de lipídios), processos físicos (endurecimento de pão, desidratação), aspectos microbiológicos (deterioração por microrganismos) e infestação por insetos. A qualidade dos alimentos armazenados está relacionada às propriedades do material da embalagem e depende das características do alimento embalado, sendo que a deterioração pode ser reduzida e o tempo de vida útil aumentado.

Há uma preferência por parte dos consumidores por embalagens mais ecológicas e filmes de biopolímeros que podem potencialmente substituir filmes sintéticos. Dessa maneira, substituir os antimicrobianos sintetizados quimicamente por alternativas naturais, a fim de garantir a segurança dos alimentos é uma das alternativas válidas. A seleção adequada do filme de embalagem pode ser a chave do sucesso para o uso eficiente da embalagem em atmosfera modificada.

Nos últimos anos, a utilização de antimicrobianos sintéticos está orientada para o uso combinado com substâncias de origem natural, com mecanismo de ação seletiva e atividade antimicrobiana potencial. Plantas e produtos da extração vegetal, como os óleos essenciais com propriedades antimicrobianas, representam uma fonte alternativa importante aos aditivos sintéticos.

No entanto, os métodos convencionalmente empregados para a produção de embalagens ativas têm alguns inconvenientes quando aplicados a polímeros naturais carregados com compostos bioativos degradáveis. Os problemas estão relacionados principalmente ao uso de alta temperatura e altas quantidades de solventes orgânicos tóxicos e poluentes necessários para fundir ou dissolver o polímero antes do processo de formação do filme. As técnicas de produção convencionais não são tão eficientes quando se trata da penetração do agente ativo no produto dentro da embalagem.

Além dos benefícios relacionados com a preservação dos alimentos, ressalta-se que a utilização de polímero biodegradável possibilita o tratamento da embalagem após o uso, da mesma forma que um resíduo orgânico compostável, contribuindo, portanto, para a redução de resíduos sólidos poliméricos que se destinam a aterro ou incineração.

Enfim, a embalagem adequada é uma grande aliada na redução das perdas por deterioração ou contaminação microbiana e alterações enzimáticas. As embalagens ativas e em atmosfera modificada podem propiciar maior vida útil ao ao alimento e evitar doenças de origem alimentar. Não menos importante é a preservação do meio ambiente, com a diminuição do descarte de embalagens não biodegradáveis.

Autores: Ana da Silva Torres Viana, nutricionista; Prof. Drª Geovana Rocha Plácido*, engenheira de alimentos; Prof. Dr. Celso Martins Belisário*, químico; Marco Antônio Pereira da Silva*, zootecnista.

*Docentes do Mestrado Profissional em Tecnologia de Alimentos do IF Goiano, campus Rio Verde

Referências

Berthet, M. A., Angellier-Coussy, H., Machado, D., Hilliou, L., Staebler, A., Vicente, A., & Gontard, N. (2015). Exploring the potentialities of using lignocellulosic fibres derived from three food by-products as constituents of biocomposites for food packaging. Industrial Crops and Products, 69, 110-122.

Dados, FTNIR (2020). Jornal de Biorecursos e Bioprodutos. Journal of Bioresources and Bioproducts, 5, 205-212.

Dhifi, W., Bellili, S., Jazi, S., Bahloul, N., & Mnif, W. (2016). Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines, 3(4), 25.

dos Santos Rosa, D., & Lenz, D. M. (2013). Biocomposites: Influence of matrix nature and additives on the properties and biodegradation behaviour. Biodegrad. Eng. Technol. Intech Rij. Croat, 433-475.

Majeed, K., Jawaid, M., Hassan, A. A. B. A. A., Bakar, A. A., Khalil, H. A., Salema, A. A., & Inuwa, I. (2013). Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials & Design, 46, 391-410.

Martino, L., Berthet, MA, Angellier-Coussy, H., & Gontard, N. (2015). Compreendendo a plastificação externa de compósitos biodegradáveis de fibras de palha de trigo e PHBV extrudado por fusão para embalagens de alimentos. Journal of Applied Polymer Science, 132 (10).

Rodrigues, B. L., da Silveira Alvares, T., Sampaio, G. S. L., Cabral, C. C., Araujo, J. V. A., Franco, R. M., … & Junior, C. A. C. (2016). Influence of vacuum and modified atmosphere packaging in combination with UV-C radiation on the shelf life of rainbow trout (Oncorhynchus mykiss) fillets. Food Control, 60, 596-605.

