2 min leitura
0

Caminhoneiros: como garantir uma “boia” segura

2 min leitura

Você já conversou com o caminheiro da sua empresa hoje? Eles rodam cerca de 10 mil km por mês e trabalham aproximadamente 11,3 horas por dia, segundo a Pesquisa CNT Perfil dos Caminhoneiros 2016. Mas você já parou para pensar em como eles se alimentam?

Lendo alguns blogs sobre a vida dos caminhoneiros, percebi que a alimentação é um tanto quanto interessante. Existe uma lenda: restaurante de beira de estrada com caminhão estacionado é garantia de comida boa. Mas há muitos motoristas que estão preferindo se arriscar nas panelas e preparar a própria boia na caixa de comida (se não souber o que é, olhe a figura abaixo), adaptada na lateral da carroceria. A escolha não envolve apenas o sabor, mas a garantia de procedência, além da chance de economizar.

abc

Imagem: caixa de comida refrigerada

Ah, para quem está se perguntando onde fica o botijão de gás, a resposta é: ele vai atrás da caixa em um tipo de suporte. Os donos do próprio caminhão têm a alternativa de investir ainda em uma caixa que pode ser ou não refrigerada, onde podem manter os alimentos de maneira segura. Não é uma compra barata (varia de R$ 800 a R$ 2.500), mas alguns optam para economizar com as refeições em longo prazo.

O que não pode faltar na caixa é arroz, ovos, salame, azeite, café, açúcar, macarrão e pão. O caminhoneiro precisa fazer uma refeição rápida para seguir viagem, por isso eles costumam cozinhar à noite e comer a outra porção no almoço, pois segundo eles, assim não perdem tempo.

Estamos sempre reclamando da demora das entregas, elas nunca chegam a tempo, etc, etc. Mas você já imaginou como é deixar para o dia posterior sem refrigeração uma porção de comida em um dia quente do verão brasileiro?

Sua reação lógica é pensar nas infinitas possibilidades que borbulham das doenças transmitidas por alimentos (DTA’s) a que os caminhoneiros estão expostos. Talvez essa possa ser a resposta da demora. Este ano a Juliana Lanza escreveu aqui sobre os surtos alimentares no Brasil. 

Mas o que nós, cidadãos que temos a informação, podemos fazer? Um passo é explicar como evitar ser acometido por DTAs por meio de itens básicos que podem passar despercebidos por eles, como:

  1. Checar o prazo de validade dos alimentos, o acondicionamento e suas condições físicas, como aparência, consistência e odor;
  2. Limpar bem os utensílios utilizados na preparação dos alimentos;
  3. Lavar as mãos antes e durante a preparação dos alimentos;
  4. Usar água ou gelo apenas de procedência conhecida;  
  5. Alimentos prontos que serão consumidos posteriormente devem ser armazenados sob refrigeração;
  6. Cozinhe completamente, a 60°C, carnes, frangos, ovos e peixes;
  7. Reaqueça alimentos conservados a 70°C; 
  8. Separe alimentos crus dos cozidos ou prontos para comer e utilize utensílios diferentes para cada um deles. É que, se contaminados, os alimentos crus podem transferir os microrganismos aos outros ingredientes durante a preparação;
  9. Evite consumir pratos que contêm ovos crus ou mal cozidos, como gemadas, ovos fritos moles e maionese caseira. Também não consuma sorvetes de procedência duvidosa.
  10. Caso a frota não tenha refrigeração, aconselhe-os a ter uma caixa térmica com gelo para levar os alimentos.

2 min leituraVocê já conversou com o caminheiro da sua empresa hoje? Eles rodam cerca de 10 mil km por mês e trabalham aproximadamente 11,3 horas por dia, segundo a Pesquisa CNT […]

2 min leitura
0

Controle de patógenos em ambiente x projeto sanitário

2 min leitura

Dra. Ivone Delazari ministrou a palestra sobre controle de patógenos em ambiente x projeto sanitário no III Seminário de projeto sanitário para indústria de alimentos, no Ital, em maio de 2017.

Um dos pilares fundamentais da indústria de alimentos é a garantia de segurança dos seus produtos, com um projeto sanitário adequado, incluindo estruturas físicas e equipamentos projetados de modo a facilitar a higiene e manutenção.

Fábricas de alimentos devem satisfazer uma variedade de exigências, incluindo:

  • Proporcionar um local de fabricação eficiente que permita a produção flexível de alimentos dentro de um período de tempo definido (ex: 5-10 anos).
  • Obedecer às leis de planejamento local sobre a construção e regulamentos de construção do país.

Todas as fábricas, no entanto, devem produzir alimentos seguros e sua concepção higiênica deve ser realizada para fornecer:

  • Defesa contra perigos externos de fábrica. Podem ser microrganismos, pragas, acessos humanos não autorizados, contaminação química no ar, partículas em suspensão no ar.
  • Defesa contra riscos internos na fábrica. Podem incluir atividades como oficinas de manutenção e salas de caldeiras, microrganismos de matéria-prima, alérgenos, água e contaminação de certos ingredientes.

Internamente, a fábrica deve ser projetada para: 

  • Não abrigar qualquer perigo que possam entrar na fábrica e ser de fácil limpeza, de modo a remover facilmente os perigos;
  • Condições ambientais adequadas (temperatura, umidade) para maximizar e manter a qualidade organoléptica e inocuidade do alimento, das matérias-primas, produtos intermediários e acabados;
  • Segurança contra contaminação deliberada;
  • A manutenção das condições higiênicas das instalações, uso de materiais de construção de longa durabilidade ou materiais que possam ser facilmente substituídos ou reparados.

Apresentar espaço suficiente para:

  • Alocar os equipamentos e armazenamento de materiais;
  • Permitir o desempenho higiênico de todas as operações;
  • Facilitar a limpeza e manutenção;
  • Facilitar fluxos internos de pessoas, produtos, embalagens, ar e resíduos.

As fábricas devem ser construídas como uma série de barreiras que visa limitar o desafio dos contaminantes e perigos. O número de barreiras criadas será dependente da natureza do alimento e estabelecido a partir de um plano HACCP.

Hoje, devido a um número substancial de surtos de doenças transmitidas por alimentos, o que mostra as práticas de higiene inadequadas, os microrganismos podem sobreviver em ambientes de processamento e manuseio de alimentos. Eles são geralmente introduzidos através de matérias-primas, pragas, ar, água e empregados. Vários desses microrganismos são patógenos como ex: Escherichia coli patogênicas, Listeria monocytogenes e Salmonella spp. Por isso é essencial monitorar o ambiente nas instalações de produção de alimentos e garantir que o produto alimentício seja consistentemente seguro, permitindo que o risco de contaminação seja reduzido. E tudo isso junto com o cumprimento dos procedimentos de limpeza e desinfecção.

2 min leituraDra. Ivone Delazari ministrou a palestra sobre controle de patógenos em ambiente x projeto sanitário no III Seminário de projeto sanitário para indústria de alimentos, no Ital, em maio de […]

3 min leitura
3

Área para coleta de swab em utensílios

3 min leitura

 

Realizar swab de superfície é algo que exige muita matemática. Começamos com cálculos na interpretação dos resultados com o Contador de Colônias.

Contador de Colônias

Imagem: Contador de Colônias

Como a amostra geralmente é coletada com um delimitador de 100 cm², o limite deve também ser estabelecido em cima desta área. Parece simples, mas já se perguntou: meu limite é expresso em cm² ou 100 cm²? Como realizo a coleta? Como chegam meus resultados? E o mais importante: como estou interpretando?

O swab de superfícies, como todos chamam, é para superfícies e não apenas para superfícies planas, portanto é de suma importância que você inclua no seu plano de amostragem itens que entrem em contato direto com o alimento, tanto quanto os equipamentos, como utensílios, caixas, facas e outros. Porém, devem ser feitas algumas considerações, pois não é possível aplicar o delimitador em objetos com superfícies irregulares e ou menores que o delimitador.

Área de objeto

Imagem: utensílio irregular e menor que o delimitador 

Ao tomar a atitude de avaliar esses objetos, você pode optar por dois caminhos: Solução na Coleta e/ou Solução na Interpretação. 

SOLUÇÃO NA COLETA – Você pode simplificar tudo na coleta, estabelecendo qual área será coletada. Vou utilizar minha garrafa de água como exemplo. Se eu for coletar um swab de minha garrafa, vou levar em consideração que minha mão não toca a garrafa por completo. A área de minha mão é menor que a área total da garrafa, portanto delimito não necessariamente com caneta a área que vou coletar e, ao interpretar os resultados considero ½ do limite para mãos, pois ninguém segura nada com as costas das mãos.

Área de garrafa

Imagem: garrafa com a área delimitada

Para interpretação, vamos utilizar esse limite para mãos:

Se uma mão higienizada pode conter 10² UFC, a área coletada pode conter 10²/2  UFC.

Desse modo, você pode coletar swab de maçanetas, carrinhos hidráulicos e milhões de lugares onde as mãos entram em contato. É fato de que a mão não toca apenas na área delimitada, mas a coleta servirá para saber se uma área possível de contaminar toda a palma de uma mão está ou não dentro dos padrões de higiene que uma palma de mão deve estar.

SOLUÇÃO NA INTERPRETAÇÃO Essa atitude é um pouco mais complicada, porém os dados são mais precisos. Consiste em você desfazer mentalmente o objeto/utensílio analisado. Vou utilizar uma espátula como exemplo. Posso coletar o swab de toda a espátula ou apenas de um lado.

Área da espátula

Imagem: área da base de uma espátula 

Conforme ilustrado acima, vou medir cada forma da espátula e chegarei à área de um de seus lados (2D), Caso o swab for coletado de todo o utensílio, devo calcular a área de todos os lados (3D). A espátula que medi tem 255,94 cm², sem considerar as variações em azul na imagem, mas nada o impede de calcular até essas formas geométricas mais difíceis.

Vamos utilizar também os limites para swab de superfície citados acima.

100 cm²                 —–       28 UFC

255,94 cm²           —–       X

X = 72 UFC

A lógica desse texto permite que por meio da matemática, sejam analisados objetos de qualquer formato, mas também é possível caminhos mais simples como considerar limites para m³ e milhões de outras lógicas. O único obstáculo, até o momento, é a carência de boas referências.

Todas as imagens são de arquivo pessoal do autor.

3 min leitura  Realizar swab de superfície é algo que exige muita matemática. Começamos com cálculos na interpretação dos resultados com o Contador de Colônias. Imagem: Contador de Colônias Como a amostra […]

4 min leitura
3

Doença de Chagas como doença de origem alimentar: a que ponto chegamos?

4 min leitura

Um surto de grandes proporções no ano de 2005, envolvendo o consumo de caldo de cana de um quiosque à beira da estrada em Navegantes (SC) fez com que grande parte da população brasileira tomasse conhecimento de que a doença de Chagas poderia ser causada a partir do consumo de alimentos contaminados pelo protozoário causador da enfermidade: Trypanosoma cruzi. Como resultado, em julho do mesmo ano foi publicada uma RDC pela ANVISA que “dispõe sobre o Regulamento Técnico de Procedimentos Higiênico-Sanitários para Manipulação de Alimentos e Bebidas Preparados com Vegetais”. O foco da regulamentação é, claramente, evitar a contaminação das matérias-primas para elaboração de sucos que não sofrerão tratamento térmico, pelo inseto vetor (geralmente triatomíneos), popularmente conhecido como barbeiro, e, consequentemente, pelo protozoário causador da doença de Chagas.

Vale ressaltar, porém, que o resultado da investigação epidemiológica do surto em Navegantes não apontou a presença de insetos contaminados nas proximidades do quiosque, mas a contaminação da bebida ocorreu, possivelmente, devido à presença de um gambá fêmea, contaminada por T. cruzi nas proximidades do quiosque; e é sabido que a urina e/ou as fezes de gambás pode(m) conter a forma infectante do protozoário (tripomastigota), resultado do ciclo de vida que o mesmo realiza nas glândulas anais do marsupial.

