5 min leitura
1

Qual a diferença entre calibrar, verificar e ajustar?

5 min leitura

E então, você vai calibrar, verificar ou ajustar seus instrumentos?

Estes termos geram alguma confusão, mas são simples e distintos.

Ter instrumentos de medição confiáveis na hora de realizar uma medição é fundamental. Sem isso, torna-se impossível garantir efetivamente o controle sobre os processos industriais, o que pode se revelar um risco, por exemplo, ao controlar o binômio tempo x temperatura num PCC de esterilização, ao pesar um aditivo ou conservante, ao analisar Aw, pH ou tantos outros exemplos possíveis.

Por isso, este tema é tratado em diversas normas de gestão, como no requisito 7.1.5.2 sobre “rastreabilidade de medição” da ISO 9001 sobre gestão da qualidade e no requisito 8.7 sobre “controle de monitoramento e medição” da ISO 22000 para segurança dos alimentos, como visto no artigo “Quando a calibração é obrigatória na FSSC 22000?“.

Em ambas as Normas, está dito que equipamentos de monitoramento e medição devem ser calibrados ou verificados em intervalos especificados ou antes do uso, assim como ajustados ou reajustados, quando necessário.

CALIBRAÇÃO

Calibração é um procedimento experimental por meio do qual são estabelecidas, sob condições específicas, as relações entre os valores indicados por um instrumento de medição ou sistema de medição ou valores representados por uma medida materializada ou um material de referência e os valores correspondentes das grandezas estabelecidos por padrões.

Como exemplos, calibrar permite estabelecer a relação entre temperatura e tensão termoelétrica de um termopar acoplado a um pasteurizador ou a um esterilizador; uma estimativa dos erros sistemáticos de um manômetro um em secador a vácuo; o valor efetivo de uma massa padrão numa pesagem; a dureza efetiva de uma placa “padrão de dureza”; o valor efetivo de um “resistor padrão”.

O resultado de uma calibração permite tanto o estabelecimento dos valores do mensurando para as indicações, como a determinação das correções a serem aplicadas.

O ato de calibrar também pode determinar outras propriedades metrológicas como, por exemplo, os efeitos das grandezas de influência sobre a indicação ou o comportamento metrológico de sistemas de medição em condições adversas de utilização (em temperaturas elevadas ou muito baixas, na ausência de gravidade, sob radiação nuclear, etc.).

O resultado da calibração geralmente é registrado em um documento específico denominado certificado de calibração ou, algumas vezes, referido como relatório ou laudo de calibração, no qual consta o registro oficial de que aquele determinado equipamento foi devidamente calibrado.

Este tipo de documento pode ser representado por um diagrama, declaração, curva ou tabela, sendo que o objetivo é fornecer ao responsável pelo equipamento os erros de medição constatados durante o experimento, permitindo que, em posse destas informações, seja possível corrigi-los no momento em que for utilizá-los, o que torna seu uso mais confiável.

Frequentemente, como seu principal resultado, apresenta uma tabela ou gráfico contendo para cada ponto medido ao longo da faixa de medição, estimativas de:

  1. Correção a ser aplicada;
  2. Incerteza associada à correção.

O certificado de calibração, contudo, apresenta várias outras informações acerca do desempenho metrológico do sistema de medição analisado e descreve claramente os procedimentos realizados, tema que foi bem explorado e que pode ser aprofundado no conjunto de artigos a seguir:

  1. Calibração e análise crítica de certificados – Parte I
  2. Calibração e Análise Crítica de Certificados – Parte II
  3. Calibração e análise crítica de certificados – Parte III
  4. Calibração e análise crítica de certificados – Parte IV
  5. Calibração e Análise Crítica de Certificados – Parte V
  6. Calibração e Análise Crítica de Certificados – Parte VI
  7. Calibração e Análise Crítica de Certificados – Parte VII
  8. Calibração e análise crítica de certificados – Parte VIII
  9. Calibração e Análise Crítica de Certificados – Parte IX

Em função dos resultados obtidos, o desempenho do sistema de medição pode ser comparado com aquele constante nas especificações de uma norma técnica ou outras determinações legais, e com isso, um parecer de conformidade pode ser emitido.

Qualquer entidade pode calibrar instrumentos, desde que disponha dos padrões rastreáveis e pessoal competente para realizar o trabalho.

VERIFICAÇÃO

Calibrar completamente um sistema de medição demanda um volume razoável de trabalho e seu custo pode se tornar proibitivo, se for realizado com muita frequência, além de poder ser desnecessário numa análise contundente de custo x benefício x riscos.

Por isso, para garantir a confiabilidade das medições em intervalos de tempos menores é utilizada uma versão simplificada da calibração na metrologia científica e industrial denominada verificação ou checagem intermediária. Esta é, muitas vezes, realizada pelas próprias empresas, requerendo, no entanto, pessoas competentes e treinadas, além de padrões rastreáveis.

Por exemplo, uma empresa calibra sua balança que é utilizada para pesar um determinado conservante utilizado numa formulação a cada 6 meses, mas semanalmente ela mesma, em posse de massas padrão rastreáveis próximas aos pontos de medição frequentemente utilizados, faz uma verificação, ou seja, verifica se a tal balança está identificando corretamente o peso da referida massa.

Se numa destas verificações, alguma anomalia for detectada, é dado um alerta e o instrumento segue para uma avaliação técnica a fim de ser reajustado e calibrado, mas não haverá 6 meses de potenciais medições erradas, pois semanalmente se verifica, reduzindo significativamente os riscos entre calibrações.

Lembramos que quando um erro destes ocorre, são necessárias ações não só sobre o instrumento de medição para que volte a fazer leituras corretas, mas também nos produtos potencialmente não conformes ou inseguros que porventura tenham sido gerados.

A verificação ou checagem intermediária é, portanto, o fornecimento de evidência objetiva de que um dado item satisfaz requisitos especificados, baseada em padrões rastreáveis.

O procedimento de checagem intermediária é concebido para ser, ao mesmo tempo, de fácil aplicação e eficaz, e consiste em quantificar os erros de medição do sistema em apenas alguns pontos ao longo de sua faixa de indicação, que são comparados aos limites de especificação ou aos resultados das últimas calibrações.

AJUSTE

O ajuste de um sistema de medição, por sua vez, é uma operação corretiva destinada a fazer com que um instrumento de medição tenha desempenho compatível com o seu uso, ou seja, é uma espécie de “regulagem interna” dos sistemas de medição, que visa fazer coincidir, da melhor forma possível, o valor indicado no sistema de medição com o valor correspondente do mensurando.

O ajuste pode ser automático, semiautomático ou manual e deve ser realizado, obviamente, por técnico capacitado especializado no assunto.

Diversos tipos de ajuste de um sistema de medição incluem o ajuste de zero, o ajuste de defasagem (às vezes chamado ajuste de “offset”) e o ajuste de amplitude (às vezes chamado ajuste de ganho).

O ajuste de um sistema de medição não deve ser confundido com calibração. Calibrar é um pré-requisito para o ajuste. Após um ajuste de um sistema de medição, tal sistema geralmente deve ser recalibrado.

Alguns exemplos de ajustes:

  1. Alteração do fator de amplificação (sensibilidade) de um sistema de medição por meio de um potenciômetro interno;
  2. Regulagem do zero de um manômetro por meio de um parafuso interno;
  3. Colocação de uma “tara” em um peso-padrão;
  4. Alteração do fator amplificação (sensibilidade) de um medidor de forças elétricas por meio de um dispositivo interno ao equipamento.

Espero que tenham gostado. Deixem seu comentários e compartilhem com os amigos!

5 min leituraE então, você vai calibrar, verificar ou ajustar seus instrumentos? Estes termos geram alguma confusão, mas são simples e distintos. Ter instrumentos de medição confiáveis na hora de realizar uma […]

6 min leitura
0

Considerações sobre o efeito térmico na segurança dos alimentos

6 min leitura

O tratamento térmico continua sendo um dos métodos mais importantes utilizados no processamento de alimentos e bebidas para a redução de cargas microbianas e a garantia de alimentos seguros, e adicionalmente, proporciona também alguns benefícios:

  • Aumento de shelf-life;
  • Em alguns casos, por exemplo em envases assépticos, propicia a não necessidade de refrigeração, o que ajuda no armazenamento e logística;
  • Branqueamento, com a possibilidade de inativação de enzimas responsáveis pelo escurecimento;
  • Destruição de fatores antinutricionais, como inibidores de tripsina em algumas leguminosas;
  • Aumento da disponibilidade de alguns nutrientes, por exemplo: digestibilidade de proteínas, gelatinização de amidos e liberação de niacina ligada.

No entanto, a aplicação do calor também destrói componentes dos alimentos responsáveis pelo seu sabor, cor ou textura e, como resultado característico, eles são, muitas vezes, percebidos como de menor qualidade ou valor. Por isso, o emprego do calor não pode ser usado indiscriminadamente.

Felizmente, é possível minimizar os efeitos indesejáveis, e ao mesmo tempo potencializar os efeitos desejáveis com a utilização de combinações de temperaturas mais elevadas e tempos menores no processamento térmico, recorrendo-se a tecnologias como a esterilização HTST, entre outras.

O EFEITO DAS ALTAS TEMPERATURAS

Altas temperaturas têm a capacidade de provocar a redução da carga de microrganismos em alimentos, por isso são usadas como método de conservação, garantindo a segurança dos alimentos, sendo tema relevante em Planos HACCP, configurando muitas vezes PCCs.

As temperaturas capazes de provocar uma redução significativa da carga microbiana são denominadas de “temperaturas letais”.

Para que seja efetivo, o calor requer tempo de ação. Assim, normalmente controla-se o binômio tempo/ temperatura, dependente de fatores que definem a intensidade do tratamento e do tempo de exposição ao calor para reduzir uma determinada população microbiana a níveis aceitáveis, portanto, seguros.

Quando os microrganismos são submetidos a temperaturas letais e constantes, podemos observar uma redução no número de microrganismos sobreviventes. A letalidade de um processo térmico representa o número de ciclos logarítmicos reduzidos na população destes microrganismos.

