3 min leitura
1

ATUALIZAÇÃO: Raios X para detecção de corpos estranhos não são considerados irradiadores de alimentos

3 min leitura

O recente post  “Anvisa entende que alimento que passa por raios X deve ser rotulado como irradiado” causou muita polêmica e comentários nas redes sociais, uma vez que esta não era a interpretação de todo o mercado. De acordo com a resposta de um atendente do Anvisa Atende, havia uma associação direta entre um alimento que passou por raio X e um alimento irradiado, implicando em necessidade de rotulagem deste alimento para informar o consumidor.

Entenda a polêmica

Uma empresa, apenas com a finalidade de ter documentado que não precisaria rotular seu produtos que passam por raio X como irradiados, realizou uma consulta formal à Anvisa, pelo canal ANVISA atende, na expectativa de confirmar o entendimento. Eis que a resposta foi contrária ao senso comum, sendo orientada a rotulagem conforme a RDC Nº 21, DE 26 DE JANEIRO DE 2001.

O ponto que deixou brecha ao entendimento é que:

2.1.2. Alimento irradiado
É todo alimento que tenha sido intencionalmente submetido ao processo de irradiação com radiação ionizante

4.2.Fontes de radiação
As fontes de radiação são aquelas autorizadas pela Comissão Nacional de Energia Nuclear, na
conformidade das normas pertinentes, a saber:
a) Isótopos radioativos emissores de radiação gama: Cobalto – 60 e Césio – 137;
b) Raios X gerados por máquinas que trabalham com energias de até 5 MeV; (cinco milhões de eletrovolts)
c) Elétrons gerados por máquinas que trabalham com energias de até 10 MeV.

Não demorou para as manifestações no LinkedIn serem de questionamento. Até marquei a Anvisa para participar do debate. Vejam algumas interações:

A empresa que fez o questionamento recebeu uma semana depois, espontaneamente, uma atualização, conforme abaixo:

Prezado(a) Senhor(a),

Em atenção à sua solicitação, retificamos a resposta do protocolo 2023193394, tendo em vista que a resposta inicialmente informada foi atualizada.

Deste modo, segue abaixo a resposta atualizada do protocolo supracitado:

Equipamentos de raios-x utilizados na indústria de alimentos para detecção de metais (perigos físicos) não são considerados irradiadores de alimentos.

Alimentos irradiados são aqueles processados em equipamentos (raios-x, raios gama, aceleradores de elétrons) com a finalidade de inibir a germinação, reduzir a carga de microrganismos, controlar patógenos ou infestação e/ou estender o prazo de validade de alimentos perecíveis.

Portanto, para àqueles alimentos que passam por raios-x, com a finalidade exclusiva de detectar perigos físicos, não se aplicam as disposições da Resolução – RDC n. 21/2001.

O que podemos aprender com o caso?

Pelo menos eu aprendi que:

Legislação é elaborada por comitês de profissionais que tem expertise e entendimento em um tema. Por melhor que os textos sejam redigidos, sempre poderão trazer ambiguidades e “zonas cinzentas” de entendimento, pois o que é claro para os experts, pode não ser para a maioria.

Os atendentes de plantão do canal de dúvidas podem fazer intepretações simplistas no seu dia a dia, retornando para a sociedade interpretações equivocadas.

A inteligência, o bom senso e a colaboração são a fortaleza dos novos tempos.

Nem sempre é preciso braço de ferro ou tratamentos indelicados para se obter um retorno.

A Anvisa emite atualização para se retratar.

3 min leituraO recente post  “Anvisa entende que alimento que passa por raios X deve ser rotulado como irradiado” causou muita polêmica e comentários nas redes sociais, uma vez que esta não […]

3 min leitura
0

Arte e microbiologia? Conheça a Ágar Arte criada por Fleming

3 min leitura

Arte e microbiologia combinam? Se o homem tivesse criado uma máquina do tempo, essa seria uma ótima pergunta para fazer a Alexander Fleming.

Como você deve ter aprendido na faculdade, Fleming mantinha um laboratório bagunçado. Ele deixava placas de Petri, microrganismos e quase tudo o mais desordenado em suas bancadas de laboratório, sem cuidados. Um dia, em setembro de 1928, Fleming voltou de uma viagem e encontrou algum tipo de gosma crescendo em uma pilha de culturas bacterianas abandonadas e matando-as. O círculo de gosma era um fungo. Naquele momento casual, Fleming descobriu as propriedades antibióticas da penicilina, propriedades que mudariam o mundo.

Além de trabalhar como cientista, e bem antes da descoberta dos antibióticos, Fleming pintava. Ele era membro do Chelsea Arts Club, onde criou aquarelas amadoras. Menos conhecido é que ele também pintou em outro meio, organismos vivos. Fleming pintou bailarinas, casas, soldados, mães alimentando crianças, bonecos de palito lutando e outras cenas usando bactérias.
Algumas obras de Fleming podem ser vistas acima

Ele produziu essas pinturas cultivando microrganismos com diferentes pigmentos naturais nos lugares onde queria cores diferentes. Ele enchia uma placa de Petri com ágar, uma substância semelhante à gelatina, e então usava uma ferramenta de laboratório de arame chamada loop para inocular seções da placa com diferentes espécies. As pinturas eram tecnicamente muito difíceis de fazer. Fleming teve que encontrar microrganismos com diferentes pigmentos e então cronometrar suas inoculações de forma que as diferentes espécies crescessem ao mesmo tempo. Essas obras existiam apenas enquanto uma espécie se transformava nas outras. Quando isso acontecia, as linhas entre, digamos, um chapéu e um rosto ficavam borradas; assim também eram as linhas entre arte e ciência.

Diante de tudo isto, a Sociedade Americana de Microbiologia (ASM) possui seu concurso anual de Arte Ágar, que premia arte criada em uma placa de Petri usando microrganismos vivos em crescimento. Isso é arte ágar! Os cientistas usam microrganismos naturalmente coloridos, como a bactéria vermelha Serratia marcescens , ou organismos geneticamente modificados, como a levedura Saccharomyces cerevisiae  transformada com genes de violaceína, como ‘tinta’ e vários tipos, formas e tamanhos de ágar como uma ‘tela’.