Valdés, A., Mellinas, AC, Ramos, M., Garrigós, MC, & Jiménez, A. (2014). Aditivos naturais e resíduos agrícolas em formulações de biopolímeros para embalagens de alimentos. Fronteiras da química , 2 , 6.

Wang, P., Li, Y., Zhang, C., Que, F., Weiss, J., & Zhang, H. (2020). Caracterização e atividade antioxidante de filmes de gelatina/galato de dextrano-propil/gelatina em tríplice camada: Eletrofiação versus fundição com solvente. Lwt , 128 , 109536

4 min leituraA maioria dos plásticos à base de petróleo usados para embalagens de alimentos não são degradáveis e causam muitos problemas ambientais associados ao descarte, incluindo danos ao ecossistema. Esses materiais […]

3 min leitura
2

Inovações tecnológicas aplicadas à indústria de alimentos

3 min leitura

O avanço da tecnologia de informação trouxe à tona mudanças nas mais diversas áreas, inclusive na indústria de alimentos. A indústria 4.0 é uma realidade, sendo comumente chamada de Quarta Revolução Industrial. Esse movimento de modernização das operações é responsável pela otimização dos processos e remoção dos gargalos de produção. Que tal conhecer as inovações tecnológicas mais promissoras para a sua indústria?

  • O que está se tornando real na indústria de alimentos?

É muito provável que você utilize gadgets e diversas tecnologias que juntas compõem a conhecida internet das coisas (IoT, sigla em inglês), mas talvez não reconheça o termo. Na indústria, ela se estabelece através da conexão de máquinas à internet, potencializando o acesso e o processamento dos dados obtidos.

Essa conexão ocorre através da utilização de sensores e outros dispositivos para coleta de dados. Eles são, então, transmitidos via internet possibilitando o gerenciamento por softwares, que executam ações nas máquinas por meio de atuadores. O grande benefício é facilitar e otimizar o processo produtivo, visto que a rede permite a conexão entre as operações industriais em todos os elos da cadeia.

Segundo os dados do Portal da Indústria, as tecnologias digitais permitiram aumentar, em média, em 22% a capacidade produtiva de micro e médias empresas de diversos segmentos, incluindo alimentos e bebidas.

Outro exemplo é o uso de inteligência artificial (AI, sigla em inglês), que proporciona o aprendizado de máquinas na interpretação de eventos e avaliação de tendências. Associada à robótica avançada, a tomada de decisão de modo autônomo é cada vez mais comum no ambiente fabril. Essas inovações são possíveis devido ao desenvolvimento de big datas atrelados a sistemas de segurança cada vez mais robustos.

  • Veja abaixo alguns exemplos de aplicação dessas tecnologias na indústria de alimentos:

    • Espectrômetro de mão para caracterização rápida de alimentos: equipamentos atrelados à sistema que permite o upload das informações para um banco de dados capaz de realizar o gerenciamento e planejamento de produção e logística.
    • Smart glasses: oferece a transcrição de procedimentos e treinamentos de operadores à distância, através de realidade aumentada. Permite a visualização de mídias de imagens, vídeos e áudio no mesmo aparelho. Além disso, permite o acompanhamento das atividades de modo remoto.
    • Inspeção visual de objetos durante o transporte em correias, por meio de um conjunto de câmeras de alta velocidade e software de processamento de imagens. Tal tecnologia realiza medidas das dimensões e avalia dados de rotulagem.
    • Analisadores portáteis para monitoramento ambiental e detecção de DNA. Disponibiliza resultados em até 10% do tempo necessário na análise tradicional. São capazes de avaliar diversos indicadores de sanitização, microbiologia e qualidade, com validação de órgãos internacionais.
    • Smart tags RFID:  formas de identificação por radiofrequência que permitem a rastreabilidade do produto ao longo da cadeia de suprimentos. Quando ativas, emitem sinais constantemente a partir do objeto onde foram implantadas, permitindo rastreamento em tempo real. Outros formatos de blockchain (informações rastreáveis) também já estão muito difundidos.
    • Muitos outros exemplos foram tratados por Marco Túlio Bertolino, na publicação Os impactos da 4ª Revolução Industrial no segmento de alimentos – 2.
  • Qual a tendência de investimento nas novas tecnologias?

O desenvolvimento tecnológico está cada vez mais presente – até mesmo em nossas casas repletas de Alexas e robôs aspiradores. Apesar disso, uma pesquisa indicava que, nos últimos três anos, 48% das indústrias de alimentos e bebidas não tinham a intenção de investir em tecnologias digitais.