Para uma dada população de microrganismos, submetida a uma temperatura letal constante, o número dos microrganismos viáveis decrescem obedecendo à cinética de primeira ordem, o que significa que uma mesma porcentagem do microrganismo é destruída em um dado intervalo.

Quanto maior a temperatura, maior o efeito da morte pelo calor, assim com o aumento da temperatura o tempo para se conseguir o mesmo efeito diminui.

Por isso, a letalidade requerida para um processo é definida como o tempo necessário em uma temperatura específica, que seja suficiente para reduzir a população de um determinado microrganismo até níveis aceitáveis, ou seja, dentro dos quais um determinado alimento possa ser considerado como efetivamente seguro.

ESTERILIZAÇÃO

Numa pasteurização ocorre a destruição de microrganismos patogênicos não-esporulados, porém, numa esterilização temos um efeito mais enérgico, destruindo também os esporulados. Como resultado, os alimentos esterilizados alcançam uma vida útil maior do que aqueles pasteurizados e podem ser armazenados em temperatura ambiente, como é o caso de alimentos em caixinhas longa vida.

Num contexto geral, na esterilização se utilizam temperaturas acima de 100°C e tempos mais curtos, na pasteurização abaixo de 100°C e tempos mais longos.

Em um processamento térmico, o valor da letalidade de uma esterilização é calculado baseando-se na resistência térmica dos microrganismos ou de seus esporos, conforme a penetração de calor no produto.

Veja que o termo esterilização não significa a destruição de “todos” os microrganismos em um meio, pois como a curva de morte térmica dos microrganismos é logarítmica, não se atinge o zero.

Por isso, na prática,  na esterilização comercial de um produto submetido a este processo ainda poderão existir esporos ou mesmo alguns microrganismos, porém estes não se encontram viáveis e em condições para se desenvolver e/ ou causar danos aos consumidores. Por este motivo, não causam transformações no produto final ou doenças em quem consome.

De modo geral a resistência ao calor dos microrganismos está relacionada com suas temperaturas ótimas de crescimento.

Os termófilos são mais resistentes ao calor que os mesófilos, que por sua vez são mais resistentes que os psicrófilos.  Já as bactérias formadoras de esporos são mais resistentes que as não esporuladas, sendo as formadoras de esporos termofílicas mais resistentes que as formadoras de esporos mesofílicas.

Também podemos relacionar a coloração de Gram com a resistência ao tratamento térmico, sendo que os microrganismos Gram Positivos tendem a ser mais resistentes que os Gram negativos.

Além disso, o tempo necessário para obter a esterilização comercial de um alimento é influenciado por outros fatores:

  1. Resistência ao calor dos microrganismos ou enzimas que podem estar presentes no alimento;
  2. Condições do aquecimento;
  3. Composição e pH do alimento;
  4. Tamanho e tipo do recipiente;
  5. Estado físico do alimento.

Processamentos com altas temperaturas e tempos curtos (em inglês, high temperature short time: HTST) podem ser utilizados para produzir o mesmo nível de destruição de microrganismos ou enzimas em temperaturas mais baixas durante períodos maiores, porém com uma maior manutenção das características sensoriais e do valor nutricional dos alimentos.

Se quiser se aprofundar este tema, sugiro uma olhada no artigo “Controle em tempo real em um processo de esterilização convencional” no link esterilização e o artigo “Modelamento matemático do processo de esterilização de alimentos condutivos em embalagens de vidro” no link modelagem.

FATORES QUE DEFINEM A RESISTÊNCIA TÉRMICA

Para que se possa estabelecer um processamento térmico adequado para a destruição dos microrganismos, é necessário conhecer a resistência térmica dos microrganismos-alvo. Normalmente, para alimentos que não tem pH abaixo de 4,5, utiliza-se como referência o Clostridium botulinum por ser um patógeno esporulante de alta resistência ou o Clostridium sporogenes, que apesar de ser um deteriorante, é ainda mais resistente que o botulinum.

Essa resistência é influenciada por diferentes fatores como, por exemplo, número de células vegetativas ou esporos, espécie, fase do crescimento e das características do meio (pH, composição do alimento, presença de substâncias inibidoras etc). Os seguintes fatores influenciam na letalidade de microrganismos:

Valor D

  • Tempo de redução decimal, que é o tempo (em minutos), a uma determinada temperatura, capaz de reduzir 90% dos microrganismos, ou seja, o tempo necessário para a curva de sobreviventes atravessar 1 ciclo log, restando 10% da população inicial de microrganismos;
  • Dt normalmente é a expressão de D quando determinado à temperatura de 121°C. Assim, em uma contagem inicial de esporos de 100 esporos/mL, após tratamento térmico em um tempo de redução decimal, ou seja, 1 D, a contagem de esporos será reduzida para 10 esporos/mL;
  • O valor D reflete a resistência de um microrganismo para uma temperatura específica. Quanto maior é o D, mais resistentes são os microrganismos e é necessário mais tempo para destruí-los.

Valor Z

  • É o aumento de temperatura, necessário para reduzir em 90% o tempo de destruição térmica, ou seja, que ocasione o mesmo efeito letal em um décimo do valor D;
  • O valor Z reflete a resistência relativa de um microrganismo para diferentes temperaturas destrutivas. Com isto é possível calcular processos térmicos equivalentes sob diferentes temperaturas;
  • Então, se o valor D é de 10 minutos para uma temperatura de 100ºC, e de 1 minuto para uma temperatura de 120ºC, o valor z é de 20ºC. Os D e Z variam para cada microrganismo e com as condições do meio.

Valor F:

  • É o tempo, em minutos, em uma determinada temperatura, suficiente para destruir as células ou esporos de um determinado microrganismo;
  • A eficiência do processo de esterilização determina o número de reduções decimais na contagem de esporos que é obtida em determinado tratamento térmico;
  • Logo, sendo 1012 a contagem de esporos iniciais em um produto submetido ao processamento em uma planta com efeito de esterilização igual a 10, a contagem final de esporos será de 102.

Valor B*:

  • É relacionado com o efeito bacteriológico do processo, ou seja, o efeito letal total integrado no processamento ao qual o produto é submetido.

Valor C*:

  • É o efeito químico, ou seja, o dano químico total integrado do processamento ao qual o produto é submetido.

Num contexto geral, um processamento de ultrapasteurização UHT (ultra high temperature) é considerado satisfatório quando consegue estabelecer padrões de processo que maximinizem B* e minimizem C*.

FATORES SINÉRGICOS

Existem vários outros fatores que afetam sinergicamente a resistência térmica dos microrganismos ao calor, influenciando na destruição térmica, tais como:

  1. Gordura: Aumenta a resistência térmica dos microrganismos, apresentando efeito protetor;
  2. Sais: Têm efeito variável e dependente do tipo de sal. Alguns sais têm efeito protetor e outros tornam as células mais sensíveis ao calor;
  3. Carboidratos: Sua presença pode causar aumento da resistência dos microrganismos ao calor;
  4. Proteínas: Durante o aquecimento as proteínas têm efeito protetor sobre os microrganismos, ou seja, alimentos com alto teor proteico aumentam a resistência térmica dos microrganismos;
  5. pH: Cada microrganismo possui pH ótimo de crescimento, e são mais resistentes ao calor neste pH. Quanto mais se afasta deste valor de pH ótimo, tanto para cima quanto para baixo, mais aumenta a sensibilidade do microrganismo ao calor;
  6. Idade dos microrganismos: Há uma tendência de as células bacterianas serem mais resistentes na fase estacionária de crescimento, e menos resistentes ao calor na fase logarítmica;
  7. Temperatura de crescimento: Com o aumento da temperatura de incubação cresce a resistência dos microrganismos ao calor;
  8. Compostos inibitórios: Na presença de compostos inibidores de crescimento dos microrganismos, como antibióticos, ocorre uma redução na resistência ao calor;
  9. Efeito de ultrassônicos: Endoesporos bacterianos submetidos a tratamentos ultrassônicos têm menor resistência ao calor.

REFERÊNCIAS BIBLIOGRÁFICAS:

BARROS, G.A. Produtos esterilizados. Revista do Instituto de Laticínios Candido Tostes. Juiz de Fora: v. 28, n. 169, p.17-23, 1973.

FELLOWS, P.J. Tecnologia do processamento de alimentos. Porto Alegre. Artmed.2006, 711p.

GAVA, A. J.; SILVA, C.A.B.; FRIAS, J.R.G. Princípio de Tecnologia de Alimentos. Princípios e Aplicações. São Paulo, Nobel, 2009, 512p.

JAY, J.M. Microbiologia de Alimentos. 6° ed. Porto Alegre: Artmed, 2005, 712p.

MASSAGUER, P.R. Microbiologia dos Processos Alimentares. São Paulo: Varela, 2006, 258p.

PENNA, T.C.V.; MACHOSHVILI, I.A. Esterilização térmica. Conceitos Básicos da Cinética de Morte Microbiana. Revista Farmácia Bioquímica. Universidade de São Paulo, (Supl. 1):1-5, 1997.

6 min leituraO tratamento térmico continua sendo um dos métodos mais importantes utilizados no processamento de alimentos e bebidas para a redução de cargas microbianas e a garantia de alimentos seguros, e […]

3 min leitura
3

5 passos para controlar documentos do SGSA

3 min leitura

Este artigo traz 5 passos para controlar documentos, um tema que pode parecer simples e banal, mas a eficácia deste controle é um requisito decisivo e extremamente relevante para o bom funcionamento do SGSA.

Isso é especialmente importante para evitar o uso de documentos obsoletos, ou seja, os que foram revisados e atualizados. Seu uso poderia gerar falhas operacionais, inclusive a geração de produtos não conformes, ou mesmo, potencialmente inseguros.

Controlar documentos não é um bicho de sete cabeças, é algo simples e fácil. No entanto, requer alguma organização e disciplina.