E em setembro de 2023, a ASM abre as inscrições para mais um concurso com o tema Microbiologia no Espaço. O sistema solar estava em toda parte na reunião deste ano da ASM Microbe. Tiveram uma discussão fascinante entre Andy Weir, autor de “The Martian”, e a astronauta Kate Rubins, Ph.D.  Os membros da equipe da NASA trouxeram amostras espaciais para o evento Day of Science, enquanto a ex-cientista de alimentos da NASA Vickie Kloeris, exibiu comida espacial no evento Micro Bazaar. E o planetário do Instituto Lunar e Planetário fez uma aparição sinistra no centro de convenções.

“Essa foi toda a inspiração que precisávamos para decidir que o tema do concurso Ágar Arte deste ano seria “Microbiologia no Espaço.” Qualquer interpretação que você fizer será aceita, desde que haja uma conexão entre micróbios e o espaço sideral: micróbios em naves espaciais, vida em outros planetas (ou galáxias), panspermia, etc. O concurso será aberto em início de setembro e vai até outubro. Fique atento aos canais promocionais para atualizações sobre as datas exatas (e algumas notícias empolgantes sobre os prêmios deste ano).

Se quiser se inscrever, clique aqui.

A foto em destaque neste artigo é o trabalho do vencedor da categoria profissional do ano de 2022. O grupo chileno retratou Fanny Hesse (1850-1934), que foi uma técnica de laboratório e ilustradora científica americana. Em 1881, enquanto trabalhava com seu marido Walther Hesse no laboratório de Robert Koch, ela introduziu o uso de ágar para cultura de microrganismos, uma técnica ainda amplamente utilizada. Talvez ela nunca tenha imaginado que essa inovação mudaria a forma como milhares de microrganismos diferentes podem ser cultivados para uma ampla gama de propósitos, incluindo a produção de bioarte. Na verdade, sem a notável contribuição de Fanny, este concurso de arte em ágar não seria possível. Nestas placas de ágar, foram usadas 4 cepas bacterianas para retratar Fanny Hesse de uma maneira que lembra os retratos de arte pop de Andy Warhol. Desta forma, o grupo prestou uma humilde homenagem a uma pessoa marcante na história da microbiologia.

3 min leituraArte e microbiologia combinam? Se o homem tivesse criado uma máquina do tempo, essa seria uma ótima pergunta para fazer a Alexander Fleming. Como você deve ter aprendido na faculdade, […]

4 min leitura
1

Ingeriu corpo estranho em alimentos? Medicina orienta a deixar “sair naturalmente” se tiver menos que 6 cm

4 min leitura

A não ocorrência de corpos estranhos é uma preocupação para a indústria de alimentos. A gestão destas ocorrências passou a ser priorizada depois da publicação de legislações específicas, como a RDC 623/2022, da Anvisa. Mas do ponto de vista médico, o que fazer em caso de ingestão de um corpo estranho?  Realizar um procedimento cirúrgico ou deixar “sair naturalmente”?

Esta pergunta parece desconexa com o mundo dos responsáveis pela qualidade e segurança dos alimentos nas empresas. Porém, em muitos estudos APPCC, dependendo da metodologia,  o critério de severidade do perigo pode estar relacionado ou não à necessidade de internação.

Assim, compartilho um trecho de uma publicação recente da revista Medscape:

Dois novos estudos sugerem que, mesmo quando uma pessoa engole algo potencialmente prejudicial como uma lâmina de barbear ou um ímã, a melhor conduta para um médico pode ser deixar a natureza seguir seu curso.

Alguns adultos que chegam ao pronto-socorro depois de engolir uma lâmina de barbear, uma bateria, um ímã ou vários objetos o fazem para “receber um benefício secundário”. Eles queriam receber atendimento médico, passar a noite no hospital ou outras atenções.

Alguns se tornam “passageiros frequentes” – retornando várias vezes ao mesmo hospital depois de engolir algo potencialmente prejudicial. Este grupo pode incluir presidiários e pessoas com problemas psiquiátricos.

Outros adultos engolem coisas por acidente, como aqueles com capacidade mental diminuída, pessoas intoxicadas e idosos com dentaduras que não percebem que há uma espinha de frango ou peixe em sua comida até que seja tarde demais.

Em ambos os casos, os médicos geralmente pedem um raio-X, descobrem com o que estão lidando e então decidem: inserimos um tubo na garganta do paciente com um dispositivo para recuperar os objetos ou mantemos lá e “deixamos a natureza seguir seu curso? Devemos internar a pessoa no hospital durante a noite ou mandá-la para casa com uma lista de sintomas que, se ocorrerem, ela deve voltar imediatamente ao hospital?

Dois novos estudos inclinam-se para uma gestão conservadora ou para deixar a natureza seguir seu curso, na maioria dos casos.

Comprimento do corpo estranho é a chave

Uma equipe de pesquisadores da Universidade do Sul da Califórnia descobriu que a remoção do corpo estranho não dependia de quão “alto risco” era o objeto – como uma bateria que poderia vazar ácido ou uma lâmina de barbear afiada.

Também não importava quantos objetos alguém engolia de uma só vez. Não houve cortes internos, obstruções intestinais ou fístulas quando revisaram os registros médicos de 302 casos. As fístulas são canais estreitos formados entre órgãos ou um órgão e a pele que podem causar vazamentos, infecções e outros problemas.

Apenas o comprimento do corpo estranho fez a diferença. Se um adulto engolisse um objeto com mais de 6 cm (cerca de 2,5 polegadas), era melhor removê-lo. Caso contrário, não importava na maioria dos casos se eles o retirassem ou esperassem que o corpo o removesse.

Eles estudaram pessoas que engoliram objetos estranhos de 2015 a 2021. A idade média foi de 29 anos, 83% eram homens e os pacientes foram internados no hospital cerca de três vezes cada.

Entre os 302 casos, 67% dos objetos engolidos eram cortantes ou pontiagudos, 38% eram opacos, 8% eram magnéticos e 5% eram corrosivos, como baterias. Quase 1 em cada 5 pacientes, 18%, engoliu vários objetos.

Em 40% dos casos, os médicos usaram a endoscopia para retirar os objetos. O restante teve conduta conservadora.