Passados mais de 10 anos, em 2016, um artigo publicado nos Estados Unidos acendeu um sinal amarelo a respeito da possibilidade de dispersão do T. cruzi para áreas não endêmicas, com consequente dispersão da doença de Chagas. E ainda mais, houve o impacto do fato relatado para a área de alimentos: ovos de insetos triatomíneos, bem como o próprio inseto nos estágios adulto e de ninfa, foram levados para uma região não endêmica do país por meio de caixas de papelão. Foi, inclusive, registrada a presença de um inseto fêmea contaminada por T. cruzi.

Tais relatos, somados, por exemplo, àqueles de ocorrência da doença de Chagas na região Norte do Brasil (associados ao consumo de açaí contaminado, e cuja contaminação ocorrera devido ao processamento do fruto juntamente com o inseto infectado pelo T. cruzi) evidenciam que a prevenção da doença de Chagas de origem alimentar é essencialmente uma questão de Controle de Pragas e Vetores (um requisito básico dentro das Boas Práticas de Fabricação) e que a área de embalagens também merece atenção.

No que tange ao processamento de alimentos e às características do protozoário, sabe-se que em polpa de açaí a inativação térmica de T. cruzi começa a ocorrer com aquecimento a 44°C durante 10 e 20 min. Já a utilização do frio não se mostrou como um processo eficiente para a inativação do protozoário e/ou redução de sua virulência: T. cruzi sobreviveu e manteve sua virulência em polpa de açaí quando armazenada a 4°C por 144 h e -20 °C por 26 h.

Por fim, e em consonância com a RDC 218/2005, as bebidas de frutas que não sofrem processamento térmico, ou equivalente, merecem atenção quando o assunto é doença de Chagas de origem alimentar. O maior surto registrado até o momento aconteceu na Venezuela, em 2007, associado ao consumo de suco de goiaba, e 103 pessoas foram infectadas com o registro de uma evolução a óbito. De lá pra cá, sucos de frutas como maracujá, manga e laranja já foram registrados na literatura como veículos para transmissão oral de T. cruzi.

Referências:

DEANE, M. P., LENZI, H. L. AND JANSEN, A. M., Trypanosoma cruzi: Vertebrate and invertebrate cycles in the same mammal host, the opossum Didelphis marsupialis, Mem. Inst. Oswaldo Cruz, v. 79, n. 4, p. 513-515, 1984.

HERNÁNDEZ L.; RAMÍREZ A.; CUCUNUBÁ Z.; ZAMBRANO P. Brote de Chagas agudo en Lebrija, Santander, 2008. Revista del Observatorio de Salud Pública de Santander, v. 4, p. 28-36. 2009.

LABELLO BARBOSA, R.; DIAS, V. L.; PEREIRA, K. S.; SCHMIDT, F. L.; FRANCO, R. M. B.; GUARALDO, A. M. A.; ALVES, D. P.; PASSOS, L. A. C. Survival In Vitro and Virulence of Trypanosoma cruzi in Açaí Pulp in Experimental Acute Chagas Disease.  Journal of Food Protection, v. 75 n. 3, p. 601-606, 2012.

NOYA, B. A.; DÍAZ-BELLO, Z.; COLMENARES, C.; RUIZ-GUEVARA, R.; MAURIELLO, L.; MUÑOZ-CALDERÓN, A.; NOYA, O. Update on oral Chagas disease outbreaks in Venezuela: epidemiological, clinical and diagnostic approaches. Mem. Inst. Oswaldo Cruz, v. 110 p. 377–386. 2015.

LABELLO BARBOSA, R.; PEREIRA, K. S.; DIAS, V. L.; SCHMIDT, F. L.; ALVES, D. P.; GUARALDO, A. M. A.; PASSOS, L. A. C. Virulence of Trypanosoma cruzi in Açaí (Euterpe oleraceae Martius) Pulp following Mild Heat Treatment. Journal of Food Protection, v. 79 n. 10, p. 601-606, 2016.

DOLHUN E. P.; ANTES, A. W. A Case of Cardboard Boxes Likely Facilitating the Biting of a Patient by Trypanosoma cruzi-Infected Triatomine Bugs. Am J Trop Med Hyg, V. 95, n. 2, p. 1115-1117. 2016

Karen Signori Pereira é bacharel em Ciências Biológicas pela UNESP/Botucatu em 2001. Doutora em Ciência de Alimentos pela FEA/ UNICAMP (2006), onde ingressou em 2002 como aluna de Doutorado Direto com financiamento FAPESP. Desde agosto de 2008 é professora do Departamento de Engenharia Bioquímica – Escola de Química/UFRJ onde exerce atividades profissionais de ensino de graduação, junto ao curso de Engenharia de Alimentos (Coordenadora desde 2014), e Pós-Graduação na área de Microbiologia de Alimentos (básica e aplicada).
Responsável pela coordenação do Laboratório de Microbiologia de Alimentos (MicrAlim). Desenvolve diversos trabalhos de pesquisa e extensão dentro do tema Patógenos Microbianos de Veiculação Alimentar, com foco para Staphylococcus e enterotoxinas estafilocócicas, e controle da qualidade durante o processamento de alimentos (PPRs, BPFs, HACCP). Adicionalmente, vem, desde 2007, trabalhando com pesquisas sobre doença de Chagas e sua transmissão pelo consumo de açaí, bem como controle de qualidade e processamento do fruto.

Imagem: Jornal Folha do Acre

4 min leituraUm surto de grandes proporções no ano de 2005, envolvendo o consumo de caldo de cana de um quiosque à beira da estrada em Navegantes (SC) fez com que grande […]

2 min leitura
13

Referência para swab de mãos

2 min leitura

Ao falar de controle microbiológico logo vem à mente a RDC 12/2001  que, apesar de não citar a frequência de amostragem, apresenta todo suporte para interpretar nossos resultados e até mesmo nos indica qual micro-organismo analisar em determinado alimento. Essa informação é de suma importância para separarmos o aceitável do inaceitável.

Quando o assunto é água, a Portaria 2914/2011 indica os micro-organismos que devem ser avaliados, seus limites e até mesmo sua frequência de amostragem.

Seguindo esses dois padrões de referência, nossa matéria prima e água estarão microbiologicamente seguros. Caso ocorra do nosso produto final estar contaminado é evidente que será por manipulação inadequada, ou seja, falha nas Boas Práticas de Fabricação.

A eficácia das BPF pode ser avaliada por inspeções rotineiras e principalmente por amostras coletadas no chão de fábrica, como swab de superfícies e swab de mãos. Essas análises carecem de referências para limites, deixando margem para interpretações até que seja publicada uma RDC sobre o assunto.

O FSB já abordou o tema aquicolaborando com alguns limites para superfície. Hoje gostaria de abordar novos limites para superfícies e para mãos.

Ao analisar um swab de superfície ou de mãos deve ser levado em consideração que determinados micro-organismos são predominantes na flora humana, sendo esses os mais prováveis de causar a contaminação. Tomando como base os dados de surtos alimentares de Maio 2017 , podemos observar que E.coli e S. aureus fazem parte dos 3 maiores agentes etiológicos do Brasil.

Para desenvolver um limite de contagem para swab, vamos fazer uso da frase de Soares (2013): “Uma mão higienizada possui contagens inferiores a 10² UFC/mão de S.aureus e 10² de E.coli”.

A partir dessa frase conseguimos, por meio de uma referência literária, um limite para os 02 principais micro-organismos em swab de mãos. Ainda fazendo uso desta frase, podemos converter esses limite para swab de superfície se considerarmos que uma mão tem aproximadamente 360 cm². Se 360 cm² podem conter 10² UFC, **100 cm² podem conter X. Para chegar a 360 cm² foram medidas várias mãos, chegando à média de 180 cm² por lado. Considerei os dois lados da mão, pois Soares generaliza mão e não apenas palma da mão. Já o resultado é baseado em 100 cm², pois normalmente os delimitadores de área tem essa medida.

Os limites apresentados até aqui são para mãos e equipamentos APÓS higienização. Você também pode desenvolver limites menos exigentes, porém seguros, para swabs coletados ANTES da higienização, assim será possível realizar a validação de procedimentos e saneantes.

Para facilitar esse desenvolvimento, finalizo meu texto com uma frase de Franco (1996) : “São necessários 100.000 a 1.000.000 de UFC de S.aureus por grama de alimento para que a toxina seja formada em níveis de causar intoxicação”.

2 min leituraAo falar de controle microbiológico logo vem à mente a RDC 12/2001  que, apesar de não citar a frequência de amostragem, apresenta todo suporte para interpretar nossos resultados e até […]

6 min leitura
6

Cinco locais onde a Listeria monocytogenes pode se esconder na indústria de alimentos

6 min leitura

Você sabia que, embora o número de pessoas infectadas por Listeria monocytogenes de origem alimentar seja relativamente baixo, esta bactéria é uma das principais causas de morte por doença transmitida por alimentos? Além de sintomas como náuseas, vômitos, dores, febre e diarreia, ela também pode se espalhar pela corrente sanguínea e ir para o sistema nervoso, resultando em meningite que pode ser fatal. Os casos de Listeria monocytogenes não estão ligados a um tipo específico de alimento. Elas podem ser encontradas em produtos tão diversos quanto leite cru ou não pasteurizado; pescado defumado e outros frutos do mar; carnes, queijos (especialmente queijos frescos) e vegetais crus.

Se acontecer a contaminação por Listeria monocytogenes em sua fábrica, será muito difícil livrar-se dela. Os motivos são que o patógeno tolera alto teor de sal e baixas temperaturas, podendo continuar crescendo a temperaturas baixas como -5°C e pode sobreviver a temperaturas tão baixas como -25°C. Assim, manter o seu produto congelado a temperaturas muito baixas por um tempo não funciona como etapa letal para Listeria monocytogenes. Devemos notar aqui que, embora alguns fabricantes estejam usando o congelamento como medida de controle, deve-se ter muitas ressalvas com essa prática.

Como é difícil erradicar a Listeria monocytogenes de alimentos, devemos nos concentrar na prevenção da fonte de contaminação. Este artigo destaca as cinco áreas mais comuns para encontrar a L. monocytogenes em fábricas de alimentos. Embora nos concentremos em fábricas de alimentos, todas as áreas podem ser facilmente traduzidas para outras áreas, como câmaras frias, centros de distribuição, supermercados e restaurantes.

Pisos

Listeria monocytogenes está presente ao nosso redor, principalmente na poeira do piso. Isso faz com que sua proliferação seja na maioria das vezes feita por meio dos calçados. Garantir que estes estejam limpos nas áreas suscetíveis da fábrica é um pré-requisito. Em todos os locais onde os alimentos abertos são manipulados, você deve garantir que os calçados estejam limpos. Isso é melhor feito ao mudar as botas em uma barreira sanitária ou vestiário. Desta forma, você pode realmente exigir o uso de calçados limpos para uso interno apenas no ambiente de alto cuidado. O uso de bota descartável de plástico é menos aconselhável, pois pode abrigar sujidade na parte de cima do plástico. Ou pior ainda: as botas de plástico podem se romper durante o uso e, portanto, você expõe sua alta área de higiene ao risco de Listeria monocytogenes.

Além da gestão dos calçados, é igualmente importante manter os pisos da fábrica secos o tempo todo. Listeria monocytogenes, como a maioria das bactérias, precisa de água para crescer e manter sua presença. Você deve realmente investir na gestão da água em sua fábrica, envolvendo os seguintes fatores:

  • Drenando toda a água das linhas de produção em tubulação fechada para o ralo. Por favor, não insira a tubulação diretamente no ralo, pois isso pode gerar bactérias que crescem do seu ralo para dentro dos dutos. Certifique-se também de que você limpa adequadamente (de preferência CIP) a tubulação regularmente.
  • Certifique-se de que os pisos têm inclinação para baixo em direção a um ralo, colocando-o no ponto mais baixo do seu piso. Esta é a única maneira de evitar poças de água parada, que são um risco para L. monocytogenes e muitos outros problemas (por exemplo, moscas).
  • No caso de um derramamento de produto no chão, não use quantidades excessivas de água para levar o conteúdo para o ralo. É muito melhor limpar produto usando uma escova e uma pá e usar a água (e, se necessário, agentes de limpeza e desinfecção) apenas para remover os últimos restos do produto do chão.