Segue um passo a passo para entender e atender ao requisito 7.5.3 das ISO 9001 e 22000, respectivamente para Sistemas de Gestão da Qualidade e de Gestão de Segurança de Alimentos, no que se refere ao controle da informação documentada:

PASSO 1) Tenha uma forma inequívoca de identificação do documento, cujo objetivo é permitir saber de forma fácil se uma cópia em uso é a versão mais atualizada. Isso pode ser feito mediante um código, um número de versão ou mesmo pela própria data de revisão;

FIGURA 1: Exemplo de cabeçalho de documento.

PASSO 2) Saiba onde cada documento está disponível, a fim de recolhê-lo quando isso for necessário. Documentos usados sem rastreio de localização podem ser um grande problema. Cuidado com fotocópias indevidas;

PASSO 3) Sempre que um documento requerer uma revisão, ele deve ser reaprovado, preferencialmente, por alguém que tenha responsabilidade e autoridade sobre as operações onde sua aplicação será utilizada, garantindo-se assim que o documento seja pertinente e completo;

PASSO 4) Recolha o documento obsoleto e substitua-o pelo documento revisado, sendo que o mais indicado é que apenas a cópia em sua última versão fique disponível no local de uso, evitando assim confusões pelos usuários;

FIGURA 2: Modelo de matriz de controle de documentos para atender aos passos 2, 3 e 4.

PASSO 5) Treine as pessoas que fazem uso deste documento sobre as mudanças ocorridas. Uma dica é marcar as mudanças com uma cor diferente ou outra forma que  chame a atenção, a fim de facilitar a identificação daquilo que foi modificado da última versão para a que estará em uso.

FIGURA 3: Exemplo de formas de identificar mudanças nos documentos.

Para controlar documentos, o importante é, acima de tudo, ter disciplina e organização, fazendo as devidas revisões e reaprovações quando necessárias, substituindo as versões obsoletas pelas atualizadas e garantindo os treinamentos sempre que cada documento for revisado.

Uma dica é que menos é mais, simplicidade ajuda!

Sobre a criação de documentos, indico conhecer o artigo Cuidado para não transformar seu sistema de gestão num cartório!, nele há dicas valiosas.

Outros artigos relacionados:

3 min leituraEste artigo traz 5 passos para controlar documentos, um tema que pode parecer simples e banal, mas a eficácia deste controle é um requisito decisivo e extremamente relevante para o […]

6 min leitura
0

Panorama das Certificações em Segurança dos Alimentos no Brasil

6 min leitura

As certificações em segurança dos alimentos vêm crescendo ano a ano no Brasil conforme mostra o gráfico a seguir. Isso acontece em razão de um mercado cada vez mais exigente, seja nas relações de varejo ou business to business, buscando garantir obviamente produtos seguros aos consumidores e evitar surtos de DVA. As certificações em segurança dos alimentos visam também a proteção de marcas, que podem, pela aplicação de um sólido SGSA, prevenir uma exposição negativa e consequentemente a perda de imagem, trazendo prejuízos milionários para as companhias.

Dentro deste universo das normas para Segurança dos Alimentos e Bebidas, aquelas que são reconhecidas pelo GFSIGlobal Food Safety Initiative, uma organização que mantém um efetivo trabalho para comparar os padrões de segurança dos alimentos em toda cadeia produtiva, são as mais adotadas. Isso ocorre justamente porque fazem parte do GFSI um vasto grupo de importantes companhias produtoras e comercializadoras de alimentos e bebidas (ver figura a seguir) que têm um grande poder de influenciar seus fornecedores.

As principais atividades dentro do GFSI incluem a definição de requisitos para esquemas ou protocolos em Segurança dos Alimentos por meio de um processo de benchmarking.

Este processo deve levar ao reconhecimento dos esquemas e protocolos de Segurança dos Alimentos existentes e aumentar a confiança por parte dos diversos stakeholders, considerando a aceitação e a implementação da certificação de terceiros ao longo de toda a cadeia de abastecimento alimentar. Em tese, ao menos, isso permitiria uma avaliação padronizada que deveria ajudar a reduzir a necessidade de auditorias múltiplas, poupando tempo e dinheiro.

Dentro destas normas para as quais o GFSI reconhece a compatibilidade em termos de requisitos para a implantação de um SGSA, temos  a FSSC 22000, a BRCGS, a IFS e a SQF, que serão brevemente apresentadas neste artigo.

FSSC 22000 – Food Safety System Certification https://www.fssc22000.com/

Este padrão normativo surgiu por iniciativa de uma fundação localizada nos Países Baixos que é administrada por um conselho de stakholders independentes, composto por representantes de vários setores da indústria de alimentos , sendo que começou a ser aplicada desde 2010.

A FSSC 22000 não é exatamente uma norma, mas um protocolo que une duas normas, sendo uma delas a ISO 22000 sobre Sistemas de Gestão de Segurança de Alimentos que tem requisitos para qualquer organização na cadeia produtiva de alimentos e bebidas, e a outra, uma das ISO/ TS conforme segmento de atuação, que podem ser vistos na tabela ao lado.

Além disso, para atender os critérios da certificação na FSSC 22000 também é preciso seguir as publicações com requisitos adicionais do Esquema FSSC 22000, cujas versões são atualizadas normalmente com maior intensidade que as ISO citadas.

Para se aprofundar nesta norma recomendo a leitura também dos artigos Novas informações sobre atualização do esquema FSSC 22000 v.5 e FSSC 22000: o que muda com o guia de cultura de segurança de alimentos.

O campo de abrangência da FSSC 22000, como se vê, é bastante amplo, indo da fazenda ao garfo.

Esta norma apresenta uma interessante vantagem sobre as outras quando se objetiva a construção de SGI – Sistemas de Gestão Integrados. Como ela segue a chamada “estrutura de alto nível” que segue a lógica do PDCA que são também protagonizadas pelas ISO 9001, 14001 e 45001 que tratam respectivamente de  Gestão da Qualidade, Gestão Ambiental e Gestão em Segurança e Saúde ocupacional, a integração de seus requisitos fica mais fácil e simples, tema que é tratado num artigo que pode ser visto aqui.

A FSSC 22000 se beneficia pelo reconhecimento das outras ISO, encontrando aceitação por todo o mundo, portanto, tem um marketing próprio e amplo, e também por isso, sua aceitação e reconhecimento.

Com isso, percebe-se que empresas que já possuem uma certificação ISO muitas vezes acabam por optar pela FSSC 22000 uma vez que estão familiarizadas com sua lógica de gestão. Talvez seja por isso que ela lidere com 69% das certificações aqui no país atualmente.

BRCGS – Brand Reputation Compliance Global Standards https://www.brcgs.com/

BRCGS é uma associação cujos principais membros são os varejistas da Grã-Bretanha e que desde 1996 vem trabalhando na harmonização de padrões em segurança dos alimentos para suas cadeias de abastecimento, sendo defensora dos seus interesses e de seus consumidores. Por isso, entre outras coisas, estabelece normas e regras para qualificar sua cadeia de abastecimento em todo o mundo e sua norma  BRCGS Food vem sendo aplicada desde 2004.

Além da Norma Global de Segurança dos Alimentos, o BRCGS publica outras normas para o segmento de alimentos e bebidas, como as de embalagens, de transporte e armazenamento. Por outro lado, não foca normas para fazendas, pomares, criações de animais e pesca.

A BRCGS Food e Pack somam 25% das certificações em Food Safety no Brasil, o que também é bem representativo.

Para os que tem interesse na BRCGS, sugiro os artigos BRCGS publica a versão 7 da Norma Global de Segurança de AlimentosBRC oferece módulo de avaliação em Cultura de Segurança dos Alimentos.

As normas BRCGS são bastante complexas, exigentes e detalhadas, e se o público-alvo de clientes está na Grã-Bretanha e União Europeia, esta pode ser uma boa escolha.

IFS – International Featured Standard https://www.ifs-certification.com/index.php/en/

IFS também é uma norma muito interessante, aplicada nas relações clientes-fornecedores no mercado business to business, encontrando espaço diretamente com os principais varejistas no Brasil, visando apoiar a segurança da cadeia de fornecimento, e atualmente conta com 5% do market share entre as normas.

Ela teve origem na Alemanha em 2003 e começou a ser utilizada já em 2004, tendo um escopo de aplicação similar ao da BRC, portanto, encontra aplicação em alimentos e bebidas, embalagens, transporte e armazenamento, mas não encontra aplicação para fazendas, pomares, criações de animais e pesca.

Se sua intenção é ter um SGSA baseado na IFS, não deixe de ler IFS Food publica a versão 7Como não levar um nocaute (KO) nas auditorias de segurança dos alimentos da IFS.

Esta norma também tem um bom reconhecimento, especialmente no mercado europeu, sendo bastante detalhada, explicando de forma bem clara como atender aos seus requisitos.

SQF – Safe Quality Food https://www.sqfi.com/

SQF é outra das normas que vem sendo utilizadas no Brasil por empresas que desejam estruturar um Sistema de Gestão em Segurança dos Alimentos,  e assim como a FSSC 22000, a SQF também oferece a possibilidade de uma cobertura do campo ao garfo dentro de seus escopos de atuação.

Atualmente ela representa 1% das certificações no Brasil, mas há planos audaciosos de crescimento.

Este padrão normativo nasceu na Austrália, na Universidade da Austrália Ocidental em Perth, e passou a ser adotado desde 2003 pela FMIFood Marketing Institute nos EUA, uma associação comercial nacional para a indústria de alimentos, especialmente varejistas e atacadistas. Por isso, encontra muita aceitação nos EUA, Canadá, México e Austrália, então, se os clientes internacionais de uma organização estão nestes países, aderir a esta norma pode ser uma sábia escolha.

Se o seu objetivo é a SQF, leia também os artigos  A norma SQF acaba de ser atualizadaSQF divulga códigos em português.

Ranking das certificações no Brasil

O gráfico a seguir mostra o número de certificações e o market share das Normas que foram citadas nestes artigo.