Por outro lado, a 2021 Industry 4.0 Survey demonstrou que neste ano os esforços da indústria deixarão de ser aplicados na mitigação da pandemia de covid-19. Ao invés disso, eles se concentrarão na inovação, estando 49% das indústrias planejando incluir novos fluxos de receita digital.

Com isso, os trabalhos estarão voltados para a capacidade de operação em tempo real, virtualização, descentralização, orientação a serviços e modularidade, que são os princípios da indústria 4.0.

Dependendo do segmento, as atualizações tecnológicas podem não ocorrer no mesmo ritmo. Segundo Douglas Woodruff, espera-se um maior desenvolvimento nas áreas consideradas tendências de consumo. Como exemplo, pode-se citar a indústria de alimentos plant-based e de embalagens que buscam atender ao compromisso com a sustentabilidade.

Mas é importante dizer que muitas inovações tecnológicas já nascem de modo democrático, sendo financeiramente acessíveis para os diferentes portes de empresas.

  • E como as pessoas estão vivenciando a indústria 4.0?

Diante de tudo isso, existe o fator humano e como cada pessoa está reagindo a estas novas condições. A tecnofobia é um exemplo de reação contrária ao movimento de inovação tecnológica, o que demonstra o receio humano frente às tecnologias.

Já num aspecto profissional, a modernização não elimina os métodos tradicionais de se executar as atividades, porém modifica o perfil do mercado. Aumenta a demanda por profissionais qualificados em técnicas de robótica, linguagens de programação, além de pessoas com maior facilidade na utilização dessas tecnologias.

Compartilhe com a gente nos comentários como está sendo sua experiência com as novas tecnologias na indústria de alimentos.

3 min leituraO avanço da tecnologia de informação trouxe à tona mudanças nas mais diversas áreas, inclusive na indústria de alimentos. A indústria 4.0 é uma realidade, sendo comumente chamada de Quarta […]

4 min leitura
2

PANCs (Plantas Alimentícias Não Convencionais) podem ser usadas livremente em alimentos? Entenda a regulamentação

4 min leitura

Atualmente, um grupo de plantas vem ganhando projeção nas mídias especializadas em alimentação: são as Plantas Alimentícias Não Convencionais ou PANCs.

As PANCs são, em geral, plantas que nascem e se desenvolvem sem maiores cuidados culturais e que, embora não sejam usuais na alimentação tradicional, possuem uma ou mais partes comestíveis, como folhas, raízes, flores ou frutos.

Algumas delas se parecem com o mato ou com ervas daninhas, não sendo por isso valorizadas como alimento. Outras até já tiveram espaço na cultura gastronômica de diferentes regiões, mas foram gradualmente substituídas por espécies comerciais produzidas em larga escala. Os exemplos de PANCs mais conhecidos são: jurubeba, beldroega, ora-pro-nobis, taioba, jambu, etc.

Acima de tudo, é essencial conhecer bem estas fontes alimentícias e saber diferenciá-las de plantas potencialmente tóxicas. Este artigo do blog cita alguns problemas relacionados ao consumo de certas PANCs.

Agora, imagine que você ou sua empresa de alimentos tem interesse em usar alguma destas PANCs em um alimento processado: um doce, uma geleia, um pão… Como garantir que o ingrediente e o alimento final são seguros? Em termos regulamentares, qual o procedimento específico a ser cumprido?

O parecer da Anvisa

Em resposta a um questionamento formal sobre este tema, a Anvisa informa que a comprovação pré-mercado da segurança de uso de determinados alimentos e ingredientes é uma exigência legal, com objetivo de proteger a saúde da população.

Atualmente, devem atender a essa exigência, os produtos enquadrados nas categorias de novos alimentos ou novos ingredientes. Além disso, muitos regulamentos técnicos específicos estabelecem que certos alimentos, ingredientes ou modificações só podem ser empregados após comprovação prévia da sua segurança.

Para definir se determinado produto é um novo alimento ou ingrediente é necessário verificar, inicialmente, seu enquadramento como alimento ou ingrediente. As definições legais de alimento contemplam todas as substâncias ou misturas de substâncias destinadas à ingestão por humanos, que tenham como objetivo fornecer nutrientes ou outras substâncias necessárias para a formação, manutenção e desenvolvimento normais do organismo, independentemente do seu grau de processamento e de sua forma de apresentação.

Já os ingredientes são “as substâncias utilizadas no preparo ou na fabricação de alimentos, e que estão presentes no produto final em sua forma original ou modificada”.

Após a verificação do enquadramento como alimento ou ingrediente, deve-se analisar se a PANC atende ao conceito de novo alimento ou ingrediente, conforme a Resolução nº16, de 30 de abril de 1999, que aprova o Regulamento Técnico de Procedimentos para registro de Alimentos e ou Novos Ingredientes.