Ralos 

Um dos locais em que você certamente encontrará Listeria monocytogenes se ela estiver presente em sua fábrica serão os ralos. O principal motivo para isso é que os ralos atuam como um concentrador da biodiversidade que você tem em sua fábrica. Isso é causado pelo fato de que a maior parte do tempo, toda a água suja, incluindo uma grande quantidade de água de limpeza, é removida pelos ralos. Acrescente a isso o fato de que, em algumas fábricas de alimentos, os ralos não tem um desenho sanitário adequado, e você passa a ter a situação perfeita para que as bactérias entrem e cresçam. Todos os problemas acima são o motivo pelo qual você deve garantir a instalação de ralos adequados e higienicamente projetados nas posições corretas (o ponto mais baixo e todos os pisos circundantes inclinados em direção ao ralo). Onde procurar drenagens higienicamente projetadas? O melhor lugar para começar é a busca de drenos certificados pelo EHEDG.

ralos_sanitarios_listeria

Além de usar um ralo sanitariamente projetado, também é importante mantê-lo limpo e sanitizado em todos os momentos. Caso contrário, você acabou de criar um lugar elegante e caro para as bactérias se assentarem. Por esta razão, é igualmente importante inserir um comprimido de cloro no seu ralo após cada ciclo de limpeza. Desta forma, você manterá a água sifonada do ralo (o que manterá os maus odores fora de sua fábrica) limpa e sanitizada. E toda vez que houver um grande volume de água no ralo que exceder o volume de limpeza normal, você deve verificar se o comprimido de cloro ainda está presente.

Equipamentos

Juntamente com pisos e ralos, você também quer impedir que a L. monocytogenes encontre lugares para se instalar e crescer em seu equipamento de processamento. Normalmente, todos os locais que você pode limpar e desinfetar corretamente através do seu sistema CIP serão seguros. A razão para isso é que o seu CIP só pode funcionar corretamente se todas as superfícies forem lisas e projetadas para facilitar a limpeza (o que significa que não há fendas e apenas superfícies lisas e sempre com mais de 90 graus). Os pontos em seu equipamento onde Listeria monocytogenes pode começar a se acumular sem ser notada com facilidade são tipicamente os lugares que precisam de limpeza manual, têm fendas e muitas vezes têm água parada (ou mostram as marcas de água parada como depósitos de calcita).

Quanto mais perto do produto aberto você tiver focos de água parada no equipamento, maior o risco potencial de introduzir L. monocytogenes no fluxo do seu produto. Aqui há uma regra de ouro: mantenha a água longe do seu produto em todos os momentos. Se você tiver pontos de água parada em seu equipamento a menos de 2 metros do seu produto aberto, você deve reprojetá-lo, mudando o desenho do equipamento e ou removendo a fonte de água nesse local.

equipamento_listeria

Além do projeto do equipamento, você deve ser prudente com o uso de água de qualquer maneira. Você NUNCA deve usar água de alta pressão em seus sistemas de pulverização manual. A água de alta pressão dará origem a formação de aerossóis (pequenas gotas de água flutuando no ar). Esses aerossóis são o mecanismo de transporte perfeito para bactérias e podem ser o caminho perfeito para Listeria monocytogenes proliferar em sua fábrica.

Sistemas de refrigeração

Outra área bem conhecida onde a Listeria monocytogenes pode se esconder é o seu sistema refrigeração ou cooler. Todos os sistemas de refrigeração possuem placas de evaporação internas (que são os meios através dos quais o frio é espalhado para a sala). Estas placas de evaporação são regularmente e automaticamente descongeladas para evitar a acúmulo excessivo de gelo nas placas. Por trás (às vezes na frente) das placas de evaporação, você encontrará um ventilador que irá forçar o ar e, portanto, esfriar a área circundante. 

sistemas_de_refrigeracao

Na prevenção da Listeria monocytogenes é primordial manter as placas de evaporação limpas e higienizadas em todos os momentos. Como sabemos, esta bactéria pode sobreviver a temperaturas muito baixas e até mesmo crescer em temperaturas como -5°C. Por esta razão, você deve garantir a limpeza regular e a higienização das placas de evaporação e ventoinhas de todos os seus sistemas de congelamento e refrigeração.

Empresas produtoras de agentes de limpeza desenvolveram líquidos de limpeza especializados e espumas para diferentes tipos de aplicações. Entre em contato com seu fornecedor de produto de limpeza e peça produtos especializados para a limpeza de seus sistemas de refrigeração e de congelamento.

Sistema de tratamento de ar

Assim como seu congelador e sistemas de resfriamento, o sistema de tratamento de ar em sua fábrica pode usar placas de evaporação para ajustar a temperatura do ar. Então, todos os cuidados que você adota para o congelador e sistemas de refrigeração, você também precisa adotar para o seu sistema de tratamento de ar.

Dutos_ar_listeria

No entanto, para sistemas de tratamento de ar, há um outro aspecto que deve ser levado em consideração: a probabilidade de acúmulo de água (por condensação) dentro dos dutos de transporte de ar e as aberturas de ar que entram em sua fábrica. É aconselhável executar uma inspeção por boroscópio logo após uma limpeza manual da sua fábrica (quando há muito excesso de água no ar) para ver se há acúmulo de água em seu sistema de tratamento de ar.

Além da Listeria monocytogenes, os sistemas de tratamento de ar também são um veículo bem conhecido para a Salmonella entrar em sua fábrica.

Este texto e suas imagens são a tradução adaptada do artigo original The 5 Most Common Places Where to Look for Listeria Monocytogenes de autoria de Kitty Appels & Rob Kooijmans, tendo sido devidamente autorizada a reprodução no blog Food Safety Brazil.

6 min leituraVocê sabia que, embora o número de pessoas infectadas por Listeria monocytogenes de origem alimentar seja relativamente baixo, esta bactéria é uma das principais causas de morte por doença transmitida […]

3 min leitura
2

Elaborando um plano de monitoramento ambiental

3 min leitura

No VI Encontro sbCTA, Sylnei Santos, da 3M, iniciou destacando que o monitoramento ambiental eficiente depende do plano de higienização. Assim, deve-se validar as matrizes por produtos e processos e as fontes de contaminações diversas, sendo que locais inóspitos não podem ser banalizados. Este requisito é aplicável para atender normas reconhecidas de Qualidade, de BPF e de SGSA. O resultado depende de um conjunto de fatores como energia química, energia mecânica, energia térmica e tempo, que reduzem a taxa de contaminação no processo a traços de resíduos de alimentos, impurezas de água, resíduos de detergentes e sanitizantes. Durante a palestra, ele foi esclarecendo algumas dúvidas comuns de leitores e dos participantes do evento, conforme detalhamos a seguir:

O que se monitora? A cadeia produtiva completa, envolvendo equipamentos, linhas de produção, utensílios, superfícies de difícil alcance, instrumentos, embalagens e produtos terminados, operadores e manipuladores (desvios de comportamento podem comprometer o processo), uniformes, água, e também acessórios como mangueiras no piso, por exemplo. Os microrganismos agregam-se às superfícies de contato com nichos de crescimento. Fontes de contaminação podem vir de pessoas, ar, água e outros fatores ambientais. Biofilmes de Pseudomonas aeruginosas podem surgir na água da saboneteira. 

Quais parâmetros analisar por ambientes já que não há legislação? Enxergar as vulnerabilidades dos processos para o fator contaminação, por exemplo: processos secos e úmidos mudam as microbiotas. Oriente-se também por leis de produtos acabados e/ou semi-acabados e outros indicadores pertinentes: mesófilos aeróbios viáveis (quantidade relativa sem identificar a origem), por isso a importância da interdisciplinaridade ao decidir um parâmetro. Seguindo a ordem de monitoramento, se há Enterobacteriaceae (Salmonella e Shigella), Coliformes/E.coli, Bolores e leveduras e Staphylococcus. Não há necessidade de realizar todas as análises, mas avaliar os riscos para o alimento. Por exemplo, devido à manipulação excessiva, deve-se monitorar S. aureus. Os resultados seguem recomendações internacionais da APHA com 2 UFC/cm2, OPAS 500 e OMS 500 UFC/cm2, sendo a Salmonella spp e Listeria spp os patógenos mais relevantes.  

No mapeamento, como estabelecer os pontos de coletas? Analise ralos, paredes, áreas de descartes… mas será que a contaminação vem dessas áreas? Importante monitorar as superfícies de contato direto com os produtos acabados. Conheça todo o processo para ser assertivo e defina quais são os pontos estratégicos. Escolha os mais vulneráveis e quais microrganismos presentes naquela superfície. 

Quantas amostras deve-se coletar? Não há padrão, o mais importante é monitorar todo o processo, por exemplo, com um cronograma efetivo em 10 pontos distribuídos nos dias de rotina, em condições de operação de processos e não preparados. Ex.: para cárneos e lácteos, quanto mais análises fizermos, maior a chance de encontrarmos o problema.

O que fazer com os resultados? Melhorar os programas de sanitização e resolver os problemas com a empresa fornecedora de produtos químicos.

Formas de coletar? Esponjas de celulose ou poliuretano livre de biocidas, sendo útil para superfícies planas e amplas; água de enxague pós higienização, placas de contato de instrumentos e mãos de manipuladores.

Quanto tempo esperar para ser analisado o swab? Em menos de 24 h para ter resultado fidedigno quando for quantificar. Para a água limpa, armazenar para laboratório no máximo em 24 h, já para uma de efluentes são 12 h, no máximo.

Como validar e estabelecer os valores para monitoramento do ambiente por ATP? A limpeza é validada por análises microbiológicas após PPHO robusto, daí aplicar o ATP e estabelecer histórico com resultados estatísticos para aceitar ou rejeitar. Atentar para O-Rings (anéis de vedação) fossilizados prejudicando a fermentação de cerveja, por exemplo. 

Conclusões: é importante estabelecer um programa com avaliações periódicas, frequência de verificação, análises microbiológicas, limites de monitoramento. Para refrigerados, é necessário monitorar Listeria. Salmonella deve ser pesquisada em pasta de amendoim, na evisceração de animais, em salsichas. 

Imagem: Biomérieux  

3 min leituraNo VI Encontro sbCTA, Sylnei Santos, da 3M, iniciou destacando que o monitoramento ambiental eficiente depende do plano de higienização. Assim, deve-se validar as matrizes por produtos e processos e […]

4 min leitura
5

Em quais casos tenho abate sanitário num abatedouro-frigorífico de frangos?

4 min leitura

No post “A contribuição da inspeção ante-mortem de frangos para a segurança de alimentos” prometi que explicaria a questão do abate sanitário de lotes de frangos em caso de jejum não respeitado. Contudo, aproveito o espaço para dizer como é o abate sanitário e em quais outros casos posso tê-lo numa planta abatedora de frangos.

Vamos considerar os seguintes lotes para abate sanitário:

  • Período de jejum mínimo não respeitado
  • Aves com papo cheio
  • Suabe de arrasto com laudo positivo para Salmonella spp.
  • Período de carência de medicamentos não respeitado

As experiências compartilhadas estão pautadas na minha vivência e podem mudar de empresa para empresa, pois dependem dos planos de autocontrole aprovados pela autoridade sanitária competente.

Primeiramente, como é o abate sanitário?