Termino por dizer que no meu ponto de vista não existe norma pior ou melhor para obter as certificações em segurança dos alimentos, mas sim aquela que é a mais aderente e apropriada ao propósito estratégico e contexto de cada organização. Deve-se levar em consideração o mercado de atuação de seus stakeholders e a modelagem já existente do SGSA de cada organização. Contudo, todas são muito parecidas e completas no final das contas, e justamente por isso, o GFSI propõe suas equivalências, diferindo no entanto, na apresentação de seus requisitos e propostas de gestão.

Para entender por que existem tantas normas para certificações em segurança dos alimentos e não uma unificação, leia o artigo: Por que existem tantas normas em Food Safety?

Deixo dois agradecimentos especiais: para Babi Ferrarese e Caroline Novak, que foram as responsáveis por coletar os dados usados nos gráficos deste artigo e que foram disponibilizados em grupos que tratam o tema Food Safety.

6 min leituraAs certificações em segurança dos alimentos vêm crescendo ano a ano no Brasil conforme mostra o gráfico a seguir. Isso acontece em razão de um mercado cada vez mais exigente, […]

7 min leitura
0

Os impactos da 4ª Revolução Industrial no segmento de alimentos – 2

7 min leitura

Imagine obter instantaneamente e em qualquer lugar informações de temperatura, pressão, vazão, pH, packs envasados, brix, cor, paradas de linha, produtos finalizados, sub e sobrepesos, estatísticas de parâmetros de qualidade, variações elétricas, desvios em PCCs ou PPROs e o que mais imaginar, acessadas diretamente de seu smartphone ou de um tablet!

Pois bem, isso já é possível a custos bem razoáveis.

Detalhe, sem os erros, rasuras ou falta de completude dos tradicionais registros em formulários de papel preenchidos a mão, que a cada dia serão mais obsoletos, como é hoje um disco de vinil com 33 rotações.

Poderemos usar também algoritmos capazes de avaliar inúmeros cenários, com tudo sendo analisado em tempo real. Teremos informações precisas quanto à decisão de liberar lotes, rejeitá-los, destinar a reprocesso ou quaisquer outras destinações especiais.

Isso poderá implicar uma redução drástica de erros derivados de falhas humanas, assim como de custos de não qualidade e liberação de alimentos e bebidas inseguras ao consumidor!

É preciso desmitificar a Inteligência Artificial. AI não são robôs humanoides (ao menos por enquanto), mas sim sistemas integrados que analisam as variáveis operacionais presentes em processos de fabricação e identificam potenciais situações de risco, informando os gestores ou realizando intervenções de forma autônoma, por exemplo, tomando decisões no controle dos processos fabris, e claro, numa avaliação muito mais ampla, rápida e precisa do que as que fazemos usando, para exemplificar, nossas tradicionais cartas de CEP – Controle Estatístico de Processos.

Ou seja, o sistema autonomamente poderá decidir em caso de um desvio nos limites das variáveis de um processo sobre o que fazer para trazer o processo de volta à situação de controle, como num PCC, e para onde desviar automaticamente o produto que porventura possa ter sido produzido em condições parametrizadas como “não conforme”. Isso é qualidade acontecendo realmente just in time.

Claro que todas estas informações de controles estarão armazenadas e exigem transparência. Nisto surge outro conceito importante, o de blockchain, que são “protocolos de confiança”, ou bases de registros e dados distribuídos e compartilhados publicamente.

Estas bases de dados permitirão criar um índice global para todas as operações industriais em qualquer segmento, como insumos, embalagens, aditivos, cadeias de armazenamento, de distribuição, etc.

Existirá uma nova forma de prover, controlar e dividir registros, com muito mais segurança e com dados muito mais confiáveis, revolucionando as auditorias.

Na prática isso significa ter laudos analíticos de controle de matérias primas e liberações de lotes, rastreabilidade de insumos e matérias primas, controles das variáveis operacionais dos processos, dados completos sobre uma produção industrial, mercado e distribuição numa base de dados comum e compartilhada cliente-fornecedor.

Tudo isso dito até aqui sobre a indústria 4.0 facilitará muito o controle de liberações de lotes no segmento business to business e no varejo. Portanto, potencializará o controle de estoques de matérias primas, insumos, embalagens e produtos acabados, e a própria distribuição, além, é claro, do controle de demandas de fabricação aumentando a assertividade dos PCPs.

Segue uma lista onde as tecnologias da Indústria 4.0 serão e já são úteis:

  1. Controle de entradas de matéria-prima, insumos, embalagens com uso de QR Code;
  2. Controle absoluto para entrada de notas fiscais apenas de fornecedores qualificados;
  3. Otimização e assertividade da manutenção preditiva;
  4. Impressão de peças em impressoras 3 D
  5. Laudos de análise do fornecedor transferidos no momento da entrada para o banco de dados da empresa:
  6. Robôs controlando estoques;
  7. Rastreabilidade total e instantânea = blockchain;
  8. Aumento da assertividade na predição da programação;
  9. Algoritmos tomando decisões em PCCs, por exemplo, conciliando binômio tempo x temperatura e decidindo sobre ajustes, retornos e reprocessos;
  10. Sensores de internet das coisas com vazão, nível, cor, temperatura, pH, pressão, etc., otimizando os controles operacionais;
  11. Conexões por ondas de rádio (sem cabos) levando as informações destes sensores aos bancos de dados e dos bancos de dados para operadores e gestores;
  12. Dados coletados on-line com tomada de decisão usando indigência artificial e permitindo a criação de grandes bancos de dados (big-data) nas nuvesns;
  13. Máquinas e equipamentos se autoajustando em suas variáveis operacionais, portanto, sem ação humana;
  14. Controle de rendimento on line ajudando a avaliar desempenho de linhas, matérias-primas, ingredientes, e portanto, fornecedores;
  15. Compliance – Favorecimento valor de ações das empresas devido a maior confiabilidade das informações;
  16. Informações sobre paradas de equipamentos, causa das paradas, velocidade packs/ min, L/ h, etc;
  17. Gestores acessando todos dados de performance industrial (KPIs) em seus smartphones ou tablets;
  18. Resultados de análises por lote associados com dados de processo;
  19. Entradas e saídas de estoque com inventários precisos em tempo real;
  20. Robôs controlando estoques e saídas de produtos;
  21. Emissão de notas fiscais e laudos de análise correlatos em tempo real;
  22. Redução de ociosidade e melhor ocupação fabril com AI decidindo programações de produção;
  23. Retroalimentações, inclusive reclamações e devoluções, mais precisas e rápidas;
  24. Coleta de dados de rastreabilidade a montante em segundos com precisas informações;
  25. Rastreabilidade a jusante, com total segurança sobre onde cada produto está na cadeia de distribuição;
  26. Simuladores auxiliando a determinação das melhores configurações de operação de linhas industriais, ou simulando cenários para a investigação de problemas e validar PCCs e PPROs;
  27. Novos pedidos e especificações sendo informadas on-line com protocolos de confirmação, evitando erros de comunicação;
  28. Informações em tempo real sobre produtos que estão vendendo mais e que demandam maior produção, assim como tendências de mercado;
  29. Acionamento de gestão de crises e recall localizando consumidores em seus smartphones e dando alertas;
  30. Redução drástica dos riscos da geração de produtos não conforme ou de liberados em situações inseguras por terem extrapolado limites de controle em PCCs ou critérios de controle em PPROs.

Também contribuirá em transações comerciais com pagamentos sendo efetuados a partir das liberações dos lotes e com precificação em muitos casos variável, segundo atendimento de especificações acordadas entre clientes e fornecedores.

Teremos, além de tudo isso, agilidade em decisões que afetem riscos aos públicos consumidores, possibilitando ações rápidas e precisas como num eventual caso de recall, ou seja, garantindo ainda mais segurança em termos de qualidade de produtos e serviços, agora na óptica da gestão de crises.

Por fim, nas perspectivas econômicas que regem as oscilações nas bolsas de valores, teremos muito mais confiabilidade em marcas e organizações, pois suas informações serão muito mais transparentes, somando-se ao fato de que haverá uma melhor previsibilidade sobre as tendências dos mercados em que atuam.

Mas e o custo disto tudo?

Certamente demandará investimentos, mas os custos associados com tecnologia vêm caindo diariamente, e breve serão quase tratados como commodities. Além disso, são sistemas que se pagam, seja pela redução de custos de não qualidade, pelos ganhos de produtividade, e claro, pela proteção das marcas e consumidores com o incremento em food safety.

E não para por aí, estão chegando as redes 5G que devem consumir até 90% menos energia que as redes 4G atuais, e com esta tecnologia, os tempos de conexão entre aparelhos móveis devem ser inferiores a 5 ms (milissegundos), face à latência de 30 ms das redes 4G, isso evita o chamado “delay“, otimizando radicalmente a possibilidade de controle de plantas industriais à distância.

O número de aparelhos conectados por área deve ser 50 a 100 vezes maior que o atual em muito pouco tempo e devem ser realizados aumentos drásticos na duração da bateria de dispositivos rádio receptores. Com isso, o uso de smartphones será maior, assim como de dispositivos de internet das coisas, e as máquinas, equipamentos, robôs, indústrias e negócios mais conectados ainda, num turbilhão de informação gerando ações e direcionando os rumos das indústrias de alimentos e bebidas.

Estima-se que com o uso das tecnologias que são abrangidas pela indústria 4.0 seja possível ganhar entre 10 e 40% em redução de custos de manutenções; 10 a 20% com redução de consumo de energia elétrica; e de 10 a 25% em eficiência operacional. Isso porque reduz setup, evita erros de operação e torna as operações mais enxutas.

Todas estas tecnologias e seus custos mais acessíveis também permitirão o uso de forma cada vez frequente da robótica, fazendo serviços com precisão, evitando erros e falhas de operação e a contaminação e falhas provenientes das ações humanas, lembrando também que robôs não têm problemas com regras de BPF quanto à higiene pessoal.

Isso tudo nos permitirá obter:

  1. Alimentos mais seguros e mais baratos;
  2. Redução do erro humano e operacional;
  3. Menor veiculação de patógenos via manipulação;
  4. Rastreabilidade mais rápida e confiável;
  5. Maior velocidade em gestão de crises;
  6. Melhor entendimento das necessidades dos stakeholders.