Doze dos pacientes foram operados. Em 10 casos, os objetos cortaram algo internamente e em dois casos, um objeto ficou preso. Os 12 pacientes de cirurgia tinham objetos mais longos, cerca de 4,5 polegadas, em comparação com pouco mais de 1 polegada em pessoas que não fizeram cirurgia.

Pacientes ambulatoriais

Em outro estudo, pesquisadores australianos relataram 157 casos de objetos engolidos envolvendo 62 pacientes.

No estudo retrospectivo – que analisa o comportamento passado – os pesquisadores examinaram os registros médicos nas 157 vezes em que as pessoas engoliram um objeto estranho. A idade média era de 30 anos, metade eram homens e cerca de dois terços eram prisioneiros. Mais de 4 em 5 tinham um histórico de saúde mental.

Pilhas foram engolidas em 23% dos casos, supostos balões contendo drogas em 17% e lâminas de barbear em 16%. Apenas uma pequena porcentagem, 4%, engoliu ímãs. Cerca de 40% dos casos eram objetos “miscelâneos”. Em um caso houve um paciente que precisou passar por uma cirurgia para remover cerca de 500 moedas engolidas.

Pouco mais da metade dos pacientes (55%) foram tratados de forma conservadora. Os casos de alto risco tinham a mesma probabilidade de serem tratados de forma conservadora ou com endoscopia. Semelhante ao estudo da USC, não foram relatadas perfurações ou obstruções intestinais.

A abordagem geral foi retirar objetos se eles causassem uma perfuração ou ficassem presos no esôfago. Caso contrário, as pessoas eram tratadas como pacientes ambulatoriais.

Um trabalho como este pode reacender a discussão sobre o critério legal no Brasil sobre a tolerância dimensional para contaminantes físicos em alimentos: 2,0 mm se rígidos ou com um comprimento acima de 7,0 mm se pontiagudos.

E acontece mesmo?

Só para ficar em relatos avulsos, já  publicamos aqui no Food Safety Brazil, um case de ingestão de metal que não causou dano ao consumidor, de 2012, com um vídeo de um rapaz comentando que ingeriu uma lâmina de barbear e os médicos orientaram a observar os sintomas e só retornar se notasse sangue nas fezes.

E também há uma notícia de mídia de uma criança de 5 anos que engoliu um parafuso e foi liberado a voltar para casa após fazer um raio x.

O que você achou do resultado destes estudos?

Principal referência: Swallowed Razors, Magnets, and More: New Advice for Doctors, Medscape.

Fonte da imagem: G1 Sorocaba e Jundiaí

Leia também:

https://foodsafetybrazil.org/mudancas-da-norma-fssc-22000-v-6-gestao-de-corpos-estranhos/

Qual limite devo adotar para matérias estranhas rígidas em alimentos?

 

4 min leituraA não ocorrência de corpos estranhos é uma preocupação para a indústria de alimentos. A gestão destas ocorrências passou a ser priorizada depois da publicação de legislações específicas, como a […]

10 min leitura
0

Como medir ozônio na água e no ar da indústria de alimentos

10 min leitura

O uso de ozônio vem sendo cada vez mais divulgado na cadeia produtiva de alimentos, demonstrando sua enorme eficácia e diversidade de aplicações neste setor. Veja por exemplo, aqui, o post da palestra de Vivaldo Mason no V Workshop Food Safety Brazil, em junho de 2022, em Goiânia. Entretanto, o ozônio ainda é pouco utilizado para esse tipo de indústria. Uma das razões é que muitos desconhecem COMO MEDIR ozônio na água ou no ar e, por isso, ficam inseguros em avançar na adoção do ozônio. Este post tem o objetivo de preencher essa lacuna no conhecimento de muitos profissionais de indústrias de alimentos do Brasil.

1. Medição da concentração de ozônio na água ozonizada*
A concentração de ozônio na água pode ser medida por meio de duas tecnologias principais: kits de teste colorimétrico ou medidores eletrônicos.

1.1 Métodos colorimétricos para medição de ozônio dissolvido em água
Os métodos colorimétricos são classificados como indiretos porque utilizam reações específicas para medir ozônio e a quantificação é possível a partir do produto da reação ou degradação do reagente específico. Estes métodos são muito utilizados e possuem um custo mais baixo quando comparados ao método direto, principalmente devido à simplicidade instrumental das medidas realizadas.

1.1.1 Método colorimétrico índigo
O método de índigo utiliza o reagente químico índigo trisulfonato que reage instantaneamente e quantitativamente com o ozônio, alterando a tonalidade da cor azul do reagente em proporção direta com a quantidade de ozônio presente. Ácido malônico é adicionado ao reagente e está incluído na ampola para impedir a interferência de até 3ppm de cloro. Os resultados são expressos em ppm (ou mg / L) de O3.
Depois, a solução ozonizada passa a ser analisada por um analisador colorimétrico calibrado que avalia a concentração de ozônio dissolvido. Existem fabricantes que fornecem um kit contendo um reagente químico em ampolas, selado a vácuo e um colorímetro que avalia por meio de lâmpadas e sensores a alteração da tonalidade, obtendo a concentração de ozônio.
Desta forma, os valores obtidos são convertidos em ppm (mg/L) de ozônio dissolvido com a tabela de calibração incluída no equipamento.

Figura 1: Método Índigo para medição de ozônio dissolvido.
Fonte: fabricante

1.1.2 Método DPD
O método utilizado para medir ozônio é o DDPD (uma forma de DPD substituída com metil, que é N, N-dietil-p-fenilenodiamina) desenvolvido e patenteado pela empresa Chemetrics®. A solução ativadora de iodeto de potássio é adicionada à amostra antes da análise. O ozônio reage com o ânion iodeto para liberar iodo livre. O iodo, em seguida, reage com o reagente para produzir um DDPD azul-violeta. Pela intensidade da cor, mede-se a concentração. Vários halógenos livres também podem produzir cor azul-violeta com o reagente DDPD, e, portanto, interferir na análise de ozônio.