Ele pode estar contemplado no Plano APPCC (Análise de Perigos e Pontos Críticos de Controle), PSO (Procedimento Sanitário Operacional) ou PPHO (Procedimento Padrão de Higiene Operacional) da empresa e seu objetivo principal é evitar a contaminação cruzada no processo. Resumidamente, ele pode ocorrer da seguinte maneira (podendo variar de acordo com cada plano aprovado nas empresas):

  1. O lote suspeito é abatido no final do turno de abate do dia;
  2. Após o final do abate do último turno, aguarda-se um determinado tempo para que as carcaças do lote anterior saiam totalmente do pré-chiller;
  3. As aves podem entrar no abate em velocidade de linha reduzida, em caso de papo cheio ou jejum mínimo não respeitado, para minimizar a contaminação cruzada e melhorar a qualidade do serviço da inspeção post-mortem e do PCC 1B (contaminação fecal e biliar);
  4. Quando este lote entrar no pré-chiller e chiller, não deve haver nenhuma outra carcaça do lote anterior;
  5. Após saída do chiller e destinação para cortes, os produtos podem ser sequestrados para análise laboratorial para casos de período de carência de medicamento não respeitado ou desabilitação do lote para certos mercados, como o europeu, em casos de suabe de arrasto positivo para Salmonella spp;
  6. Após o término do abate sanitário a planta é submetida ao rigoroso processo de PPHO (higiene operacional) conforme descrito no plano da empresa.
  1. Período de jejum mínimo não respeitado

O colaborador do serviço de inspeção oficial, ao executar a inspeção ante-mortem, se atenta para essa informação mediante os documentos: FAL (Ficha de Acompanhamento do Lote) e Boletim Sanitário. Se no momento do abate o jejum for inferior ao mínimo exigido, o lote será considerado como risco de contaminação microbiológica por Salmonella sp.. Este risco se dá pelo fato de as vísceras das aves estarem repletas de conteúdo fecal e aumentar as chances de disseminação da bactéria nos produtos e na planta. Portanto, o lote é submetido ao abate sanitário.

abate sanitario 1

Figura: Boletim Sanitário contendo informação da data e hora da retirada da alimentação.  Fonte: arquivo pessoal

Claro que a empresa pode optar por abater este lote mais adiante, colocando outros (com período de jejum conforme) à frente. O problema é quando não há mais nenhum lote para ser abatido e consequentemente só resta este para abater. Por outro lado, se o tempo de espera for muito longo (mais que 12 horas) para atender o período mínimo de jejum, haverá falha de Bem Estar Animal.

  1. Aves com papo cheio

O colaborador do serviço de inspeção oficial pode detectar, durante o exame visual e palpatório das aves, a presença de muitas aves com PAPO CHEIO.

abate sanitario ii

Figura: Palpação do papo durante a inspeção Post-mortem. Fonte: arquivo pessoal

Por que se preocupar com o papo cheio?

O tempo de jejum dos frangos não deve ser maior que dez horas, tempo este que inclui o transporte e a espera na plataforma do abatedouro. Um período maior que este faz com que a ave fique estressada e elimine uma quantidade maior de Salmonella spp, aumentando a contaminação cruzada entre aves. O consumo de cama, que permite o papo cheio, também pode ser intensificado pela ave enquanto no aviário pela procura de alimento, o que aumenta a ingestão da bactéria. O jejum muito prolongado torna a parede intestinal mais frágil, o que leva a um maior número de rompimentos durante o processo de abate.

abate sanitario 2

Fonte: arquivo pessoal

Portanto, nesses casos de detecção de lote com papo cheio, o mesmo deverá ser submetido ao abate sanitário, devendo ser encarado como um risco sanitário semelhante à contaminação fecal.

  1. Suabe de arrasto com laudo positivo para Salmonella spp

De acordo com a IN 20/2016 do MAPA, todos os lotes que chegarem ao abatedouro devem ter sidos submetidos previamente à pesquisa de Salmonella spp por suabe de arrasto das granjas. O verso do Boletim Sanitário traz as informações dessa análise e uma vez positivos, são submetidos ao abate sanitário e a produção é desviada para mercados que não restringem a presença do patógeno. Vale lembrar que, pela IN 20/2016, estes lotes positivos são obrigatoriamente tipificados para S. Typhimurium, S. Enteritidis, S. Gallinarum, S. Pullorum, ou seja, todas aquelas contempladas no PNSA (Programa Nacional de Sanidade Avícola).

  1. Período de carência de medicamentos não respeitado

Constando na Ficha de Acompanhamento do Lote (FAL) ou Boletim Sanitário o uso de algum medicamento para o qual não tenha sido respeitado o período de carência, o lote é submetido ao abate sanitário. Toda produção é sequestrada e amostras são enviadas para análise da droga. Com a chegada do resultado laboratorial é possível dar o devido destino ao produto. Se estiver abaixo do LMR (Limite Máximo de Resíduo) permitido para aquela droga (baseado no Codex Alimentarius) a venda está autorizada. Evidente que há mercados que podem restringir a venda como o Japão que proíbe o uso de Nicarbazina, então o destino deve passar pelo crivo do Controle de Qualidade. Caso esteja acima do LMR, não é permitido enviar para graxaria, sendo o destino correto o aterro sanitário.

E você, já presenciou algum caso de abate sanitário em aves? Conte-nos sua experiência ou se tiver dúvidas, envie-nos sua questão.

4 min leituraNo post “A contribuição da inspeção ante-mortem de frangos para a segurança de alimentos” prometi que explicaria a questão do abate sanitário de lotes de frangos em caso de jejum […]

4 min leitura
0

Dicas para realizar a Análise de Perigos Biológicos

4 min leitura

Inúmeras dúvidas surgem na hora de realizar uma análise de perigos consistente e de definir medidas de controle adequadas com o fim de produzir alimentos seguros para a saúde do consumidor. Essas dúvidas aumentam quando avaliamos os perigos biológicos, pois dentre os tipos de contaminantes considerados no HACCP, somente os micro-organismos possuem a capacidade de multiplicar-se durante o processo produtivo e estocagem, alcançando ou superando os níveis aceitáveis definidos internamente ou exigidos pela legislação. Assim, uma contaminação microbiológica insignificante e menosprezível em uma fase do processo pode se tornar crítica na etapa posterior, quando são dadas condições apropriadas para a multiplicação celular ou para a produção de toxinas.

No presente post daremos algumas dicas práticas para realizar a Análise de Perigos, sendo esta análise integrada pela Identificação de Perigos, mais a Avaliação dos Perigos e mais a Seleção e Avaliação das Medidas de Controle.

Para começar, vamos listar os quatro passos básicos para realizar a Identificação e Avaliação dos Perigos. Estas etapas são aplicáveis tanto para perigos biológicos quanto para perigos físicos, químicos ou alergênicos. Os passos são os seguintes:

  1. Identificação do perigo (ou contaminantes que podem prejudicar a saúde do consumidor)
  2. Caracterização do perigo (ou severidade dos efeitos adversos à saúde que o perigo pode causar)
  3. Avaliação da exposição (ou probabilidade da ocorrência do perigo)
  4. Estimativa do risco (ou probabilidade de dano à saúde do consumidor)

Com base nesses quatro passos chaves, exemplificaremos a sequência com um cenário da vida cotidiana, no qual realizamos avaliações de perigos de maneira automática e inconsciente. Imagine que alguém está prestes a atravessar uma avenida movimentada.

O primeiro passo é Identificar os Perigos a que ficará exposto o pedestre durante a caminhada até chegar à outra calçada. Neste caso a ameaça poderia ser uma bicicleta, um carro, um ônibus ou qualquer outro veículo que transite por essa via.

Uma vez que os possíveis perigos foram identificados, é necessário caracterizá-los para cumprir com o passo 2. E aqui devemos nos perguntar: qual será o efeito sobre a saúde do pedestre se a bicicleta, o carro ou o caminhão bater nele no momento em que está atravessando a avenida? Qual será a severidade do impacto? Uma perna roxa, algumas costelas quebradas e vários dias de internação ou a morte? Há pessoas mais sensíveis do que outras a esses perigos? Qual será o efeito na saúde do pedestre se ele for uma criança, um idoso ou uma mulher grávida? Com essas respostas, podemos definir o nível de severidade, caracterizando assim cada um dos perigos.

O terceiro passo é avaliar a Exposição ao Perigo. Para isso, em nosso exemplo temos de conhecer a quantidade de veículos transitando na avenida e a frequência na qual a pessoa ficará exposta a eles; portanto, quanto maior a quantidade de veículos, maior será a probabilidade de sofrer uma batida.

Com a informação anterior, podemos explicar o quarto e último passo da avaliação, ou seja, a Estimativa do Risco. Aqui a Caracterização do Perigo (severidade) e a Avaliação da Exposição (frequência) são avaliados de forma integrada. No nosso exemplo, estaríamos estimando o risco como a chance que tem o pedestre de sofrer uma contusão enquanto atravessa a avenida sob as condições avaliadas.

Aqui concluímos a Identificação e Avaliação dos Perigos obtendo como resultado a Estimativa do Risco e dessa forma sabemos quais contaminantes em nosso processo são relevantes para a saúde do consumidor. Feito isto, temos que definir as medidas de controle para cada um dos perigos e nesse ponto as dúvidas surgem novamente: como posso controlar ou eliminar o perigo? Qual é a melhor etapa para fazer esse controle? Como as características do produto influenciam a eficácia da medida de controle?

Para os contaminantes físicos e químicos mais comuns, existem medidas de controle bem conhecidas e relativamente simples de implementar sem prejudicar a aparência, sabor ou qualidade nutricional do alimento, mas para perigos biológicos esse assunto pode ser muito complexo, pois as medidas de controle mais comumente utilizadas envolvem alterações físicas, químicas ou organolépticas do produto.

Por outro lado, as características intrínsecas do alimento, como pH, Aw ou composição podem favorecer a sobrevivência e multiplicação microbiana e ser uma proteção durante a inativação térmica. E, além disso, cada grupo de micro-organismos tem um comportamento particular frente aos tratamentos a que podem ser submetidos, sejam eles alta temperatura, desidratação ou acidificação; assim, por exemplo, a maioria das bactérias nocivas são inativadas a 60°C por 30 minutos, mas existem outras resistentes ao calor e, portanto, são necessárias temperaturas mais altas para eliminá-las.

Considerando tudo isso, a chave para definir as medidas de controle para contaminantes microbiológicos pode ser a utilização de modelos preditivos com a posterior validação com testes de laboratório. A comunidade científica fornece modelos preditivos e informações úteis no banco de dados chamado ComBase* que permite pesquisar milhares de curvas de crescimento microbiano, inativação térmica ou sobrevivência. Portanto, utilizando modelos preditivos podemos otimizar o processo produtivo, visando conservar as características do produto e mantendo-o seguro. Por exemplo: conhecendo o pH, a Aw do alimento, a temperatura do tratamento térmico a que será submetido e o micro-organismo patogênico que queremos controlar, podemos prever a curva de inativação ou morte celular. O dado de inativação térmica pode ser útil para definir o tempo de pasteurização do processo para um contaminante em particular.

Para finalizar, não podemos esquecer que estas são ferramentas baseadas em modelos matemáticos e que precisam ser validadas na prática por outras metodologias, como por exemplo, cultivos microbianos ou outra análise de laboratório para assegurar que a medida de controle é eficaz para o fim proposto.

Imagem: http://3.bp.blogspot.com/_UNkUaQGv8ys/TL8vSq_I2oI/AAAAAAAAASE/pRkH3V2pDtk/s1600/contamina%C3%A7%C3%A3o+1.jpg

ComBase* – É necessário criar uma conta para acessar os dados. A criação da conta é gratuita.

Patricia Carolina Moyano é microbióloga e técnica de laboratório pela UNRC (Arg), com MBA em Gestão de Negócios pela UFJF e Especialização em Segurança de Alimentos pela SGS Academy. É Auditora Líder FSSC 22000, com experiência na gestão da qualidade, laboratórios e segurança dos alimentos em empresas multinacionais como Arcor group, Ambev/InBev e Latapack-Ball.