A nós humanos, caberão os serviços nos quais seremos melhores que os robôs, que precisem da sensibilidade humana, o que é bem relevante numa indústria de alimentos e bebidas que faz produtos para agradar aos desejos, paladares e anseios humanos.

Nosso papel será maximizar nossas interações com estas tecnologias, e na foto abaixo eu sou o sujeito careca tentanto fazer isso, ao aprender sobre máquinas que já possuem estes recursos, permitindo conexões on line e com realidade aumentada

O sujeito ao meu lado com um óculos descolado está utilizando uma tecnologia de realidade aumentada, pois com este recurso consegue ver ao lado de cada equipamento informações de produtividade, paradas e variáveis operacionais.

Por isso as competências e habilidades que precisaremos potencializar estarão associadas com o uso de nossas características sensoriais, organolépticas, emotivas, da criatividade e do relacionamento interpessoal, o que aliás, como já disse, tem tudo a ver com o desenvolvimento de produtos para o setor de alimentos e bebidas.

Mas claro, haverá também muito espaço ainda para a engenheira, a eletrônica, a computação, a física e a matemática, afinal, são elas que constroem e movem toda a indústria 4.0.

Você acha que isto é em um mundo distante? Que é ficção?

Olhe ao seu redor, as tecnologias e o modo de operação da indústria 4.0 já fazem parte da sua vida diária, ajudando-o a se comunicar por telefone celular com transmissão a baixo custo de informações, sons e imagens; fazendo reuniões ou dando aulas e treinamentos on line; ao buscar um meio de transporte com rotas otimizadas e emissão de notas fiscais; com marketing sobre medida oferecendo-lhe  produtos de acordo com suas buscas e perfis em redes sociais; para se hospedar numa cidade, via aplicativos; ao se locomover com inteligência na busca de rotas mais seguras e rápidas com aplicativos de celular; ao fazer contatos, contratar ou  procurar uma recolocação, via rede social profissional; até para arrumar uma namorada usando rede social específica; e claro, para pedir um lanche, um almoço ou um jantar.

Todas estas tecnologias já estão aí, monitorando dados, alimentando Big Data, gerando informações, tomando decisões com uso de AI, são o futuro, e o futuro é agora!

Seja bem-vindo ao mundo 4.0, use-o ao seu favor, explore todo o potencial que surge com a 4ª revolução industrial, olhe ao seu redor e admire este momento histórico que estamos vivenciando.

Esta nova revolução agora vai muito além do campo industrial, das oportunidades potenciais com que iremos nos deparar na gestão da qualidade e segurança dos alimentos, pois é uma revolução na forma humana de interagir, de se comunicar, de se relacionar, de consumir, de produzir, enfim, de viver!

Este artigo iniciou em Os impactos da 4ª Revolução Industrial no segmento de alimentos – parte 1.

7 min leituraImagine obter instantaneamente e em qualquer lugar informações de temperatura, pressão, vazão, pH, packs envasados, brix, cor, paradas de linha, produtos finalizados, sub e sobrepesos, estatísticas de parâmetros de qualidade, […]

5 min leitura
0

Os impactos da 4ª Revolução Industrial no segmento de alimentos – 1

5 min leitura

Descobertas e avanços na tecnologia atualmente crescem em progressão geométrica. Para se ter uma ideia do reflexo disso, hoje 75% do mundo já está conectado por smartphones e a perspectiva deste número é crescente a cada dia, conectando pessoas em todos os continentes, suas ideias e desejos!

Parece um simples detalhe, mas esses smartphones aproximam diversos grupos mercadológicos e interagem com todos o tempo todo, expondo suas demandas em relação à indústria produtora e o setor comercial, fornecendo informações de hábitos de consumo, tanto em termos quantitativos quanto qualitativos, facilitando assim o entendimento das tendências, e claro, maximizando o contato entre produtores e consumidores, seja no varejo ou no mercado business to business.

Não tenha dúvidas: seus posts, comentários, likes e visualizações nas redes sociais feitas de seu computador, smartphone ou tablet, assim como  suas compras on line, ou mesmo as visitas feitas a sites de compras, estão direcionando os futuros negócios e para onde migrará o fluxo financeiro e os esforços no desenvolvimento de novos produtos, ditando que tipos de produtos, cores, sabores, texturas e tendências serão lançados.

É o futuro que já chegou, onde a tecnologia vem se tornando cada vez mais acessível, e nesse sentido, temos algo que vem sendo chamado de a 4° revolução industrial ou Indústria 4.0.

Nossa geração está vivendo um grande marco de transformação, pois a tecnologia fluente está ajudando imensamente a todos os segmentos industriais, e claro, isso causará mudanças nas relações entre os diversos stakeholders que são afetados pelos produtos e serviços de uma organização, e em consequência, sobre as expectativas quanto aos padrões de qualidade, e obviamente, no segmento de alimentos e bebidas isso não é diferente.

Podemos dizer que as definições de foco no cliente foram atualizadas!

Chama-se 4ª revolução industrial porque a 3ª aconteceu em meados do século 20, com a chegada da eletrônica, da tecnologia da informação e das telecomunicações; a 2ª ocorreu por volta de 1850 com a intensificação do uso da eletricidade que permitiu a manufatura em massa; já a 1ª e normalmente mais lembrada, marcou a passagem da produção manual à mecanizada, entre 1760 e 1830, especialmente, pelo uso das máquinas movidas a vapor que usavam carvão como combustível, dando um salto pouco tempo depois, quando se começou a utilizar derivados de petróleo.

O termo indústria 4.0 ou a 4ª revolução industrial é uma expressão que engloba algumas tecnologias para automação e troca de dados, utilizando conceitos de sistemas ciber-físicos e, com isso, facilita a visão e execução de “fábricas inteligentes” capazes de trazer inúmeras oportunidades para a agregação de valor aos consumidores e aumento de produtividade nos processos, e claro, tem um grande potencial para auxiliar numa efetiva gestão da qualidade e ajudar a melhorar as rotinas associadas com a segurança dos alimentos nas organizações.

Para iniciar com um exemplo corriqueiro, já convivemos atualmente com um novo fenômeno que veio para ficar: a força das redes sociais como o Facebook, Instagram, LinkedIn, Twitter etc., ou grupos que se comunicam via WhatsApp e que são capazes de potencializar a amplitude de uma reclamação ou insatisfação, inclusive com fotos, áudios e até vídeos.

Com todas essas formas de comunicação em massa provenientes do uso generalizado da tecnologia, um erro de uma organização que venha a causar a insatisfação dos clientes, uma falha de food safety, seja pelo produto não atender suas expectativas, estar com algum tipo de falha ou contaminante, gerar algum dano, desagradar demandas de algum grupo de stakeholders, um serviço mal realizado, etc, podem imediatamente viralizar, dependendo da atratividade do problema ao público, e então se disseminar, chegando a milhares de consumidores.

Este processo pode ferir ferozmente a imagem de uma marca ou de toda uma organização, e em segundos, atingir mais pessoas do que campanhas tradicionais de marketing que custaram milhões ou de construção de marcas que levaram anos.

Atuar, portanto, em redes sociais no monitoramento, tratativa e contenção de problemas é uma boa prática, estando atento às inovações que surgem na forma de se comunicar com clientes e consumidores, como foi visto no artigo “O papel estratégico do SAC para a qualidade e a segurança dos alimentos“.

Ter uma boa e arrojada sistemática de SAC, alinhada com os novos conceitos tecnológicos, portanto, é necessário para toda e qualquer organização que queira mesmo sair da zona de conforto e francamente ouvir o que o consumidor tem para dizer.

Entrando mais fundo no assunto, atualmente temos muito mais acessos a grandes bancos de dados, chamados de Big Data, com boa parte das informações coletadas justamente das já citadas redes sociais, contendo uma quantidade enorme de informações em diversos servidores que funcionam em sistemas de redes operacionais, portanto, interligados entre si.

A capacidade per capita tecnológica do mundo para armazenar informações praticamente tem dobrado a cada 40 meses, desde a década de 1980.

Para essa perspectiva ficar mais clara em sua mente, compare o quanto conseguia armazenar num disquete de 3 ½ polegadas e o quanto pode armazenar agora num pendrive ou num HD externo, portanto, as limitações que tinha e que não existem mais!

A partir de 2012, foram criados a cada dia 2,5 exabytes (2,5 x 1018 bytes) de dados, sendo que 90% dos dados no mundo foram criados nos últimos dois anos, decorrente da adesão das grandes empresas à internet, sendo exemplos, novamente, as redes sociais, mas também dados de GPS, dispositivos embutidos e móveis.

Estes dados podem ser valiosos dando sustentação para análises de riscos, tomadas de decisão em processos com foco na redução de custos de não qualidade e aumento da segurança dos alimentos, rastreabilidade em toda a cadeia produtiva, desde a produção primária, indústria de transformação e distribuição, incremento nos controles associados com estatísticas para a abordagem de surtos em doenças veiculadas por alimentos, e onde a imaginação permitir.

Mesmo pequenos produtores podem se dar ao luxo de tirar vantagens do Big Data, uma vez que não precisam fazer grandes investimentos nem se preocupar com o sistema operacional e hardware, podendo acessar seus dados na “nuvem computacional”, utilizando tecnologias chamadas de Cloud Computing, que referem-se à utilização da memória e da capacidade de armazenamento e cálculo de computadores e servidores compartilhados e interligados por meio da internet, fora que as atualizações dos softwares são feitas de forma automática.

Isso tudo, mais os avanços em automação com tecnologias para conexão ampla, na capacidade de miniaturização de dispositivos de coletas de dados online e o surgimento de sensores de todo tipo, que permitem que praticamente qualquer equipamento eletrônico possa fornecer informações na rede em tempo real, serão muito vantajosos para a construção de processos enxutos, assertivos e com ganho de produtividade, qualidade e segurança, como por exemplo, ajudando no controle de diversas variáveis operacionais, prevenindo a ocorrência de contaminações em linhas industriais, monitorando e controlando PCC e PPROs.