Novos alimentos ou novos ingredientes são os alimentos ou substâncias sem histórico de consumo no país, ou alimentos com substâncias já consumidas que, entretanto, venham a ser adicionadas em níveis muito superiores aos observados nos alimentos da dieta regular.

Os exemplos a seguir caracterizam algumas situações em que alimentos ou ingredientes atendem ao conceito de novo alimento ou ingrediente:

  • Alimento ou ingrediente consumido por pequeno grupo de indivíduos ou durante curtos períodos de tempo, em função de baixa disponibilidade de alimentos ou por razões socioculturais. Exemplos: insetos consumidos em outros países, vagem de algaroba e palma forrageira consumidas em períodos de seca;
  • Alimento ou ingrediente que não é conhecido, comercializado ou consumido de forma significativa no Brasil, mas possui histórico de consumo em outro país. Exemplos: semente de chia, lúcuma e xarope de agave;
  • Alimento ou ingrediente obtido ou modificado em sua natureza, por processo tecnológico, que resulte em mudanças significativas de composição, estrutura, comportamento físico-químico ou valor nutricional. Exemplos: nanocompostos de vitaminas, substitutos de óleos e açúcares modificados;
  • Substâncias obtidas de fontes não utilizadas como alimentos pelo homem, mas que estão presentes em alimentos consumidos regularmente. Exemplos: fitoesteróis de árvores coníferas (Pinophyta), cálcio de concha de ostras e luteína de Tagetes erecta;
  • Alimento ou ingrediente que consista ou que seja isolado de microrganismos, fungos ou algas. Exemplos: espirulina, ácidos graxos essenciais obtidos de microrganismos e beta-glucana de Saccahromyces cerevisiae;
  • Ingrediente obtido por síntese ou a partir de fontes alimentares, cuja adição em alimentos resulte em aumento do seu consumo. Exemplos: ácidos graxos da família ômega 3 provenientes do óleo de peixe, resveratrol sintético ou extraído da uva, licopeno sintético ou extraído de tomate e fitoesteróis de óleos vegetais.

Portanto, o conceito é amplo e contempla uma grande variedade de produtos, para os quais não existe conhecimento suficiente para garantir sua segurança antes de uma avaliação específica.

Por outro lado, não são considerados novos alimentos, produtos que fazem parte do hábito alimentar regular de determinadas regiões do Brasil, mas que por razões diversas não se difundiram significativamente no país, tais como: pequi (Caryocar brasiliensis), bacaba (Oenakarpus multicaulis), beldroega (Portulaca oleracea), araruta (amido extraído da Maranta arundinacea) e farinha de alfarroba (Ceratonia siliqua).

Sugerimos a leitura do GUIA PARA COMPROVAÇÃO DA SEGURANÇA DE ALIMENTOS E INGREDIENTES, disponível no Portal da ANVISA e na Biblioteca de Alimentos da ANVISA.

Portanto, caso se considere que a PANC a ser usada já apresenta informações suficientes de histórico de uso e, por isso, não deve ser considerada um novo alimento ou novo ingrediente, não é necessário peticionar a análise de segurança de novos ingredientes. A responsabilidade de enquadrar ou não o alimento/ingrediente na categoria “Novos” é da empresa.

Entretanto, caso haja alguma dúvida em afirmar que não se trata de novo alimento, sugerimos elaborar os documentos necessários e submetê-los à avaliação da ANVISA. Até porque a empresa deve poder comprovar histórico de uso seguro a qualquer momento, caso demandada a comprovar que não se trata de Novo Alimento ou Novo Ingrediente.

Imagem: blog Ciencia em Si (Unicamp)

José Humberto Soares foi o primeiro diretor-secretário da Associação Food Safety Brazil e um dos primeiros a acreditar e apoiar este projeto. Graduado em Engenharia de alimentos e Letras, hoje é o revisor de todos os posts aqui publicados. Ele teve um bom motivo para escrever este post, que é celebrar o aniversário de 10 anos do blog.  

Leia também:

Cuidado: ingerir qualquer massa crua é perigoso!

Como se determina a segurança de um novo aditivo alimentar?

Alimentos “politicamente seguros”: arsênio, agrotóxicos e mais

4 min leituraAtualmente, um grupo de plantas vem ganhando projeção nas mídias especializadas em alimentação: são as Plantas Alimentícias Não Convencionais ou PANCs. As PANCs são, em geral, plantas que nascem e […]

Compartilhar
Pular para a barra de ferramentas