4 min leituraInúmeras dúvidas surgem na hora de realizar uma análise de perigos consistente e de definir medidas de controle adequadas com o fim de produzir alimentos seguros para a saúde do […]

4 min leitura
6

Surtos Alimentares no Brasil – Dados atualizados em maio de 2017

4 min leitura

As doenças transmitidas por alimentos, mais comumente conhecidas como DTA, são causadas pela ingestão de água ou alimentos contaminados. Existem mais de 250 tipos de DTA e a maioria são infecções causadas por bactérias, vírus e parasitas.

Vale a pena relembrar que surto alimentar por DTA é definido como um incidente em que duas ou mais pessoas apresentam uma enfermidade semelhante após a ingestão de um mesmo alimento ou água, e as análises epidemiológicas apontam a mesma origem da enfermidade. Esta síndrome geralmente é constituída de anorexia, náuseas, vômitos e ou diarreia, acompanhada ou não de febre. Os sintomas digestivos não são as únicas manifestações, podendo ocorrer afecções extraintestinais em diferentes órgãos, como rins, fígado, sistema nervoso central, dentre outros.

A probabilidade de um surto ser reconhecido e notificado pelas autoridades de saúde depende, entre outros fatores, da comunicação dos consumidores, do relato dos médicos e das atividades de vigilância sanitária das secretarias municipais e estaduais de saúde. 

A ocorrência de Doenças Transmitidas por Alimentos vem aumentando de modo significativo em nível mundial. Vários são os fatores que contribuem para a emergência dessas doenças, entre os quais destacam-se o crescente aumento das populações, a existência de grupos populacionais vulneráveis ou mais expostos, o processo de urbanização desordenado e a necessidade de produção de alimentos em grande escala. Contribui, ainda, o deficiente controle dos órgãos públicos e privados no tocante à qualidade dos alimentos ofertados às populações e acrescentam-se a maior exposição das populações a alimentos destinados ao pronto consumo coletivo – fast foods, o consumo de alimentos em vias públicas, o aumento no uso de aditivos e as mudanças de hábitos alimentares, sem deixar de considerar mudanças ambientais, globalização e as facilidades atuais de deslocamento da população, inclusive em nível internacional. 

A multiplicidade de agentes causais e as suas associações a alguns dos fatores citados resultam em um número significativo de possibilidades para a ocorrência das DTA, que podem se apresentar de forma crônica ou aguda, com características de surto ou de casos isolados, com distribuição localizada ou disseminada e com formas clínicas diversas.

Vários países da América Latina estão implantando sistemas nacionais de vigilância epidemiológica das DTA, em face dos limitados estudos que se tem dos agentes etiológicos, da forma como esses contaminam os alimentos e as quantidades necessárias a serem ingeridas na alimentação para que possa se tornar um risco.

Seguem abaixo as informações sobre surtos de DTA no Brasil, de acordo com os dados atualizados da Vigilância Epidemiológica até maio de 2017.

Em 2016 foram identificados apenas 543 surtos epidemiológicos, o que representa redução de 19,3% em relação a 2015 (673 surtos). Já em 2017, os resultados representam os valores somente até Maio (133 surtos e 2014 doentes).

surtos 1

De 2007 a 2017, das 99.826 mil pessoas expostas, a faixa etária com maior número de exposição é a de 20 a 49 anos e representa 55,22% dos doentes, totalizando 55.131 pessoas. O sexo masculino é 15% maior do que o feminino nesta faixa etária.

surtos 2

surtos 3

A região Sudeste lidera o histórico com mais notificações de casos de DTA até maio de 2017, e na sequência vem a região Nordeste.

surtos 4

Os sinais e sintomas mais evidentes são: diarreia (30%), dor abdominal (19%), vômito (17%) e náuseas (16%).

surtos 5

Os sintomas e sinais estão coerentes com os principais agentes etiológicos associados aos surtos, representando 90,5% dos casos que são as bactérias E. coli, Salmonella e S. aureus, respectivamente.

surtos 6

Um dado que chama atenção: de 2007 a 2017, em 66,4% dos registros foi ignorado ou inconclusivo o alimento incriminado no surto. Os alimentos mistos continuam à frente como os mais envolvidos nos surtos com 8,6%, seguidos por água (6,2%), ovos e produtos à base de ovos (3,7%). A dificuldade de se identificar o agente causador é um fato que se repete historicamente.

surtos 7

Fonte: http://portalarquivos.saude.gov.br/images/pdf/2017/maio/29/Apresentacao-Surtos-DTA-2017.pdf

4 min leituraAs doenças transmitidas por alimentos, mais comumente conhecidas como DTA, são causadas pela ingestão de água ou alimentos contaminados. Existem mais de 250 tipos de DTA e a maioria são […]

3 min leitura
0

Avaliação de Riscos Microbiológicos – Palestra do IV Simpósio 3M Food Safety

3 min leitura

O IV Simpósio 3M Food Safety foi realizado dia 15/05/17, com o tema Análise de Riscos na Indústria de Alimentos – Impactos e Tendências. O evento contou com palestra da Dra. Bernardete de Melo Franco, professora titular da Faculdade de Ciências Farmacêuticas da USP, sob o título Avaliação de Riscos Microbiológicos. Para nossos leitores que não puderam participar do evento, preparamos um resumo desta palestra.

Profª Bernadette iniciou esclarecendo a confusão entre o significado de “segurança alimentar” e “segurança de alimentos”. Aproveito para convidar o leitor a ver este post da nossa colunista Anellize Lima sobre o tema. Depois, falou sobre as Doenças Transmitidas por Alimentos (DTA). Mesmo com o progresso da ciência e o conhecimento disponível atualmente sobre os métodos para combatê-las, elas continuam persistindo ou aumentando. Isto pode ser justificado porque houve mudanças em muitos aspectos, como características demográficas (ex: envelhecimento da população), hábitos de consumo, formas de processamento dos alimentos e do preparo pelo consumidor, e também pela fisiologia dos microrganismos. Além disso, há uma maior percepção relacionada às DTA (modernização das técnicas analíticas para detecção de contaminação microbiológica, aprimoramento na sistemática de notificação e investigação de surtos, avanços na legislação e estudos epidemiológicos mais eficientes) e também vem ocorrendo uma evolução no desenvolvimento das ferramentas de segurança de alimentos, que passaram do foco no controle de qualidade do produto, para o APPCC e controle de processo, e depois para os sistemas de gestão e avaliação dos riscos em toda a cadeia produtiva de alimentos – do campo à mesa.

A seguir, a palestrante mencionou a definição do Codex Alimentarius para Análise de Risco, que engloba 3 passos:

palestra riscos microbiologicos

Cada etapa para a análise de risco do ponto de vista microbiológico foi detalhada:

  • Avaliação do risco: Tem caráter científico (levantamento de dados com o governo, indústria, imprensa, cientistas, consumidores, literatura, etc.). É iniciada pela identificação do perigo biológico e da DTA, caracterização do perigo (gravidade para a saúde do consumidor, dose infectante), avaliação da exposição (nível do perigo no alimento no momento do consumo, por modelagem preditiva) e realização da estimativa de risco (perfil de risco). Duas ferramentas para estimativa do risco foram sugeridas: @Risk e ComBase.
  • Gestão de risco: Tem caráter prático. A partir da avaliação do risco e da estimativa (perfil) do risco, faz-se a interpretação destes resultados e determinam-se os objetivos da gestão de risco (propósitos, benefícios, viabilidade). As opções possíveis para a gestão do risco e as ações a serem tomadas são identificadas, selecionadas e implementadas e, por fim, é realizado um acompanhamento e uma análise da eficácia das ações adotadas, para verificar se os objetivos estão sendo atendidos. Há desafios para a gestão dos riscos, pois a avaliação e a estimativa do risco são baseadas em estatística, probabilidade e variabilidade, que não são critérios binários (mas a lei é binária: ou o produto é seguro ou não é, assim como a decisão do gestor: faz ou não faz). Além disso, o rigor do sistema de controle de um critério depende da possibilidade de verificá-lo. Em relação à microbiologia, o critério é sempre composto por 3 elementos: o perigo (microrganismo em questão), o nível permitido no alimento e o método analítico.
  • Comunicação do risco: Tem caráter interativo, com abordagem sistêmica em toda a cadeia produtiva de alimentos, desde o campo até o consumidor. Em cada etapa da cadeia, os riscos podem aumentar, diminuir ou permanecer os mesmos. Mas o ponto mais importante é sempre o consumidor. Para cada etapa na cadeia, existe um objetivo de desempenho (PO = performance objective). Por exemplo, numa usina beneficiadora de leite, o PO seria o desempenho da medida de controle de um perigo biológico: aquecer o leite a uma faixa de temperatura por um determinado tempo, no tratamento térmico UHT. Já os países estabelecem metas de saúde ou objetivos de segurança de alimentos para o consumidor (chamado de FSO = food safety objectives). O FSO está relacionado com a quantidade do microrganismo no produto no momento do consumo, ou seja, o nível máximo aceitável do perigo no alimento no momento em que for consumido. As etapas da cadeia devem ajustar os PO para atender ao FSO, para que no fim, a somatória do nível de contaminação inicial do alimento na produção primária, menos as reduções do nível de contaminação durante os processos de fabricação e mais as recontaminações possíveis (ex. no transporte, no mercado ou na casa do consumidor) seja menor do que o FSO.

Em resumo, o processo de análise de risco microbiológico requer estudo e existe sempre o elemento de incerteza, mas é uma excelente ferramenta para tomada de decisão por parte dos gestores e está totalmente alinhado aos conceitos de sistema de gestão da segurança de alimentos.

3 min leituraO IV Simpósio 3M Food Safety foi realizado dia 15/05/17, com o tema Análise de Riscos na Indústria de Alimentos – Impactos e Tendências. O evento contou com palestra da Dra. Bernardete […]

2 min leitura
1

Controle de potabilidade da água no glaciamento de pescados

2 min leitura

Se você é adepto de uma alimentação saudável, muito provavelmente peixes e frutos do mar estão no seu cardápio.

A indústria alimentícia utiliza meios para levar à mesa do consumidor uma infinidade de produtos para tornar a vida mais prática, buscando cada vez mais agregar o conceito de saudabilidade aos seus produtos. 

Falaremos hoje do processo tecnológico denominado glaciamento, utilizado como meio usual de conservação para pescados. 

O glaciamento é utilizado para evitar o ressecamento, a oxidação, rancificação e a consequente alteração na aparência dos pescados congelados. Essa operação é caracterizada pela aplicação de água, adicionada ou não de aditivos, sobre a superfície dos produtos congelados, formando uma fina camada de gelo, a qual protege o produto da ação do oxigênio e evaporação da umidade. 

O glaciamento pode ser realizado por imersão, quando o produto é colocado em um tanque com água a temperatura de zero grau por alguns segundos, ou por aspersão, quando o produto recebe pulverização de água através de equipamentos específicos. O Ofício Circular GA/DIPOA n°26/2010 do MAPA estabelece o limite máximo de glaciamento para pescado congelado em 20%.

Para obtenção de produtos glaciados seguros é necessário o monitoramento de vários aspectos, dentre eles a potabilidade da água.

A Portaria n.º 368, de 4 de setembro de 1997 do Ministério da Agricultura, aprova o Regulamento Técnico sobre as Condições Higiênico-Sanitárias e de Boas Práticas de Fabricação (BPF) em estabelecimentos elaboradores/industrializadores. No regulamento são apontadas referências para a qualidade da água, sendo esta abundante e obrigatoriamente potável.

Já para os estabelecimentos que funcionam sob regime de Inspeção Federal, o Ministério da Agricultura instituiu o Programa Genérico de Procedimentos Padrão de Higiene Operacional (PPHO), no qual a segurança da água é assegurada com o monitoramento rotineiro de ações que visam reduzir ou eliminar riscos associados a contaminação por meio da água e do gelo, utilizados durante o processamento.

Em sua maioria, os pescados congelados a que os consumidores têm acesso em pontos de venda apresentam esta fina camada de gelo na superfície, oriunda do glaciamento. Neste sentido, é importante sempre estar atento à procedência destes produtos, observando neles a existência de selos do Sistema de Inspeção Federal, Sistema de Inspeção Estadual ou Sistema de Inspeção Municipal, que garantem, dentre outros aspectos, a potabilidade da água usada durante o processamento dos pescados.