Uma vez estando tais sensores acoplados em linhas industriais, teremos a aplicação da chamada “Inteligência das Coisas” ou como vem sendo conhecida no mundo, Intelligent Things, permitindo em tempo real e de forma muito dinâmica, obter informações sobre o controle operacional e informações como tempo, temperatura, pH, vazão, acidez, viscosidade, cor, turbidez, etc.

Isso tudo encontrará diversas aplicações em toda a cadeia produtiva de alimentos e bebidas, desde a agroindústria até o pós venda, como veremos na segunda parte deste artigo.

Este artigo continua em Os impactos da 4ª Revolução Industrial no segmento de alimentos 2.

5 min leituraDescobertas e avanços na tecnologia atualmente crescem em progressão geométrica. Para se ter uma ideia do reflexo disso, hoje 75% do mundo já está conectado por smartphones e a perspectiva […]

7 min leitura
0

Rancidez em alimentos e efeitos adversos à saúde

7 min leitura

A formação de odores e sabores estranhos e desagradáveis em óleos e gorduras e nos alimentos que as contêm como batatas e salgadinhos fritos, macarrão instantâneo, biscoitos amanteigados, entre outros, geralmente descrita como rancidez, é seguramente uma das reações mais importantes de deterioração de qualidade, podendo também implicar em riscos de segurança dos alimentos.

A rancidez é a propriedade do alimento definida como fator adverso de qualidade, promovida direta ou indiretamente por reações dos lipídios endógenos, que produzem sabor e aroma indesejáveis ou propriedades funcionais inaceitáveis, podendo ocorrer por via hidrolítica ou oxidativa.

A rancidez hidrolítica é um tipo de rancidez na qual os ácidos graxos são liberados dos triglicerídeos pela ação de enzimas presentes naturalmente, adicionadas intencionalmente ou por enzimas de microrganismos contaminantes.

Os resultados desta hidrólise são o aparecimento de sabor desagradável, aumento de acidez, aumento de susceptibilidade dos ácidos graxos às reações de oxidação e alteração de propriedades funcionais.

A rancidez hidrolítica deve-se à ação de lipases, amplamente distribuídas nos alimentos e que catalisam a hidrólise dos triglicerídeos, liberando ácidos graxos, e se o ácido graxo livre for C6, C8, C10 ou C12 será notado um sabor de ranço e ou de sabão.

TRIGLICERÍDEO —> lipase  —> GLICERÍDEO + ÁCIDO GRAXO

Produtos da rancidez hidrolítica:

A rancidez oxidativa, também conhecida como lipoperoxidação, pode ocorrer por via enzimática pela ação das enzimas lipoxigenases ou por via não enzimática, através da autoxidação ou da fotoxidação.

O processo de oxidação é dividido em 3 fases:

  1. Iniciação, na qual a presença de fatores internos e externos como luz, altas temperaturas, especialmente acima de 180°C, e presença de íons metálicos, principalmente Fe++, Cu++, Zn++ e Ni++, dará início ao processo, gerando instabilidade nas insaturações dos ácidos graxos, portanto, nas ligações duplas e triplas entre carbonos, com isso, possibilitando a quebra das insaturações e permitindo a formação de radicais livres;
  2. Propagação, que ocorre na presença do oxigênio. Os radicais livres formam os compostos primários da oxidação, chamados de peróxidos e hidroperóxidos, e nesta mesma reação provoca a formação de novos radicais livres de forma exponencial. Por isso esta fase é conhecida como propagação, sendo que quanto maior o consumo de oxigênio, maior a formação de peróxidos e de novos radicais livres;
  3. Terminação, onde os compostos primários gerados, peróxidos e hidroperóxidos, por serem moléculas muito instáveis, são responsáveis por processos de oxidação que resultam na degradação de vitaminas lipossolúveis (A, D, E e K), de ácidos graxos com a potencial produção de substâncias reconhecidamente tóxicas como malonaldeído ou indesejáveis como aldeídos, ácidos graxos cíclicos, cetonas, álcoois, epóxidos, hidrocarbonetos, etc., e que trazem como consequência final a alteração no sabor, aroma, cor, textura e redução no valor nutricional, e além disso, algumas também podem ser nocivas à saúde.

O malonaldeído (MDA) é um aldeído de cadeia curta, sendo um dos compostos medidos pela reação com o ácido tiobarbitúrico (TBARS), cuja formação ocorre pela decomposição dos hidroperóxidos lipídicos e sua concentração tem sido utilizada para estimar a intensidade da peroxidação lipídica em sistemas biológicos, em células e tecidos. O malonaldeído pode ser formado “in vivo” ou pré-formado em alimentos, e há estudos sugerindo que seja cancerígeno e mutagênico.

O artigo “Oxidação lipídica em alimentos e sistemas biológicos: mecanismos gerais e implicações nutricionais e patológicas”, que pode ser visto aqui, analisa os potenciais impactos à saúde humana de alimentos rançosos. Este artigo discute diversos problemas nutricionais decorrentes da ingestão crônica de alimentos oxidados e suas implicações fisiopatológicas, relatando o papel potencial da oxidação lipídica na ocorrência de diversas doenças como aterosclerose, diabetes, deficiências nutricionais, outros processos que envolvem a formação de radicais livres, e possivelmente até câncer.

Contudo, embora diversos estudos “sugiram” uma relação entre oxidação lipídica e neoplasia, pouco ainda se conhece a respeito da patogenia e, ainda mais, dos riscos genotóxicos, ou seja, da afinidade para interagir com o ADN, conferindo potencial mutagênico ou cancerígeno.

Por todos estes motivos, a natureza dos processos de oxidação lipídica em alimentos e em fisiologia humana deve ser mais estudada e conhecida, mas até lá, pelo princípio da precaução, alimentos rançosos, portanto, com seus lipídios oxidados, com elevada acidez e/ ou alto índice de peróxidos, devem ser evitados e estes limites controlados, sendo considerado um risco potencial.

Veja que na formação destas moléculas, os peróxidos surgem como intermediários das reações químicas, sendo que eles não são prejudiciais ao organismo humano, e sim os seus derivados, que podem ser tóxicos.

Esta peroxidação lipídica é iniciada, como visto, por formas químicas de oxigênio, de grande reatividade, chamadas de radicais livres, e a sua formação é acelerada pela presença de íons metálicos, por altas temperaturas, especialmente se acima dos 180°C, efeito da luz solar, pela concentração de oxigênio e por outros tipos de irradiações como micro-ondas, raio X, etc.

No aquecimento excessivo das gorduras, como na fritura, processos oxidativos e de degradação dos lipídios podem ser acelerados, por isso, é importante o controle da temperatura em processos industriais que usem fornos e fritadores, assim como se deve evitar reprocesso.

A oxidação pode levar à destruição de vitaminas, ácidos graxos, pigmentos e proteínas, mas a perda das qualidades sensoriais é o efeito mais visível decorrente deste processo.

Isso ocorre porque o número de moléculas geradas como subprodutos aumenta, sendo muitas delas pequenas e voláteis, liberando odor característico de ranço como é o caso de alguns aldeídos, e estes compostos voláteis formados podem fazer com que o alimento seja rejeitado mesmo estando em concentrações muito baixas, pois o odor de ranço é bem característico e causa repúdio.

Esta etapa geralmente é lenta, podendo durar horas, semanas ou meses, dependendo do tipo de gordura e dos fatores ambientais, porém uma vez iniciada a reação oxidativa dos lipídeos, é muito difícil de se controlar e reverter.

Um produto pode ao final do processo industrial estar com suas características sensoriais dentro dos padrões de especificação esperados, porém, já ter iniciado um processo de degradação lipídica, portanto, o problema poderá não ser detectado em atividdes de controle de qualidade, contudo, a shelf-life do produto será encurtada.

No processo de fritura, como exemplo, três componentes são responsáveis pelas mudanças ocorridas na estrutura dos lipídios: umidade do alimento que promove hidrólise dos triglicerídios, contato do óleo ou gordura com o oxigênio que promove alterações oxidativas e a alta temperatura do processo, especialmente se acima de 180ºC.

Ao final, na etapa de terminação, os substratos lipídicos tornam-se escassos, ocorrendo reações entre os próprios radicais livres.

Para medir a extensão da oxidação da gordura, dois tipos de testes normalmente são realizados:

  1. Acidez – Um elevado índice de acidez indica que o óleo ou gordura está sofrendo quebras em sua cadeia, liberando seus constituintes principais, os ácidos graxos. Por esse motivo, o cálculo desse índice é de extrema importância na avaliação do estado de deterioração (rancidez hidrolítica) do óleo ou gordura;
  2. Índice de peróxido – Um dos métodos mais utilizados para medir o estado de oxidação de óleos e gorduras via índice de peróxidos é determinado dissolvendo-se um peso de gordura em uma solução de ácido acético-clorofórmio, adicionando-se iodeto de potássio e titulando o iodo liberado com solução padrão de tiossulfato de sódio, usando amido como indicador. O resultado é expresso como equivalente de peróxido por 100 de amostra.

O artigo Métodos para avaliação da oxidação lipídica e da capacidade antioxidanteaprofunda a questão analítica.

DICAS PARA PREVENIR RANCIDEZ DE GORDURAS

Caixas, latas e baldes devem ser armazenadas ao abrigo de:

  • Luz solar direta e sob temperaturas amenas;
  • Umidade;
  • Longe de materiais com cheiro forte ou substâncias tóxicas;
  • Em embalagens íntegras e bem vedadas;
  • Com empilhamento adequado para evitar amassamento.