Figura 2: Métodos DPD para medição de ozônio dissolvido.
Fonte: fabricante

1.2 Métodos eletrônicos para medir ozônio em água

1.2.1 Monitores eletrônicos

Os monitores ou controladores eletrônicos para medir ozônio dissolvido usam um amperímetro coberto por membrana permeável mantendo-a esticada firmemente sobre um cátodo de ouro ou platina.
Uma solução de ânodo e eletrólito de prata completa o circuito interno. Durante a operação, o ozônio difunde-se da amostra através da membrana. Uma vez dentro do sensor, o ozônio reage com a solução eletrolítica para formar um composto intermediário. Uma tensão de polarização aplicada ao cátodo reduz completamente esse composto intermediário, produzindo uma corrente entre o cátodo e o ânodo medido pelo analisador.
Essa corrente é diretamente proporcional à taxa na qual o ozônio se difunde através da membrana para o sensor, o que é proporcional à concentração de ozônio na solução. As desvantagens são seu custo de aquisição mais alto. Uma vantagem do método eletrônico é que ele mede a amostra em tempo real e permite controlar o gerador de ozônio para manter os níveis de ozônio dissolvidos desejados.

Figura 3: Métodos Eletrônico para medição de ozônio dissolvido.
Fonte: fabricante

1.2.2 Método ORP para medição de ozônio em água

ORP significa “Oxidation Reduction Potential”, em português: Potencial de Redução de Oxidação, que é medido por uma sonda ORP. Em termos práticos, é um voltímetro que mede a tensão (em milivolts) através de um circuito formado por um eletrodo de referência construído com fio de prata (polo negativo) e um eletrodo de medição construído de uma banda de platina (polo positivo) com uma solução eletrolítica no meio.
Embora o ORP não meça o ozônio dissolvido e sim condutividade elétrica (a menos que o ozônio seja única substância oxidante presente na solução), ele pode ser muito útil para controlar a produção de geradores de ozônio em água que não contenha cloro, pois o cloro pode interferir na análise por ORP. Um exemplo deste tipo de medidor é em mineradores de água potável. Quando um nível predefinido de ORP é excedido, um sinal elétrico é enviado ao gerador de ozônio para diminuir a produção de ozônio e vice-versa.
O eletrodo de referência é cercado por uma solução de água e sal (eletrólito), que produz outra pequena tensão. A voltagem produzida pelo eletrodo de referência é constante e estável, portanto, fornece uma referência contra a qual a voltagem gerada pelo eletrodo de medição de platina e pelos oxidantes na água pode ser comparada.
A diferença de tensão entre os dois eletrodos está no que é realmente medido pelo medidor. Nota: pH alto ou baixo pode alterar as leituras de ORP envolvendo ozônio dissolvido devido à rápida decomposição do ozônio em pH elevado. A precisão ideal requer níveis de pH entre 6,5 e 8,0.

Figura 4: Medidor ORP para medição de ozônio
Fonte: fabricante

2. Medição de concentração de gás ozônio no ar

Sabe-se que o ozônio gasoso pode ser perigoso em altas concentrações. As empresas devem garantir que em locais habitados sejam usadas doses seguras, e nas áreas inabitadas não deve haver vazamentos para ambientes habitados. Para isso, a área deve ser monitorada para segurança das pessoas e para garantir que as concentrações apropriadas de ozônio estejam disponíveis para os fins a que se destinam.
O ozônio na fase gasosa pode ser uma ferramenta muito benéfica na indústria de processamento de alimentos. O armazenamento de alimentos processados em atmosferas modificadas contendo pequenas quantidades de ozônio gasoso ajuda no controle de bolores, leveduras e muitos contaminantes transportados pelo ar, tanto nos produtos alimentícios quanto nas superfícies das prateleiras de armazenamento e outros equipamentos.
Os ambientes com “atmosfera modificada” rica em ozônio representam as aplicações eficientes para redução de microrganismos em alimentos, mas também existem outros usos, principalmente para controle de pragas em produtos agrícolas armazenados, maturação para amaciamento de carne, armazenamento de barris de vinhos, cura de queijos etc.
Dentre as tecnologias para medir ozônio gasoso, temos:
1) adsorção de UV,
2) tecnologia de semicondutor de óxido metálico e
3) método iodométrico.

2.1 Medição de ozônio através de adsorção de radiação UV

A técnica de adsorção da radiação na região do ultravioleta é utilizada como um método direto de determinação, pois é medida diretamente a adsorção do ozônio. Esse método tem como característica a resposta próxima ao tempo real e a técnica possui sensibilidade muito precisa.
Os medidores que utilizam a tecnologia de UV são amplamente utilizados para determinar níveis de ozônio tão baixos quanto as quantidades atmosféricas típicas (menor de 0,10 ppm) até concentrações elevadas produzidas por verdadeiras usinas de ozônio com produção de 50kg a 250 kg/hora, muito usadas em tratamento de água de cidades operando com concentrações acima de 160-250 mg/L.
O método UV é muito preciso (±1%), a tecnologia é dominada por poucas empresas fabricantes. Seu custo de aquisição é alto e um equipamento custa em média USD 4.800.00 (quatro mil e oitocentos dólares) nos EUA, € 4.000,00 (quatro mil euros) na Europa e USD 2.000.00 (dois mil dólares na China).
As unidades de leituras também podem estar em peso (wt%), ou em volume podendo ser medido em partes por milhão (ppm), partes por bilhão (ppb), gramas por metro cúbico (g/m³), gramas por metro cúbico normalizado (g/Nm³), miligramas por metro cúbico (mg/m³) e miligramas por litro (mg/L).
O ozônio gasoso entra no analisador de ozônio por meio de mangueiras, preenchendo uma câmara interna que possui um sensor em uma extremidade e uma lâmpada UV do outro lado da câmara. Ao inserir o gás ele vai reagir com a radiação UV emitida pela lâmpada e o sensor fornecerá a leitura de acordo com a concentração de ozônio analisada. Quanto maior a concentração, menor será a leitura pelo sensor de UV.
Além de analisarem a concentração de ozônio, estes equipamentos também podem analisar outros dados como pressão atmosférica e temperatura do gás. Os equipamentos mais completos possuem “data logger” (capacidade de armazenar informações na memória do equipamento) e depois pode-se extraí-los por meio de uma “porta serial” ou “porta USB” para computadores por meio de um software que permite a emissão de relatórios.
Alguns fabricantes estão desenvolvendo modelos mais simples e com menos recursos, o que reduzirá o preço destes equipamentos e facilitará o acesso das empresas.