2 min leituraSe você é adepto de uma alimentação saudável, muito provavelmente peixes e frutos do mar estão no seu cardápio. A indústria alimentícia utiliza meios para levar à mesa do consumidor […]

2 min leitura
0

Desinfecção de embalagem utilizando radiação ultravioleta – Parte 2

2 min leitura

No post Desinfecção de embalagem utilizando radiação ultravioleta  – parte 1, falamos do princípio de funcionamento da lâmpada UV e seus tipos. 

É importante relembrar que a exposição à radiação UV não destrói explicitamente os microrganismos, mas inibe sua capacidade de reprodução; por esta razão, não podemos achar que esta tecnologia tem o princípio de esterilizar a embalagem, mas apenas o de desinfectar e descontaminar. Por isso, deve existir um trabalho de controle para minimizar o risco de contaminação da embalagem nas fontes, como fornecedores, na estocagem e também para protegê-la dos riscos do meio ambiente.

Quando se fala em eficiência na redução de microbiota na embalagem, é preciso entender alguns parâmetros :

  • A luz UV emitida por uma fonte é expressa em watts (W)
  • A densidade de irradiação (intensidade da radiação UV) é expressa em fluxo em watts por metro quadrado (W/ m2).
  • A dose (intensidade por tempo de exposição) é a densidade de irradiação multiplicada pelo tempo (t) em segundos e expressa em joules por metro quadrado (J/m2), sendo que 1 joule é 1 W.second

A resistência de um microrganismo à luz UV varia consideravelmente. Além disso, o ambiente do microrganismo particular influencia grandemente a dose de radiação necessária para a sua destruição. A dose é severamente limitada pela sua capacidade de penetrar num meio. A penetração é controlada pelo coeficiente (k) da absorção (m²/s).

A radiação UV pode ser aplicada como um tratamento primário, como por exemplo, em potes plásticos, tampas plásticas e metalizadas para redução da multiplicação microbiana.

A tecnologia é simples, mas é importante fazer o projeto com uma empresa especializada que fará todo o trabalho customizado, pois o tamanho dos sistemas é projetado baseado em vários parâmetros, que incluem:
– Tamanho do material
– Configuração da máquina
– Velocidade da linha
– Largura da linha
– Necessidades de redução dos microrganismos
– Configuração da embalagem.

Fontes:

  1. http://www.foodsafetynews.com/2014/01/pasteurization-does-ultraviolet-mean-ultrasafe/#.WA06oMNrjDc
  2. http://www.revistatae.com.br/noticiaInt.asp?id=6102
  3. National Center for Food Safety and Technology, Illinois Institute of Technology, 6502 S. Archer Road, Summit-Argo, IL 60501
  4. http://acquaticos.blogspot.com.br/2010/07/esterilizador-ultravioleta-uv.html

Imagem: Revista TAE 

2 min leituraNo post Desinfecção de embalagem utilizando radiação ultravioleta  – parte 1, falamos do princípio de funcionamento da lâmpada UV e seus tipos.  É importante relembrar que a exposição à radiação […]

2 min leitura
7

Ação do ácido peracético em biofilmes formados por Salmonella em superfícies de polipropileno

2 min leitura

Um estudo feito por alunos da Universidade Federal do Paraná avaliou a eficácia do ácido peracético na remoção de biofilmes formados em superfícies de polipropileno por três cepas de Salmonella sp com diferentes capacidades de formação de biofilme: fortemente, moderadamente e fracamente formadora. A Salmonella é considerada um dos patógenos mais importantes envolvidos em contaminações de alimentos à base de frango.

Em frigoríficos, as superfícies de polipropileno normalmente são caixas, tambores, armários, tanques, conexões, chapas ou mesas. Após formado, o biofilme nestas superfícies pode se tornar uma constante forma de contaminação para alimentos e utensílios que façam qualquer tipo de contato com ele.

Para diminuir a contaminação de carcaças e os riscos de transmissão de doenças à população, a indústria emprega várias ações de limpeza e sanitização do seu sistema de produção. Alguns sanitizantes são capazes de despolimerizar as substâncias poliméricas extracelulares, como o ácido peracético, um forte oxidante que atua na parede celular e no interior da célula microbiana danificando o seu sistema enzimático e causando a destruição do micro-organismo. Amplamente utilizado na indústria, este sanitizante é seguramente decomposto pelo ambiente, além da sua eficácia não ser afetada por resíduos de matéria orgânica.

As concentrações de ácido peracético usualmente utilizadas pela indústria na higienização de superfícies e equipamentos podem variar 0,1% a 1,5%.

Com base nos resultados obtidos no estudo, a concentração de 1,5% de ácido peracético aparentemente mostrou eficiência na redução de todos os biofilmes formados, promovendo reduções logarítmicas de 3.4, 4.4 e 3.7 para as cepas fraca, moderada e forte, respectivamente. Apesar da cepa moderadamente formadora de biofilme, sob efeito do sanitizante nesta concentração durante 5 minutos, não ter demonstrado eliminação total das células, o sanitizante se mostrou eficiente na taxa de redução de Salmonella. Segundo referências, é necessário que ocorra uma redução de mais de 4 ciclos logarítmicos para confirmar a eficácia, resultado encontrado nessa situação.

A eficiência do ácido peracético na redução de biofilme formado por Salmonella sp. depende da concentração e do tempo de ação utilizados. Com concentrações superiores a 0,7% a partir de 5 minutos de ação, o sanitizante já demonstrou eficácia, sendo seguro para utilização na indústria.

Para acessar o estudo completo, clique aqui

2 min leituraUm estudo feito por alunos da Universidade Federal do Paraná avaliou a eficácia do ácido peracético na remoção de biofilmes formados em superfícies de polipropileno por três cepas de Salmonella […]

2 min leitura
0

Higiene se faz com limpeza + drenagem

2 min leitura

Os processos de limpeza só se completam com uma boa drenagem. Em ambientes onde são feitas as manipulações de alimentos, medicamentos ou agentes químicos como suplementos, que podem entrar em contato com o corpo humano, é preciso eliminar a sujeira e minimizar a possibilidade de proliferação de microrganismos.

Por isso, os ralos não são apenas parte do sistema de descarte de água ou líquidos, mas o principal equipamento de limpeza instalado no ambiente de trabalho. Sua função é prioritariamente garantir ambientes com o menor risco de contaminação.

Para que a higiene venha em primeiro lugar, é preciso administrar os processos de limpeza e esterilização em ambientes hostis, como os que sofrem intervenção de água quente e expelem todo tipo de gorduras. Para eles, os profissionais utilizam conceitos de drenagem mais complexos, já que a cadeia de limpeza inclui os equipamentos, o desenho dos processos de produção e os pisos e ralos.

Pode-se dizer que os ralos são pontos centrais desses projetos, já que interligam o ambiente interno ao sistema de descarte. Ainda assim, seu papel é subestimado. 

Um ralo ideal, seguindo os padrões de higiene da EHEDG (European Hygienic Engineering and Design Group e FCSI (Foodservice Consultants Society International), deve cumprir com as seguintes recomendações:

– Ser de material asséptico, do mesmo tipo utilizado em equipamentos em contato direto com os alimentos, como o aço inoxidável;

– Ter acabamento o mais arredondado possível, com todos raios internos iguais ou maiores que 3 mm, para aumentar a eficácia da limpeza e evitar resquícios de líquidos ou sujeira;

– No caso de existirem soldas, elas devem ser de topo e com acabamento o mais polido possível, não sendo permitida a sobreposição de chapas para evitar espaços onde possa haver acúmulo de sujeira;

– Ser totalmente drenável, ou seja, seu design deve permitir a limpeza e a retirada por completo de todo e qualquer líquido ou resíduo, inclusive em seu sistema de sifão, que deve ser desmontável;

– No projeto do ralo, assim como em sua instalação, devem ser tomadas precauções para evitar que impactos ou tráfego sobre o piso danifiquem a conexão entre as bordas do ralo e o piso, já que elas propiciam o crescimento de bactérias; 

É dentro dos ralos que desemboca todo o resultado dos processos de limpeza crítica, semicrítica e não críticas. Em limpezas úmidas, por exemplo, espirrar gotículas de líquido pode ser o suficiente para alimentar um ecossistema de microrganismos.

Portanto, ralos mal projetados podem servir justamente à proliferação de agentes patogênicos. Eles devem integrar um sistema de drenagem e equipamentos que precisa favorecer o processo de limpeza; e não apenas viabilizá-lo. Além do projeto, é vital estudar o design e a matéria prima utilizada nos equipamentos de limpeza, esterilização ou drenagem.

O perigo mora no ralo

Um dos agentes patogênicos de proliferação mais alarmante é a Listeria monocytogenes, que é um bacilo anaeróbio (não depende do oxigênio para sobreviver ou se reproduzir) e pode causar inflamação do sistema gástrico ou uma doença grave e invasiva chamada listeriose, com taxa de mortalidade alta, quando comparada a doenças causadas por outros patógenos comuns.

A Listeria é amplamente encontrada no solo, na água estagnada ou na vegetação e pode fazer parte da microbiota de até 10% das pessoas saudáveis, segundo estudos do órgão regulatório de alimentos nos Estados Unidos, o FDA (Food and Drug Administration).

A limpeza depende de uma drenagem eficaz, que ajude a atenuar os riscos de contaminação vindos do ambiente externo e que mitigue essas variáveis em uma operação interna segura e higiênica.

FONTES:

https://www.fda.gov/downloads/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/UCM535981.pdf

http://www.about-listeria.com/listeria_prevalence#.WOONzRLyvow

2 min leituraOs processos de limpeza só se completam com uma boa drenagem. Em ambientes onde são feitas as manipulações de alimentos, medicamentos ou agentes químicos como suplementos, que podem entrar em […]

2 min leitura
2

Por que os alimentos “estragam” e qual o perigo de consumi-los

2 min leitura

Você já deve ter se perguntado o que faz com que os alimentos “estraguem”. Tecnicamente, podemos dizer que os alimentos se deterioram. 

Os sinais de deterioração dos alimentos podem incluir uma aparência diferente da do alimento na sua forma fresca, tais como uma alteração na cor ou na textura, um odor desagradável ou um sabor indesejável.

Vários fatores causam a deterioração dos alimentos, tornando-os itens inadequados para o consumo. Luz, oxigênio, calor, umidade, temperatura e bactérias podem afetar tanto a segurança quanto a qualidade dos alimentos perecíveis. Quando sujeitos a esses fatores, os alimentos vão se deteriorar gradualmente.

Microrganismos estão presentes em todo o ambiente, e há sempre um risco de deterioração quando os alimentos são expostos a condições inadequadas. A deterioração microbiana resulta de bactérias, bolores e leveduras. Embora os microrganismos possam ou não ser nocivos, os resíduos que produzem quando crescem sobre ou no alimento podem ser desagradáveis ao gosto.

Deterioração patogênica

Além de promover a perda de qualidade dos alimentos e o gosto desagradável, alguns tipos de deterioração podem ser causados por bactérias patogênicas, com graves consequências para a saúde. Por exemplo, Clostridium perfringens (causa comum de deterioração na carne e aves) e Bacillus cereus (causa comum de deterioração do leite e da nata) são também patogênicos. Quando o alimento é exposto a condições inadequadas de armazenamento, tais como a Zona de Perigo (entre 4,4 e 60°C), estes organismos podem se multiplicar rapidamente e liberar toxinas perigosas que o deixarão doente se você consumir o produto, mesmo que esteja cozido e tenha uma temperatura interna boa. Para preservar os alimentos, mantenha-os fora da Zona de Perigo, ou seja, se for um alimento frio, deixe-o abaixo de 4,4°C e mantenha os alimentos quentes acima de 60°C.