Gorduras armazenadas a granel devem:

  • Ter o descarregamento feito pelo fundo do tanque para se evitar respingos e incorporação de ar/ O2;
  • Ser mantidas em tanques de aço inox (AISI 304 ou AISI 316L) ou caso seja de aço carbono, revestido com resina epóxi grau alimentício, seguindo todas diretrizes para desenvolver um projeto sanitário;
  • Evitar contato com materiais de cobre, níquel e ferro e/ ou suas ligas inclusive em válvulas e tubulações;
  • Tampas devem ser herméticas para minimizar a entrada de oxigênio;
  • Ser mantidas em temperatura adequada em tanque isotérmico ou aquecido, sugerindo-se no máximo 5ºC acima do ponto de fusão;
  • Base do tanque de armazenamento deve ser inclinada para total esgotamento no esvaziamento;
  • Receber inspeção rotineira dos tanques para se verificar deposição no fundo ou nas paredes;
  • Possuir um desenho sanitário que facilite a limpeza;
  • Receber limpezas periódicas, indicando-se a cada dois meses, com água quente, preferencialmente com o uso de sprayballs (rotativo ou fixo), assim como limpezas profundas a cada 6 meses com detergente neutro. Em ambos os casos o tanque só deve ser usado após completamente seco;
  • Válvula de saída na parte inferior do tanque;
  • Ser dotado de isolamento térmico das tubulações ou aquecimento, seja por encamisamento ou traço elétrico, para se evitar entupimento;
  • Proteção do tanque com nitrogênio;
  • Evitar oxigênio em linhas de transporte e transferência, mantendo-as com nitrogênio.

Cuidados com manuseio

  • Evitar o contato das mãos diretamente na gordura ou usar luvas descartáveis;
  • Uso de utensílios de material inerte como inox ou plásticos;
  • Área de manuseio com superfícies de fácil limpeza, isto é, perfeitamente lisas;
  • As tubulações que transportam os óleos e gorduras dos tanques para áreas industriais devem ter uma inclinação que não permita empoçamento quando estiverem vazias, assim como não devem existir cantos mortos ou ângulos de difícil limpeza;
  • Cuidado com junções, válvulas e soldas não sanitárias e de materiais que possam catalisar processos oxidativos;
  • As tubulações devem ser mantidas cheias para minimizar contato com oxigênio, mas se for necessário esvaziá-las, devem ser preferencialmente preenchidas com nitrogênio. Após paradas prolongadas, como feriados ou férias coletivas, indica-se descartar o óleo ou gordura que ficou na tubulação.

Cuidados em processos de fritura

  • Evitar superaquecimento dos óleos e gorduras;
  • Evitar reúso de óleo e gordura.

7 min leituraA formação de odores e sabores estranhos e desagradáveis em óleos e gorduras e nos alimentos que as contêm como batatas e salgadinhos fritos, macarrão instantâneo, biscoitos amanteigados, entre outros, […]

5 min leitura
0

O risco do efeito Dunning-Kruger em profissionais de segurança de alimentos

5 min leitura

Vivemos a era da informação, basta uma “googlada” e voilà, o tema aparece ao toque de um dedo numa tela de computador. Com isso, muita gente passa a acreditar que sabe de tudo instantaneamente, porém, com uma imensa superficialidade.

Eis que surge um fenômeno curioso, que já até foi batizado, o efeito Dunning-Kruger que leva indivíduos que possuem pouco ou quase nenhum conhecimento sobre um assunto a acreditarem saber mais que outros muito mais bem preparados, causando uma superioridade ilusória.

Esse mecanismo da ilusão de superioridade foi demonstrado numa série de experiências realizadas por Justin Kruger e David Dunning em vários estudos que avaliaram habilidades tão distintas como compreensão de leitura, operação de veículos motorizados e jogo xadrez ou tênis, e constataram surpreendentemente, que a ignorância gera confiança com mais frequência do que o conhecimento, e claro, isso pode se aplicar também aos profissionais de food safety.

Dunning e Kruger propuseram que em relação a uma determinada habilidade, as pessoas incompetentes irão falhar em reconhecer:

  1. Sua própria falta de habilidade;
  2. As habilidades genuínas em outras pessoas;
  3. A extensão de sua própria incompetência;
  4. Sua própria falta de habilidade depois que forem treinados em um determinado tema.

Casos típicos são profissionais que acabaram de sair da academia, nunca vivenciaram, por exemplo, o dia a dia industrial, mas em posse de um diploma recém-conquistado acreditam piamente serem detentores de conhecimento igual ou superior a profissionais que já estudaram muito mais e/ ou que estão há anos no mercado de trabalho. Isso é um problema, pois fecha as possibilidades destes “calouros” aprenderem com quem tem mais experiência, conhecimento e know-how, como na metáfora do monge com a xícara de chá:

Para que este texto não seja mal interpretado, não desmereço os recém-formados, foi apenas um exemplo. O efeito Dunning-Kruger pode ocorrer com qualquer um, inclusive com profissionais com mais bagagem que se tornam intelectualmente arrogantes, e por vezes em temas que desconhecem, pois ninguém domina todos os assuntos com total profundidade.

O texto trata sobre profissionais que têm a falsa ilusão de superioridade, por acharem que detém expertise num assunto após assistirem a uma vídeo-palestra no Youtube ou ver um meme, pois apesar destes recursos serem ótimos introdutórios para despertar curiosidade, são insuficientes para fazer alguém dominar plenamente uma matéria.

Quando você não souber algo, diga “não sei”, então vá estudar para responder com propriedade.

Profissionais com este comportamento descrito por Dunning-Kruger podem sair prejudicados em suas carreiras, pois uma hora são desmascarados por outros profissionais, mas também são prejudiciais para as empresas que contratam seus serviços e para os colegas de trabalho que se deparam com estes sabichões.

O excesso de certezas sem conhecimento pleno facilmente leva a decisões erradas, porém, devido à empáfia que acompanha tanta pseudo-certeza, o indivíduo pode conseguir até convencer outros a agirem errado também.

Se este tipo de profissional estiver numa empresa em que outros não detém nenhum conhecimento no mesmo tema que ele, o estrago pode ser grande, afinal, em terra de cego quem tem um olho é rei, mesmo que esse rei careça de competência.

Então, se ao ler isso, num lapso de humildade, reconheceu em si mesmo os sintomas do efeito Dunning-Kruger, esvazie a sua xícara!

Mas há o outro lado disso também: a competência real pode enfraquecer a autoconfiança e algumas pessoas muito capacitadas podem sofrer de inferioridade ilusória.

Esses indivíduos justamente por conhecerem muito, sabem que há ainda muito mais a se aprender, e podem pensar que não são muito capacitados e subestimar as próprias habilidades, chegando a acreditar que outros indivíduos menos capazes também são tão ou mais capazes do que eles: a esse outro fenômeno dá-se o nome de síndrome do impostor.

Chama-se síndrome do impostor porque justamente pessoas em posições privilegiadas de cátedra ou dentro das organizações, justamente por dominarem muito determinados temas ou o segmento em que atuam, tem também total percepção de que existe todo um universo que ignoram, e se sentem meio que impostores, por ocuparem os cargos que ocupam. Curioso isso, não?

A síndrome do impostor também pode ter efeitos indesejados, quando indivíduos que dominam demais um tema acham que uma tarefa ou assunto é muito fácil e passam a supor que também são simples para os outros. Assim, têm dificuldade em ensinar ou explicar tarefas, efeito que eventualmente se vê, por exemplo, em professores com altas titulações acadêmicas.

O efeito Dunnig-Krueger pode ser sintetizado num gráfico:

  1. Pessoas com síndrome Dunning-Kruger acham tudo “fácil”, mas tem poucas entregas, ou entregas inconsistentes, superficiais ou mesmo ruins;
  2. Por outro lado, pessoas com a síndrome do impostor precisam de estímulo, pois ficam com medo de novos desafios, apesar da competência que possuem.

Para as lideranças nas indústrias de alimentos e bebidas pode ser bastante útil identificar pessoas com estes perfis:

É importante saber lidar com pessoas que tem autoconfiança elevada, mas baixa competência que podem tomar iniciativas erradas, por isso esse perfil tem que ser muito bem supervisionado, suas decisões verificadas, especialmente se podem impactar a segurança dos alimentos.

Analogamente, mas na posição inversa, também é preciso identificar e saber lidar com as pessoas que tem autoconfiança baixa, porém uma competência de mediana para alta, que não tem iniciativa e precisam ser estimuladas para que seu potencial possa ser melhor utilizado.

O segredo é a humildade intelectual, saber que por mais que você saiba sobre um tema, há sempre algo a aprender com alguém que saiba mais ou saiba de outros assuntos. Uma boa discussão acadêmica não é um duelo, mas uma troca de conhecimento, e principalmente, quem quer crescer não pode ter preguiça, um profissional tem que ler e estudar para SEMPRE.

Leia livros que os mais jovens têm deixado de lado pela facilidade das informações genéricas, rápidas e muitas vezes superficiais das redes sociais, acompanhe e leia legislações, participe de encontros com especialistas como seminários e congressos, ouça o contraditório com a mente aberta, busque sempre fontes confiáveis, leia artigos científicos, teses e dissertações, e claro, puxando a sardinha para nossa brasa, acompanhe e se mantenha atualizado em food safety lendo os artigos aqui no blog que tem reconhecimento do CAPES, e quando souber realmente muito, daí cuidado com o efeito contrário, a síndrome do impostor.

Pessoal, segue também o link para outros artigos sobre este efeito, caso queiram olhar outras perspectivas:

As fake news e a síndome de Dunning-Kruger:

O efeito Dunning-Kruger: porque as pessoasl falam sem ter nenhum conhecimento:

A estupidez dos “Especialistas” de internet em tempos de pandemia: o efeito Dunnin-Kruger:

Os prejuízos do efeito Drunning-Kruger para a vida profissional:

5 min leituraVivemos a era da informação, basta uma “googlada” e voilà, o tema aparece ao toque de um dedo numa tela de computador. Com isso, muita gente passa a acreditar que […]

3 min leitura
18

É preciso calibrar corpos de prova para detector de metais anualmente?

3 min leitura

Corpos de prova para detector de metais são esferinhas metálicas de ferro, metal não ferroso ou inox, em tamanhos específicos de acordo com a sensibilidade de cada detector de metais.

Normalmente esta esferinha metálica vem acondicionada em um invólucro robusto de plástico, que protege a esferinha de danos, amassos etc., e com uma janelinha transparente que permite a um observador enxergar que tal esferinha realmente está lá dentro.