Figura 5: Diagrama esquema montagem do analisador de ozônio por absorção UV.

2.2 Medição de ozônio através de semicondutores de óxido metálico (MOS)

Esta tecnologia chama-se “Metal Oxide Semiconductor (MOS)”, em português: semicondutores de óxido metálico. Estes analisadores de ozônio em fase gasosa baseados na tecnologia MOS são mais baratos que os analisadores de UV (média de USD 100 nos EUA) e são normalmente usados em situações em que é necessário medir ozônio em concentrações baixas e com precisão menos exigente, pois sua leitura é aproximada. A faixa de leitura varia de 0 a 100ppm. O sensor necessita ser trocado periodicamente (média de 6 meses) de acordo com o tempo de utilização para garantir leitura mais precisa.
O sensor modelo MQ131 foi desenvolvido pela Hanwei Eletronics e baseia-se em uma pastilha semicondutora que ao ser montada em um circuito nas especificações do fabricante, emite uma ionização que atrai moléculas de ozônio presentes na atmosfera para o sensor. Quando o ozônio entra em contato com a superfície do sensor, libera elétrons. O sensor transforma estes elétrons em corrente elétrica medidos em milivolts. A leitura varia de acordo com a variação da concentração de ozônio em que o equipamento foi instalado.

Figura 6: Sensor pastilha semicondutora

Os sensores MOS são amplamente utilizados como dispositivos de segurança de parede ou portáteis conhecidos por detectores de ozônio para avisar os operadores se os níveis de ozônio excedem uma concentração segura. Quando isto acontece, emitem um sinal sonoro e/ou luminoso. As unidades MOS estão disponíveis nos formatos de fixação na parede, manual e até pessoal podendo ser carregado no cinto do operador. Os sensores precisam ser substituídos a cada 6 a 12 meses, dependendo do período e concentração em que ficaram expostos.

Figura 7: Unidades MOS (parede, manual)

2.3 Método Iodométrico para quantificação de ozônio gasoso

O método iodométrico, também conhecido como método por iodeto de potássio ou método KI, é um procedimento padronizado usado para medir ozônio gasoso. Este método é reconhecido e usado por fabricantes de geradores de ozônio de todo mundo na calibração de seus equipamentos. O procedimento oficial foi estabelecido por membros do Comitê de Garantia de Qualidade da International Ozone Association (IOA)**, incluindo a Pan-Americana Group (PAG), European African Group (EAG) e Nippon Islands Group (NIG).
A iodometria é um método volumétrico indireto onde um excesso de íons iodeto é adicionado a uma solução contendo o agente oxidante que irá reagir produzindo iodo que será titulado com solução padronizada de tiossulfato de sódio (Na2S2O3). Por esta razão, o método iodométrico é considerado um método de quantificação de ozônio indireto. Na determinação da concentração de ozônio gasoso, o agente oxidante é o próprio gás que é incorporado a solução de iodeto de potássio KI (2%) através de borbulhamento.
Os íons iodetos (I-) em contato com ozônio são reduzidos a iodo (I2) de acordo com a reação apresentada abaixo. A reação de formação do iodo em meio neutro é lenta, mas sua velocidade aumenta com a diminuição do pH, que é alcançado com a adição de solução de ácido sulfúrico 1N.

O3 + 2KI + H2O  I2 + O2 + 2KOH

O iodo presente em uma solução aquosa de iodeto tem uma cor intensa amarelo-castanha. Quando se titulam soluções incolores com uma solução-padrão de iodo, o próprio iodo serve como indicador. Em iodometria é comum o uso de indicadores auxiliares porque a viragem é menos perceptível, devido ao cansaço visual a que o analista é submetido. O indicador auxiliar geralmente utilizado na quantificação de ozônio é uma solução aquosa de amido, com a qual se pode determinar concentrações de iodo em solução de até 2 x 10-7 mol.L-1.
O amido é uma substância formada por 2 constituintes macromoleculares lineares, chamados amilose (alfa-amilose) e amilopectina (beta-amilose). Estas substâncias formam complexos de adsorção (complexos de transferência de carga) com o iodo. No caso da amilose, que possui conformação helicoidal, acredita-se que a cor azul intensa seja resultante da adsorção do iodo (na forma I5-) nestas cadeias. Já o complexo iodo-amilopectina produz uma cor violácea, de forma irreversível. Desta forma, o amido solúvel comercializado para uso como indicador deve consistir basicamente em amilose, separada da amilopectina.
A solução de amido, se não preservada convenientemente (em local refrigerado a 5ºC), decompõe-se em poucos dias, principalmente por causa de ações bacterianas e dos produtos de sua decomposição. Isto pode interferir nas propriedades indicadoras do amido.

3. Rastreabilidade da calibração de equipamentos

Existem diversos métodos para medição de ozônio em água e no ar com diferentes custos, praticidade e precisão. No caso de indústrias de alimentos que precisam assegurar a rastreabilidade da calibração de seus instrumentos para medir ozônio, como por exemplo indústrias certificadas ISO 22000, FSSC 22000, BRC Food ou IFS Food, os equipamentos devem ser calibrados utilizando métodos oficiais reconhecidos.
No caso da medição do ozônio em água, o método reconhecido é o Método Colorimétrico Índigo, mencionado no ítem 1.1.1 e detalhado no Standard Methods** sob o código 4500-O3 OZONE (RESIDUAL) que foi aprovado pelo Standard Methods Committee, 1997 e revisado em 2011.
No caso de medição de ozônio no ar ou na saída do gerador, o método de referência é o método iodométrico referenciado no Standard Methods sob o número 2350 D, que também é citado pela IOA – International Ozone Association***, mencionado no item 2.3 deste artigo.