A deterioração dos alimentos não é apenas uma questão de qualidade, é também uma questão de segurança. Para evitar a deterioração e reduzir o risco de doenças transmitidas por alimentos, siga sempre os QUATRO PASSOS para a Segurança dos Alimentos: Separar, Lavar, Respeitar as temperaturas de cozimento e Resfriar. 

Fontes: https://www.foodsafety.gov

           https://www.usda.gov

2 min leituraVocê já deve ter se perguntado o que faz com que os alimentos “estraguem”. Tecnicamente, podemos dizer que os alimentos se deterioram.  Os sinais de deterioração dos alimentos podem incluir […]

3 min leitura
4

O que são coliformes fecais e quais os riscos à saúde

3 min leitura

Afinal, o que são coliformes fecais e quais são os riscos à saúde atrelados a eles?

Para um claro entendimento do tema, é importante uma breve explicação sobre microrganismos indicadores e bactérias coliformes.

Os organismos indicadores são os que proporcionam uma visão da história de uma amostra ou permitem associações potenciais com outros organismos ou condições. Eles podem indicar, por exemplo, a presença potencial de agentes patogênicos ou organismos deterioradores. As bactérias coliformes têm sido usadas como indicadores de condições insalubres em água e alimentos por mais de um século. Este conceito originou-se no final dos anos 1800, após a descoberta de que E. coli pode ser encontrada no mesmo local onde há presença de fezes, e sua detecção em água foi usada para “indicar” uma maior probabilidade de que outros patógenos, como Salmonella typhi (febre tifóide), também estivessem na água, ou seja, foi um indicador de condições insalubres.

Há aplicação de indicadores para a segurança e qualidade dos alimentos e da água. Para que os organismos indicadores sejam válidos, devem ser:
A. Facilmente distinguíveis de outros microrganismos comuns a uma amostra;
B. Detectados e enumerados facilmente num período de tempo relativamente curto (por exemplo, testes rápidos);
C. De associação direta ou indireta com segurança reduzida ou perda de qualidade da amostra em questão;
D. Capazes de sobreviver, bem como o(s) organismo(s) associado(s), na água ou alimento a ser testado;

Os indicadores de segurança do produto estão geralmente associados a patógenos comuns que se originam de ambientes semelhantes (por exemplo, patógenos intestinais) e também são capazes de sobreviver em alimentos, bem como o patógeno.

Os coliformes fecais são considerados mais diretamente associados à contaminação fecal por vertebrados de sangue quente do que outros membros dos coliformes.

Os indicadores de contaminação fecal devem:

a) ser organismos específicos do trato intestinal,

b) estar presentes em quantidades suficientemente elevadas nas fezes para serem detectados facilmente em água ou alimentos após diluição,

c) ter taxas de sobrevivência elevadas no produto de teste,

d) ser facilmente detectados, mesmo em números muito baixos.

E. coli satisfaz estes critérios.
Os indicadores de qualidade do produto são geralmente específicos do produto, dependendo dos organismos de deterioração típicos de um alimento (por exemplo, bolores encontrados em produtos lácteos), embora os indicadores gerais de saneamento sejam frequentemente utilizados. Uma das aplicações mais comuns de bactérias coliformes como organismos indicadores está na sua associação com condições higiênicas e de qualidade geral, especialmente no que se refere aos alimentos processados termicamente. Coliformes em níveis normais encontrados em alimentos são eliminados pela maioria das condições de processamento térmico (por exemplo, pasteurização de leite). Portanto, sua presença em um alimento geralmente indica um processo térmico inadequado ou contaminação pós-processamento.

Coliformes e Doenças Transmitidas por Alimentos
A maioria das bactérias coliformes não está associada a doenças transmitidas por alimentos. Estirpes inofensivas de E. coli e outros coliformes residem no trato intestinal. No entanto, existem certos coliformes que causam doenças, sendo a maioria estirpes de E. coli (outras podem incluir estirpes oportunistas de Enterobacter sakazakii e Citrobacter freundii):

E. coli entero-hemorrágica

– Produzem toxinas que afetam principalmente o intestino grosso;
– Podem causar colite hemorrágica, com diarreia sanguínea, cólicas abdominais graves (náuseas, vômitos), febre rara;
– Podem causar síndrome urêmico-hemolítica (HUS) – toxinas no sangue, doença renal. Pode ser fatal em jovens e idosos em risco.

E. coli enteroinvasora

– multiplica-se dentro das células epiteliais intestinais (cólon) e espalha-se para células adjacentes;
– sem enterotoxinas, diarreia com sangue e sem sangue (grandes quantidades) causada por lesões celulares

E. coli enteropatogênica

– adere à mucosa intestinal, destruindo ou modificando células;

– sem enterotoxinas, diarreia, mais comum em crianças com menos de 1 ano de idade.

E. coli enterotoxigênica

– ataca e coloniza o intestino delgado;

– diarreia do viajante em jovens e adultos: súbita, aguda, sem sangue, muito aquosa;
– pode ser grave, muitas vezes fatal em lactentes nos países em desenvolvimento.

Referência https://foodsafety.foodscience.cornell.edu/sites/foodsafety.foodscience.cornell.edu/files/shared/documents/CU-DFScience-Notes-Bacteria-Coliform-Indicators-09-07.pdf

3 min leituraAfinal, o que são coliformes fecais e quais são os riscos à saúde atrelados a eles? Para um claro entendimento do tema, é importante uma breve explicação sobre microrganismos indicadores […]

3 min leitura
0

Avançam as pesquisas brasileiras para realizar análise microbiológica em minutos

3 min leitura

Um dispositivo capaz de fazer uma análise microbiológica em minutos é o sonho dos profissionais de alimentos.

O blog Food Safety Brazil está acompanhando o empenho dos pesquisadores da Universidade de Caxias do Sul, RS, que realizam um trabalho promissor nesta área. Eles estão desenvolvendo um biossensor para detecção de patógenos, acoplando sensores magnetoelásticos a um método imunológico de atração de bactérias.

Apesar do nome estranho, sensores magnetoelásticos são aquelas tiras antifurto usadas no comércio em geral. A imagem que ilustra o título deste post mostra este tipo de material, da maneira como chega para os pesquisadores. Os biossensores consistem em pequenas tiras destes sensores, revestidas com camadas finíssimas de ouro, sobre as quais se adsorvem diferentes compostos químicos, chamados tióis. Sobre os tióis, são acoplados anticorpos específicos que farão a ligação com a bactéria-alvo presente no alimento analisado. A ligação das bactérias na superfície do biossensor promove alterações de massa e a frequência de ressonância diminui proporcionalmente, sendo medida com um analisador de redes. Por fim, os dados de variação de frequência são convertidos em unidades de colônias de bactérias. A figura abaixo mostra o funcionamento clássico de um biossensor: 


Figura_funcionamentobiosensorc
Num post anterior, destacamos o trabalho do engenheiro químico André Luis Possan. Ele desenvolveu um biossensor com capacidade de analisar amostras contaminadas com E. coli, em 40 minutos, com limite de detecção de 50.000 UFC/mL. Ao final de sua pesquisa, André constatou que ainda era preciso melhorar a superfície da liga magnetoelástica, diminuindo sua rugosidade, para facilitar a ligação das bactérias e alcançar maior eficiência.

servletrecuperafotoPois bem, agora foi a vez de outra pesquisadora, Márcia Dalla Pozza (foto), dar sequência a estas pesquisas. Márcia é engenheira química, tem 26 anos e concluiu Mestrado em Engenharia de Processos e Tecnologias pela Universidade de Caxias do Sul, sob orientação do Dr. Frank P. Missel. Seu trabalho foi melhorar a sensibilidade de detecção do dispositivo que faz a análise microbiológica, avaliando a influência de diferentes tióis no desempenho dos biossensores. Em conversa com o blog, Márcia explica que “os tióis são compostos orgânicos que se adsorvem sobre a superfície da camada áurea por meio da ligação Au-S (ouro-enxofre) presente em uma das extremidades. A outra extremidade da cadeia liga-se com anticorpos para detecção de patógenos específicos”. Márcia informa que os resultados foram favoráveis para a detecção da bactéria E. coli. Utilizando a técnica de microscopia de força atômica, ela constatou que os biossensores com o composto ácido mercaptopropiônico (MPA) mostraram um aumento na captação de bactérias em relação aos outros compostos estudados, porém também foram observados altos valores de desvio padrão, dificultando a reprodutibilidade e confiabilidade do biossensor. “Conseguimos um limite de detecção de aproximadamente 2×10^4 bactérias/mL, com uma eficiência em torno de 70% do biossensor”, comemora a pesquisadora. “Muito trabalho ainda pode e precisa ser feito. Atualmente, no grupo de pesquisa, estuda-se a adsorção dos compostos tióis sobre a superfície do sensor, uma vez que a área de cobertura está diretamente relacionada à sensibilidade e consequentemente à eficiência do dispositivo.  Ainda sobre os compostos tióis, é importante avaliar a hidrofobicidade e a presença de defeitos durante a formação, procurando minimizá-los ao máximo. Para fins comerciais, também é relevante avaliar a estabilidade do biossensor.” 

A pesquisa de Márcia já foi aprovada para publicação em revista científica classificada no Qualis A1 da base Capes e em breve estará disponível ao mundo acadêmico. A engenheira pretende seguir pesquisando. Ainda este ano, ela deve iniciar o Doutorado, na linha de pesquisa de detecção de herbicidas e pesticidas, utilizando microscopias de força atômica. 

Nós, do blog Food Safety Brazil, ficamos na torcida pelo sucesso de Márcia e de todo o grupo de pesquisadores da Universidade de Caxias do Sul, aguardando a tão sonhada análise microbiológica em minutos. 

Leia também:

Pesquisador brasileiro desenvolve biossensor para análise rápida de E. coli

O futuro chegou: dispositivo portátil para detecção de bactérias em alimentos

“Nariz eletrônico” soa alarme para carne deteriorada

3 min leituraUm dispositivo capaz de fazer uma análise microbiológica em minutos é o sonho dos profissionais de alimentos. O blog Food Safety Brazil está acompanhando o empenho dos pesquisadores da Universidade […]

7 min leitura
6

Controle de Pragas: conhecendo os diferentes tipos de pragas

7 min leitura

É muito importante que o responsável por Food Safety conheça em detalhes o Programa de Controle de Pragas de sua empresa e possa avaliar criticamente o seu andamento. 

O FSB já mencionou, em outras oportunidades, como deve ser feita a gestão deste programa:

Hoje apresentaremos um pouco mais sobre os diferentes tipos de pragas.

:: Baratas ::

Em áreas urbanas, as espécies de baratas mais comuns são duas: a barata de esgoto (Periplaneta americana) e a francesinha ou alemãzinha (Blatella germanica). Elas são ativas principalmente à noite, quando deixam seus abrigos à procura de alimentos.

aline1

Barata de esgoto (Periplaneta americana)

aline2

Barata francesinha/ alemãzinha (Blatella germanica)

Baratas possuem hábitos alimentares bastante variados, preferindo os alimentos ricos em amido, açúcar ou gordura. Podem alimentar-se também de celulose, como papéis, ou ainda excrementos, sangue, insetos mortos, resíduos de lixo ou esgoto. Tem o hábito de regurgitar um pouco do alimento parcialmente digerido e depositar fezes, ao mesmo tempo em que se alimentam. Preferem locais quentes e úmidos.

A barata de esgoto normalmente habita locais com muita gordura e matéria orgânica em abundância, como galerias de esgoto, bueiros, caixas de gordura e de inspeção. São excelentes voadoras.

A barata francesinha habita principalmente cozinhas e despensas, em locais como armários, gavetas, interruptores de luz, aparelhos eletrodomésticos, dentro de vãos de batentes, rodapés, sob pias, dutos de fiação elétrica e locais como garagens ou sótãos com depósitos de papel e principalmente caixas de papelão, entre outros. Elas passam 75% do seu tempo abrigadas próximas aos alimentos.