Estes corpos de prova, quando comprados, devem vir acompanhados de uma declaração atestando sua composição (ferroso, não ferroso ou inox), assim como seu exato tamanho.

Normalmente, externamente no invólucro é registrado o tipo de metal que compõe a esferinha e seu respectivo tamanho.

Tais corpos de prova servem a um propósito: avaliar em intervalos regulares se um detector de metais continua percebendo a presença de cada um destes tipos metálicos.

Ao longo do tempo uma bolinha de ferro deixará de ser de ferro, ou uma de metal-não ferroso deixará de ser não-ferroso ou uma de inox deixará de ser de inox?

A princípio não!

Poderiam ocorrer, talvez, magnetizações destas esferas que pudessem intervir em suas propriedades, por isso devem ser mantidas longe de imãs ou de fortes campos magnéticos.

Ao longo do tempo uma esfera com um determinado tamanho mudará seu tamanho e massa, protegida dentro de um invólucro robusto de plástico?

A princípio não!

Se não houvesse o invólucro poderia, talvez, ocorrer alguma oxidação, dano ou amassamento. Neste caso, perderia massa, mas não ganharia. Então, supondo que isso ocorresse, caso o detector de metais ainda assim identificasse a esferinha, isso significaria que este equipamento ainda cumpre seu papel, e que permanece adequado e operante, justamente por ser capaz de ainda identificar o corpo de prova, e veja, se o corpo de prova perdeu massa, o detector de metais estará sendo efetivo em situação ainda mais difícil.

Se um observador é capaz de enxergar que uma esferinha de um corpo de prova feito de um determinado metal e com um determinado tamanho permanece protegida em seu invólucro robusto de plástico, e, que é mantida sempre distante de imãs e fortes campos magnéticos, o que justificaria impedir de continuar a usá-la como está?

A princípio nada!

Por isso, uma organização pode, baseada na gestão de riscos e em uma análise preditiva, determinar qual a real necessidade de pedir (ou não) a renovação de um laudo ou declaração que reateste a validade de cada um dos corpos de prova que possui, aquilo que vem sendo chamado de “calibração de corpos de prova”.

Dicas:

  1. Cuide bem de seus corpos de provas, mantendo-os longe de imãs e fortes campos magnéticos;
  2. Proteja-os de danos e amassados;
  3. Sempre que for usar o corpo de prova, previamente, vistorie se a esferinha metálica permanece visível.

Seguindo estas dicas, sua esferinha metálica permanecerá com a mesma composição de massa e tamanho. Portanto, por que anualmente pedir um novo laudo de calibração?

Não existe norma, legislação ou motivação técnica absoluta que obrigue realizar a calibração de corpos de prova para detectores de metal anualmente!

A empresa pode ter um procedimento interno, baseado em seu contexto e realidade, pelo qual demonstre e justifique que internamente uma pessoa competente, em intervalos regulares, avalia pela ótica preditiva se o corpo de prova permanece em perfeito estado ou se foi de alguma forma violado:

  1. Se estiver violado ou danificado, a organização deve solicitar uma revalidação que ateste a composição e o tamanho da esferinha metálica, ou melhor até, realizar a sua substituição;
  2. Porém, se estiver intacto, poderá permanecer em uso, pois continua a cumprir devidamente a sua função.

Este artigo foi motivado por visitas de consultoria em que clientes anualmente mandam “recalibrar” ou compram novos corpos de prova. Já estão com uma gavetinha cheia deles, todos em perfeito estado, e a princípio, sem nenhuma necessidade de fazer isso, gastando recursos que podem ser usados em outras demandas.

Espero ter ajudado algumas empresas, e para aquelas que todo ano recebem corpos de prova para “calibrar”, por favor, não fiquem chateados comigo!

Quem quiser ler mais, este tema já foi abordado em outros artigos aqui no blog:

  1. Frequência de troca dos corpos de prova para detectores de metais
  2. Corpos de Prova para detectores de metais – Calibração e Cuidados

3 min leituraCorpos de prova para detector de metais são esferinhas metálicas de ferro, metal não ferroso ou inox, em tamanhos específicos de acordo com a sensibilidade de cada detector de metais. […]

5 min leitura
7

Memes que falam verdades em segurança dos alimentos

5 min leitura

O termo “meme” foi usado pela primeira vez em 1976 por Richard Dawkins em seu livro “O Gene Egoísta” e equivaleria na memória analogamente a um “gene” na genética, a sua unidade mínima, sendo que memes se multiplicam de cérebro em cérebro.

Os memes podem ser ideias ou partes de ideias, línguas, sons, desenhos, capacidades, valores estéticos e morais, ou qualquer outra coisa que possa ser aprendida facilmente e transmitida como unidade autônoma.

Então o que parece uma brincadeira é na verdade algo sério, tem o potencial de ensinar e transmitir informações de forma concisa e simples, e já há até o estudo de modelos evolutivos da transferência de informação via memes, conhecido como memética.

O termo é bastante conhecido e utilizado no “mundo da internet”, referindo-se ao fenômeno de “viralização” de uma informação, ou seja, qualquer vídeo, imagem, frase, ideia, música etc, que se espalhem entre vários usuários rapidamente, alcançando muita popularidade.

Diante do potencial “educativo” dos memes, sua facilidade em ser absorvido e compreendido, ele pode ser uma ótima ferramenta para ajudar na construção de uma cultura da qualidade, ou especificamente, de segurança dos alimentos.

Selecionei uma dúzia de memes que servem para demonstrar este potencial. Espero que apreciem:

1) Este primeiro meme faz uma crítica irônica a organizações que acreditam que para ter um sistema de gestão em segurança dos alimentos, como na FSSC 22000, basta “comprar” um certificado, quando sua conquista vai muito além disso, exigindo um esforço em sua construção, seja elaborando, ajustando e/ ou adaptando rotinas, e claro, aculturamento a todos na empresa em prol da segurança dos alimentos.

2) Neste meme se brinca com as empresas que não validam seus processos, uma atividade tão essencial, por exemplo para garantir que PCCs e PPROs em Planos de HACCP são capazes de controlar eficazmente um perigo significativo à segurança do alimento.

3) Esse meme levanta a questão sobre os auditores que querem emitir não conformidades baseados em opiniões, sem o devido embasamento de uma norma de referência como a FSSC 22000, BRC, IFS, SQF etc, nem na legislação ANVISA, MAPA ou mesmo no Codex Alimentarius, nem em acordos entre partes interessadas ou nos procedimentos da própria organização.

4) Este meme se apropria do mesmo assunto que o anterior, uma crítica ao “achismo” de alguns auditores que usam argumentos frágeis para justificar uma não conformidade. Sugiro a quem quiser se aprofundar mais neste tema, os artigos Inteligência emocional em auditorias de Segurança de Alimentos e Dicas para que auditado e auditor se comportem como damas ou cavalheiros.

5) Este é um dos meus preferidos, trata de empresas que criam burocracias demais, tornam seu sistema de gestão em segurança dos alimentos um verdadeiro elefante branco, com muitos procedimentos e rotinas que não agregam valor ou contribuem efetivamente para a segurança dos alimentos, mas que quando questionados sobre qual o motivo de tais procedimentos, culpam a FSSC 22000 ou outra norma de referência.

6) Este meme segue a mesma crítica do anterior, empresas que criam rotinas desnecessárias que em nada contribuem efetivamente para os resultados da organização. Neste assunto, sugiro ao leitor dar uma olhadinha no artigo Cuidado para não transformar seu sistema de gestão num cartório!.

7) Este próximo ironiza algo que se escuta muito em auditoria “puxa, estava tudo tão certinho, foi a mão podre do auditor que pegou o problema”. Acredite, não existe mão podre de auditor, se ele pegou é porque a não conformidade estava lá dando bandeira.

8) Esse é ótimo, trata de uma crítica a empresas que praticam a chamada “contra-auditoria”, ou seja, montam estratégias para ludibriar os auditores, a fim de que sua amostragem seja prejudicada ou que evidências de não conformidades sejam ocultadas.

9) Este tem uma característica ótima, meiga, para ensinar que uma não conformidade não é um grande problema, ao contrário, é uma oportunidade de melhoria, de rever processos e rotinas, de girar o PDCA e operar num patamar que propicie maior garantia da qualidade ou segurança dos alimentos.

10) Este é um clássico, muito útil em treinamentos com equipes pouco engajadas, ironizando organizações ou profissionais que querem ter um sistema de gestão em segurança de alimentos sem os devidos esforços que isso requer. Sobre este tema, há um artigo ótimo intitulado O perfil de líderes que favorecem a Cultura Food Safety.

11) Este meme brinca com as empresas que não tratam efetivamente suas não conformidades, investigando a causa-raiz e tomando contramedidas às causas dos problemas, e com isso, os problemas voltam a se repetir.

12) Para finalizar, meu favorito. Este meme num tom singelo valoriza a atividade dos profissionais que atuam em qualidade e segurança dos alimentos, atividade esta para quem realmente tem paixão, desafios em resolver problemas.

O poder dos memes pode ser visto nas redes sociais. Falando por experiência própria, quando publico artigos de 3 a 8 minutos de leitura no LinkedIn, normalmente eles recebem em torno de 200 views; contudo, um meme alcança mais de 20.000 views, como o exemplo abaixo. Isso sem contar que circulou na maioria dos grupos de WhatsApp sobre o tema gestão da qualidade em que participo, e provavelmente também, em muitos dos quais eu não participo.

Espero que tenham gostado dos memes selecionados, mais ainda, que tenham se identificado e dado algumas risadas com alguns deles, e lembre-se, são figuras de imagem simples, mas que passam conceitos complexos, por isso, tão úteis para treinamentos e a criação de uma cultura de qualidade e food safety, da mesma forma, servindo para abrir reuniões que irão abordar temas delicados.

5 min leituraO termo “meme” foi usado pela primeira vez em 1976 por Richard Dawkins em seu livro “O Gene Egoísta” e equivaleria na memória analogamente a um “gene” na genética, a […]

Compartilhar
Pular para a barra de ferramentas