Referências

*. Filho, Vivaldo M., Ozônio na Indústria de Alimentos, Editora Garcia, 287 páginas.
**. Standard Methods for Water and Waste Water, 24ª Edição. Ver em www.standardmethods.org
***. IOA – International Ozone Association. https://www.tandfonline.com/doi/abs/10.1080/01919519608547327

10 min leituraO uso de ozônio vem sendo cada vez mais divulgado na cadeia produtiva de alimentos, demonstrando sua enorme eficácia e diversidade de aplicações neste setor. Veja por exemplo, aqui, o […]

7 min leitura
0

Como escolher a armadilha luminosa mais adequada para indústrias de alimentos e bebidas

7 min leitura

No início dos anos 90, quando desenvolvi a primeira armadilha luminosa do Brasil com captura de insetos voadores em placa adesiva, a escolha do modelo mais adequado levava em consideração apenas dois fatores: o tamanho da área de instalação e se o ambiente era industrial ou comercial.

Assim como eu, os fabricantes de armadilhas definiam o modelo e quantidade de armadilhas a serem instaladas de acordo com o tamanho da área, utilizando como referência a seguinte fórmula:                

Área de atuação da armadilha (m²) = Potência luminosa da armadilha (W) x 1,5

A fórmula determinava que a área de atuação da armadilha (em metros quadrados) é igual à potência total de suas lâmpadas UV-A (em Watts) multiplicada por 1,5. Por exemplo: uma armadilha luminosa com 2 lâmpadas UV-A de 15 Watts (como o modelo Ultralight LX-30), com potência total de 30 Watts, possui área de atuação de 30 x 1,5= 45 m².

Contudo, com o passar dos anos e a evolução dos fabricantes, surgiu outra metodologia baseada na análise do ambiente, que visa atingir a máxima eficiência na captura de insetos voadores sem a necessidade de aquisição do modelo mais potente ou da utilização de muitos equipamentos. Hoje, podemos fazer mais com menos, reduzindo o impacto nos custos de aquisição das armadilhas sem perder a eficiência.

Não é necessário adquirir um número elevado de armadilhas, basta escolher o modelo certo e instalar nos locais estratégicos. 

Esta afirmação nos compele a gerir o ambiente em sua totalidade, utilizando de uma estratégia bem definida para capturar mais insetos com menor quantidade de equipamentos e no menor tempo possível.

Recomendo a  leitura do artigo Os Dez Mandamentos para utilização de Armadilhas Luminosas.

Na criteriosa análise do ambiente, devemos considerar o ramo de atividade da empresa, o tipo de produto que ela manipula, fabrica ou comercializa, a claridade e a quantidade de iluminação artificial presente no ambiente, o layout das instalações e o entorno da área fabril. 

Todos esses fatores podem influenciar direta ou indiretamente na quantidade, espécie e comportamento de insetos voadores presentes no ambiente, como também na altura de voo, hábitos de pouso das pragas voadoras, e, consequentemente, o comportamento delas perante as armadilhas luminosas.

O comportamento dos insetos voadores diante das armadilhas luminosas depende da espécie de inseto, do tipo de produto que a empresa fabrica ou comercializa, da intensidade luminosa do ambiente e do layout das instalações. 

Insetos voadores de espécies diferentes apresentam comportamentos diferentes. Entretanto, insetos de uma mesma espécie também podem ter comportamentos diferentes se estiverem em ambientes diferentes.

Diferentes tipos de armadilhas luminosas adesivas

Você já observou que algumas armadilhas luminosas possuem a luz direcionada para cima e/ou para a parede? Também existem armadilhas com a luz direcionada para baixo e outras para frente. Essas diferenças não são apenas questão de design e podem influenciar diretamente o desempenho da armadilha de acordo com o comportamento dos insetos. Para que você possa compreender melhor, vou apresentar aqui alguns dos principais modelos disponíveis no mercado:

1)  Armadilhas adesivas arandelas com luz indireta para cima / parede

 As armadilhas arandelas possuem luz UV-A indireta, direcionada para cima / parede, com capacidade de atrair insetos voadores até a distância de 5 metros. Como a entrada de insetos é pela parte de cima, apresentam melhor desempenho na captura de insetos com o hábito de voo mais alto, tais como mariposas, besouros, cupins alados (aleluias) e insetos voadores noturnos. Devido ao design mais discreto, são mais utilizadas em ambientes de pequeno porte, áreas de atendimento ao público, hotéis, praças de alimentação, restaurantes, padarias e fast-foods.

Como exemplo temos a Arandela Pestline Maxi-30, um dos modelos preferidos das empresas de controle de pragas urbanas, devido à praticidade de instalação. Como emite a luz UV-A para cima, é ideal para captura de insetos com hábitos de voo mais alto, muito comuns em indústrias que trabalham durante à noite (insetos noturnos) e empresas localizadas em áreas de preservação ambiental ou próximas a matas (cupins alados, besouros etc.).

Para capturar insetos voadores com hábitos de voo mais alto, como insetos noturnos, dê preferência para armadilhas luminosas adesivas arandelas com a luz UV-A direcionada para cima.

Fonte imagem: www.pestline.com.br

2) Armadilhas adesivas arandelas com luz indireta para baixo e para cima

Para ambientes onde os insetos voadores possuem o hábito de pousar no chão em busca de resíduos de alimentos e, consequentemente, possuem hábito de voo mais baixo, como por exemplo em fábricas de suco, polpa de frutas, pequenos frigoríficos, açougues etc., recomenda-se o uso de armadilhas que possuem a luz UV-A direcionada para baixo.

Para esse tipo de ambiente, temos a armadilha Flex-45 produzida pela Ultralight. Ela é ideal, pois quando utilizada na posição horizontal, direciona a luz para cima e também para o chão, permitindo a entrada de moscas também pela parte de baixo do equipamento, realizando a captura mais rapidamente. E mesmo que os insetos voem mais alto, essa armadilha cumprirá bem o seu papel porque também emite luz para cima, e por isso é muito utilizada sob portas de entradas para capturar as moscas assim que elas entram no ambiente.

Para capturar insetos voadores com hábitos de voo mais baixo, que ficam no chão em busca de resíduos de alimentos, dê preferência para armadilhas com a luz UV-A direcionada para baixo. 

Fonte imagem: www.ultralight.com.br

3) Armadilhas adesivas laterais com a luz direta para frente

Para obter boa eficiência na captura de insetos voadores em grandes áreas, indústrias de alimentos, bebidas, frigoríficos ou laticínios, recomenda-se o uso de armadilhas luminosas adesivas laterais, que possuem emissão de luz UV-A direta, direcionada para frente, possibilitando atração de moscas por até 8 metros de distância.