Percebe-se que um local está infestado por baratas por meio de sinais como fezes, ootecas vazias, esqueletos ou cascas de ninfas quando estas se transformam em seres adultos e, em altas infestações, observam-se as baratas durante o dia, bem como nota-se seu odor característico.

Ciclo de vida

As baratas colocam seus ovos em uma cápsula chamada ooteca. Essa ooteca pode ser carregada pela fêmea até um tempo próximo à eclosão dos ovos (Blatella germanica) ou depositada em local apropriado, normalmente frestas, fendas, gavetas ou atrás de móveis (Periplaneta americana).

Cada ovo dará origem à uma ninfa que, através de várias mudas, dará origem ao inseto adulto. As ninfas são menores que as adultas, não possuem asas e são sexualmente imaturas.

A francesinha vive em média 9 meses, põe ovos em média 5 vezes ao longo de sua vida e coloca de 30 a 50 ovos por vez. A barata de esgoto vive de 2 a 3 anos, põe ovos de 10 a 20 vezes ao longo da vida e coloca de 12 a 20 ovos em cada ooteca. Quanto maior a temperatura e a umidade, menor será o tempo para o ovo eclodir.

Agravos para a saúde

As baratas domésticas são responsáveis pela transmissão de várias doenças, principalmente gastroenterites, carreando vários agentes patogênicos por meio de seu corpo, patas e fezes, pelos locais por onde passam. São, por isso, consideradas vetores mecânicos.

:: Formigas ::

aline3

As formigas são insetos sociais, isto é, vivem em colônias ou ninhos, onde cada uma trabalha para todos os membros da colônia e não somente para si mesma. Uma colônia de formigas ilustra um modo perfeito de sociedade comunitária, difícil de o homem copiar e que talvez nunca consiga ser igualado.

O ninho das formigas, de maneira geral, consiste de um sistema de passagens ou cavidades que se comunicam umas com as outras e com o exterior. Algumas espécies constroem seus ninhos no solo e plantas; outras no interior de edificações (sob azulejos, batentes de portas, pisos, vãos e frestas, entre outros) ou ainda ocupam cavidades na madeira ou troncos de árvores. As colônias variam em tamanho e podem ser formadas tanto por algumas dezenas quanto por muitos milhares de indivíduos.

O Brasil apresenta cerca de 2 mil espécies de formigas descritas, sendo que, destas, apenas 20 a 30 são consideradas pragas urbanas devido a invadirem alimentos armazenados, plantas e outros materiais domésticos.

A maioria das formigas alimenta-se de sucos vegetais, seiva das plantas, néctar de flores, substâncias açucaradas e líquidos adocicados que são excretados por certos insetos; algumas são carnívoras e se alimentam de animais mortos ou vivos e outras de fungos cultivados a partir de folhas vegetais.

Ciclo de vida das formigas

Cada colônia é constituída por três formas distintas: rainhas, machos e operárias. As rainhas são maiores que os demais indivíduos da colônia e são aladas; em algumas espécies podem viver vários anos. Os machos também são alados e consideravelmente menores que as rainhas. Tem vida curta e morrem após o acasalamento. As operárias são fêmeas estéreis, não possuem asas e constituem a grande maioria de indivíduos da colônia.

Machos e rainhas são produzidos na colônia em grande número, geralmente na primavera, quando saem dos ninhos e realizam o voo nupcial. Logo após o acasalamento, o macho morre e a rainha inicia uma nova colônia ou retorna a uma já estabelecida. Ela elimina suas asas após o voo, encontra um local para construir o ninho e colocar os ovos. Esta primeira cria é alimentada pela rainha e é formada exclusivamente por operárias, que são sempre estéreis.

Depois que as operárias surgem, passam a realizar todo o trabalho da colônia: construção e defesa do ninho, cuidado com a prole, coleta de alimento, entre outros. A partir daí, a função da rainha passa a ser unicamente a postura de ovos.

Agravos para a saúde

Algumas formigas podem se defender por meio de um aparelho inoculador de veneno, podendo provocar reações alérgicas cuja gravidade depende da sensibilidade do indivíduo, local e número de ferroadas.

:: Moscas ::

aline4

Existe uma grande diversidade de espécies de moscas. Uma das espécies mais presentes em áreas urbanas é a mosca doméstica (Musca domestica).

Alimentam-se de fezes, escarros, secreções, produtos animais e vegetais em decomposição e açúcar, entre outros. A mosca não consegue ingerir nada sólido, somente matéria na forma líquida; por isso, lança sua saliva sobre o alimento para poder digeri-lo e, posteriormente, ingeri-lo.

Em geral, é ativa durante o dia e repousa à noite. São encontradas repousando sobre as paredes, forros e fios das residências.

Os locais por elas visitados apresentam manchas, produzidas pelo depósito de suas fezes e pelo lançamento de saliva sobre o alimento.

Ciclo de vida

O ciclo de vida das moscas pode ser resumido conforme abaixo:

Ovo => Larva => Pupa => Adulto

A fêmea coloca seus ovos (algumas centenas) em carcaças de animais, fossas abertas, depósitos de lixo e outros locais ricos em substâncias orgânicas em decomposição.

Após aproximadamente 24 horas, ocorre o nascimento das larvas. Estas geralmente ficam agrupadas, são vermiformes, esbranquiçadas, movimentam-se muito, não gostam de luz e alimentam-se ativamente.

Após um período de 5 a 8 dias, as larvas abandonam a matéria orgânica em que estavam instaladas. A camada externa de pele das larvas se endurece, formando uma casca, dentro da qual começa a haver a metamorfose para mosca adulta, recebendo neste estágio o nome de pupário. As pupas não se alimentam. As moscas permanecem nesta fase por um período de 4 a 5 dias.

O tempo de vida das moscas varia de espécie para espécie, sendo, em geral, de 25 a 30 dias. Cabe ressaltar que quanto maior a temperatura e a umidade, mais rápido ocorrerá o ciclo de vida.

Agravos para a saúde

As moscas domésticas são insetos que tem importância como vetores mecânicos, isto é, podem veicular agentes patogênicos em suas patas após pousarem em superfícies contaminadas com germes e, posteriormente, pousarem nos alimentos, disseminando a contaminação. Elas podem, desta forma, transmitir várias doenças, tais como distúrbios gastrointestinais.

:: Roedores ::

A característica principal dos roedores é a presença dos dentes incisivos com crescimento contínuo, daí a necessidade de roer para gastar a dentição. Desta forma, estragam muito mais alimentos do que realmente necessitam para se alimentar.

São animais de hábitos noturnos por ser mais seguro saírem de seus abrigos à noite, à procura de alimento.

Possuem várias habilidades físicas, como nadar, subir em locais altos se houver base de apoio, saltar, equilibrar-se em fios e mergulhar, entre outras.

Encontram principalmente no lixo doméstico o seu alimento. Os roedores escolhem aqueles alimentos que estão em condições de serem ingeridos, pois, por meio do seu olfato e paladar apurados separam os alimentos de sua preferência e ainda não estragados. São considerados onívoros, isto é, alimentam-se de tudo o que serve de alimento ao homem.

Nas áreas urbanas encontramos três espécies de ratos: Rattus norvegicus, Rattus rattus e Mus musculus.

Rattus norvegigus

aline5

Nas grandes cidades, os ratos perdem parcialmente algumas características de comportamento como a neofobia (desconfiança a objetos e alimentos estranhos), pela próxima convivência com o homem e devido à dinâmica da cidade.

Na abundância de alimentos, como os provenientes do lixo orgânico inadequadamente disposto ou tratado, a proliferação desses roedores tem se acentuado. É, portanto, a espécie de roedor mais favorecida pelo ambiente urbano degradado por ocupações clandestinas, adensamento de locais carentes de infra-estrutura básica de habitação e saneamento, sendo responsável por surtos de leptospirose, mordeduras e agravos causados por alimentos contaminados por suas fezes e urina.

Rattus rattus

aline6

Conhecido como rato de telhado, rato de forro, rato de paiol ou rato preto, caracteriza-se por possuir grandes orelhas e cauda longa. Como o próprio nome já diz, costuma habitar locais altos como sótãos, forros e armazéns, descendo ao solo em busca do alimento e raramente escava tocas. Está presente e em dispersão na cidade de São Paulo.

Possui grandes habilidades, como caminhar sobre fios elétricos e subir em galhos de árvores, além de escalar superfícies verticais, adaptando-se perfeitamente à arquitetura urbana formada por grandes edifícios e casarões assobradados muitas vezes transformados em cortiços, locais onde encontra grande facilidade para se abrigar e obter alimentos, propiciando a expansão e dispersão da espécie.

Mus musculus

aline7

Popularmente chamado de camundongo, é o de menor tamanho entre as três espécies urbanas. De hábito preferencialmente intradomiciliar, costuma fazer seus ninhos dentro de armários, fogões e despensas.

Tem comportamento curioso, sendo de presa fácil nas ratoeiras. É facilmente transportado em caixas de alimentos e outros materiais, possibilitando sua fácil dispersão na área urbana.

Por sua característica morfológica e hábitos domiciliares, o camundongo não causa a mesma repulsa que os ratos maiores, sendo até tolerado, haja vista a grande quantidade de personagens infantis inspirados nesta espécie, apesar dos riscos que potencialmente pode trazer à saúde humana.

Você encontra estas e outras informações sobre pragas no site do órgão de Controle de Zoonoses da Secretaria da Saúde e Vigilância em Saúde da Cidade de São Paulo.

7 min leituraÉ muito importante que o responsável por Food Safety conheça em detalhes o Programa de Controle de Pragas de sua empresa e possa avaliar criticamente o seu andamento.  O FSB […]

< 1 min leitura
1

Guia de controle de Listeria monocytogenes em alimentos prontos para consumo em consulta pública pelo FDA

< 1 min leitura

O FDA publicou este mês um guia de 85 páginas sobre controle de Listeria monocytogenes em alimentos prontos para consumo. O material encontra-se em consulta pública até 17/07/2017. Este é mais um de tantos frutos do FSMA, movimento de modernização da legislação americana de segurança dos alimentos, que valoriza controles preventivos baseados em risco.

Com ênfase na prevenção, o guia apresenta controles relacionados a pessoal, projeto, construção e operação da fábrica, projeto e manutenção de equipamentos, sanitização, armazenamento e transporte. Inclui também orientações para uma formulação que iniba o crescimento da bactéria durante a vida útil, como por exemplo: o uso de conservantes e acidificantes, bem como estratégias para realizar o monitoramento microbiológico do ambiente.

Vamos nos lembrar de algumas características e fatos sobre este patógeno?

  • Tem origem ambiental, ou seja, é um microrganismo “onipresente”;
  • É capaz de se multiplicar em ambientes refrigerados;
  • A população de risco são idosos, mulheres grávidas (por causa dos abortos causados) e imunocomprometidos;
  • A mortalidade é a mais alta entre os infectados quando comparada a qualquer outra bactéria (~20%, enquanto Salmonella é 1%);
  • Má competidora, é inibida pela presença de outros microrganismos, sejam os intencionalmente adicionados (como Lactobacillus em fermentação), seja por contaminantes (como coliformes) ou flora naturalmente presente;
  • Devido à má competição, os alimentos prontos para consumo, geralmente já cozidos, oferecem uma oportunidade particular para este patógeno se multiplicar, mesmo refrigerados;
  • Ela pode permanecer muitos anos viável num ambiente em locais como condensadores de câmaras frias, falhas no piso e paredes, ralos e partes de difícil acesso de equipamentos;
  • Alimentos com histórico de ocorrência são queijos frescos com alto teor de gordura e água, crustáceos cozidos, frutos do mar defumados, saladas, sanduíches, frutas e vegetais picados, sorvetes.

Para baixar o guia, acesse a página do FDA.

< 1 min leituraO FDA publicou este mês um guia de 85 páginas sobre controle de Listeria monocytogenes em alimentos prontos para consumo. O material encontra-se em consulta pública até 17/07/2017. Este é […]

Compartilhar
Pular para a barra de ferramentas