Para essas situações temos o modelo Ultralight LX-45 que é equipado com 3 lâmpadas fluorescentes UV-A de 15W e está entre os mais utilizados pelas indústrias de alimentos e bebidas no Brasil. Possui proteção de lâmpadas, ampla abertura frontal para entrada de insetos, que são capturados em uma placa adesiva descartável e quadriculada (para facilitar a contagem).

 Para capturar insetos voadores em grandes ambientes, como indústrias de alimentos e bebidas, dê preferência para armadilhas com a luz UV-A direcionada para frente.

Fonte imagem: www.ultralight.com.br

4) Armadilhas adesivas laterais com luz direta para frente e tampa de proteção contra pó

Pó em suspensão e poeira podem comprometer a vida útil e capacidade de aderência da placa adesiva. Por isso, para áreas de fabricação de biscoitos, farinhas ou envase de cereais, recomenda-se a utilização de armadilhas luminosas com a frente um pouco mais fechada.

Diferentemente das armadilhas adesivas tradicionais, que deixam as placas adesivas expostas, a armadilha Pestline Soft-30 possui a frente mais fechada e permite a atração de moscas por até 8 metros de distância.

Em indústrias de alimentos com pó em suspensão, dê preferência às armadilhas luminosas mais fechadas para não comprometer a aderência e eficiência da placa adesiva. 

Fonte imagem: www.pestline.com.br

5) Armadilhas de uso central com luz direta para frente e para trás

Você também pode obter boa eficiência na captura de insetos voadores em grandes áreas de fabricação de alimentos e bebidas utilizando armadilhas luminosas adesivas centrais, penduradas em vigas ou presas ao teto através de cabos. Esse tipo de armadilha possui emissão de luz UV-A direta para frente e também para trás, permitindo a entrada de insetos por ambos os lados e a atração de moscas em até 8 metros de distância. Entretanto, deve-se tomar o devido cuidado para não instalar os equipamentos na passagem de empilhadeiras ou pessoas, e respeitar a altura máxima de 2 metros.

Como exemplo temos a Armadilha Adesiva Central TC-45, produzida pela Tecnofly. Ela é equipada com 3 lâmpadas fluorescentes UV-A de 15W, possui proteção de lâmpadas e permite a entrada de insetos voadores tanto pela parte da frente quanto pela parte traseira da armadilha.

Você também pode utilizar armadilhas luminosas de uso central, penduradas ao teto por cabos, para capturar insetos voadores em grandes ambientes, como galpões de indústrias de alimentos e bebidas,

Fonte imagem: www.tecnofly.com.br

Conclusão

Para obter sucesso no uso de armadilha luminosa, não use um modelo genérico de armadilhas para todos os tipos de ambientes e não compre equipamentos com base no tamanho da área da empresa. Procure fazer a análise criteriosa do ambiente, verifique quais as espécies de insetos predominantes no local, os motivos pelos quais eles estão ali e, se possível, investigue o comportamento de voo.

Após a escolha do melhor modelo para cada ambiente da indústria, identifique os pontos mais estratégicos para a instalação, lembrando que é melhor capturar os insetos no momento em que eles entram no ambiente, e por isso foque as portas de entrada.

Se você tiver dúvidas na hora de comprar ou escolher o modelo mais adequado de armadilha luminosa para sua indústria, solicite ajuda de uma empresa de Controle de Pragas Urbanas – que comprovadamente conheça o assunto – ou fale com um Consultor da Ultralight especializado no segmento da sua indústria.

Fone: (14) 3662-8580 / WhatsApp: (14) 99854-8580.

 

E também não deixe de sempre observar Os Dez Mandamentos para utilização de Armadilhas Luminosas.

 

 

 

7 min leituraNo início dos anos 90, quando desenvolvi a primeira armadilha luminosa do Brasil com captura de insetos voadores em placa adesiva, a escolha do modelo mais adequado levava em consideração […]

2 min leitura
0

Soro de leite em revestimentos comestíveis: aspectos de segurança de alimentos

2 min leitura

O soro de leite é um subproduto da fabricação do queijo e tem se mostrado uma excelente opção para revestimentos comestíveis. Ele é rico em proteínas, possui propriedades antibacterianas, capacidade de formação de filme incolor e inodoro, além de biocompatibilidade com outros materiais que podem ser combinados a ele e oferecer características aprimoradas ao revestimento. Isso contribui com o ciclo de vida do alimento ao qual ele está sendo aplicado. As aplicações são reportadas em diferentes matrizes alimentares como carnes, queijos e frutas.

No entanto, quando tratamos de embalagens ou revestimentos de alimentos, devemos lembrar que o material estará em contato direto com os alimentos, sendo necessário considerar alguns aspectos:

  1. O soro de leite comum não é considerado um biopolímero promissor para a preparação de filmes, pois possui estrutura globular compacta e tamanho molecular pequeno. Para modificar essa condição, a solução precisa ser aquecida de 80 a 90°C por 10 a 30 minutos. Esse aquecimento resulta na desnaturação da proteína, expondo os grupos funcionais e hidrofóbicos do soro, formando uma rede química tridimensional que promove ligações intermoleculares e interações hidrofóbicas na secagem do filme. Quando a desnaturação da proteína não é realizada, filmes quebradiços são obtidos após o processo de secagem.
  2. O soro de leite deve ser declarado como alergênico, em atendimento às normas (Codex Alimentarius), por se tratar de um derivado lácteo no qual a presença dessa proteína pode atuar como um gatilho para o desenvolvimento de reações alérgicas.
  3. Aspectos regulatórios estão relacionados aos cuidados com a segurança de alimentos, como as boas práticas de produção, visto que são materiais que entram em contato com alimentos. Além disso, deve-se avaliar minuciosamente a composição do filme e a possibilidade de migração de componente do filme para o alimento, avaliação essa que deve ser baseada em valores previamente estabelecidos em normas legais. Ressalta-se que os aspectos regulatórios são baseados em formulações específicas de forma que cada composição e/ou aplicação requer avaliação individual.
  4. Outro fator a ser considerado para aplicação são os mercados restritivos decorrentes de certificações religiosas, como a certificação Kosher, cujas exigências avaliadas seguem a lei judaica, que não permite a mistura de carne e leite para consumo. Neste caso, o cliente deve ser cuidadosamente estudado previamente. Essa exigência corrobora a referente aos produtos alergênicos, sendo possível mensurar que a aplicação mais assertiva tanto para fins regulatórios quanto mercadológicos é na matriz láctea.

O que você acha dessa aplicação para o soro de leite?

Imagem: Comung

2 min leituraO soro de leite é um subproduto da fabricação do queijo e tem se mostrado uma excelente opção para revestimentos comestíveis. Ele é rico em proteínas, possui propriedades antibacterianas, capacidade […]

5 min leitura
2

Interpretação da validação de um processo térmico para alimentos

5 min leitura

As empresas alimentícias no Brasil têm grandes desafios para atender aos requisitos de segurança dos alimentos fabricados, sobretudo aquelas que dependem de processos bactericidas com a finalidade de manter aos consumidores protegidos contra bactérias como o Clostridium botulinum e suas toxinas.

Este post apresenta um desafio para mim, que é poder explicar de uma forma simples e rápida o que significa verdadeiramente uma validação de processo térmico e ajudar na interpretação do que implica esta validação. Não se deve subestimar a validação quando se tratar da produção de alimentos de baixo teor de acidez selados hermeticamente.

O principal objetivo do tratamento térmico de alimentos enlatados é garantir a destruição de todos os organismos vivos capazes de danificar os alimentos ou prejudicar a saúde do consumidor.

Um processo perfeito do ponto de vista culinário pode não ser suficiente para eliminar os organismos que produzem alterações alimentares.

Por isso, é importante conhecer e definir a intensidade ou grau de aquecimento a que os alimentos enlatados podem ser submetidos para atender as necessidades supracitadas, ou seja, é necessário conhecer e definir o  tratamento ou processo térmico. Tal conhecimento, juntamente com o da termorresistência de microrganismos contaminantes, a natureza química e física do alimento e a taxa de penetração do calor são chaves para o sucesso de um correto design de processo térmico.

A natureza química do alimento é muito importante, pois permite classificar os alimentos pela acidez do meio:

Um pH  menor que 4,5 categoriza os alimentos ácidos ou acidificados.

Um pH menos ácido (acima de 4,5) categoriza os alimentos com baixo teor de acidez.

Os tratamentos térmicos aplicados aos alimentos ácidos são menos agressivos (temperaturas mais baixas) do que os aplicados aos alimentos não ácidos.

Ao estabelecer a intensidade com que os alimentos enlatados devem ser tratados ou processados, é necessário atentar para as chances de sobrevivência térmica dos esporos.

Para calcular o tempo e a temperatura que devem ser aplicados a um determinado alimento para obter esterilidade comercial, sem afetar sua qualidade, é necessário saber:

  1. O tempo necessário para que os alimentos atinjam a temperatura desejada.
  2. O tempo que leva para esfriar

Isso deriva no estabelecimento da taxa de penetração de calor.

No entanto, os fatores que determinam a penetração de calor são:

  • Natureza e consistência dos alimentos
  • Tamanho e forma do recipiente
  • Tipo de material de embalagem

A resistência dos microrganismos ao calor é baseada nos esporos do patógeno mais resistente ao calor encontrado nos alimentos e em condições anaeróbicas, que é o Clostridium botulinum.

Outra bactéria que também é considerada é uma formadora de esporos não patogênica, mas sim deteriorante:  Bacillus stearothermophilus.

Seu validador também deve considerar aspectos como a curva de morte térmica, que nada mais é do que a velocidade com que as bactérias morrem durante o aquecimento, sendo quase proporcional ao número presente no alimento que está sendo aquecido, que é igual a uma Ordem Logarítmica de Morte.

Por isso é importante considerar a marcha da morte bacteriana (Ordem Logarítmica de Morte), ao submeter as bactérias ao calor úmido, processo que segue um curso logarítmico. Isso significa que, se uma amostra de um determinado tamanho é aquecida a uma temperatura constante, a mesma proporção de bactérias sobreviventes é destruída em cada unidade de tempo sucessiva.

Em outras palavras, se uma determinada temperatura matar 90% da população de bactérias durante o primeiro minuto de aquecimento, 90% da população restante será morta no segundo minuto, 90% da população restante será morta no terceiro minuto e assim por diante.

A curva de sobrevivência térmica que descreve graficamente o exposto acima pode ser definida pela equação:

T = D (log a-log b)

Onde

T = tempo de aquecimento, em minutos, a uma temperatura constante.

O valor D é o tempo de redução decimal, ou seja, o tempo em minutos a uma temperatura específica necessária para destruir 90% dos organismos em uma população.

O valor “D” diminui a população sobrevivente pelo equivalente a um ciclo logarítmico.

a = número inicial de bactérias viáveis na amostra

b= número de bactérias sobreviventes na amostra.

O valor Z é o número em graus necessário para que uma curva de tempo de morte por calor específico passe por um ciclo logarítmico.

O significado do valor Z caracteriza a resistência das populações bacterianas às mudanças de temperatura.

O valor F é o número de minutos a uma temperatura específica necessária para destruir um número específico de organismos com um valor Z específico. Em outras palavras, é uma medida da capacidade de esterilização de um tratamento térmico.

O valor F de referência F0 é o número em minutos a 121°C necessário para matar um número específico de organismos cujo valor Z é 10°C. Ele é igual ao valor de esterilização.

A fórmula acima pode ser aplicada a uma amostra de qualquer tamanho, desde que os volumes em que (a) e (b) estão contidos sejam iguais. Se a amostra for considerada composta de muitos volumes ou recipientes, à medida que seu número aumenta, o mesmo acontece com o valor de (a) e com o valor de (b). Portanto, em uma série infinita de recipientes ou volumes sempre haverá um contendo uma bactéria sobrevivente, desde que a amostra seja grande o suficiente.

Por exemplo, se um recipiente contém um esporo de Clostridium botulinum com valor D250 de 0,21 minutos e é submetido a um tratamento combinado de tempo e temperatura igual a 2,52 minutos a 250°F, aplicando a equação acima temos que:

2,52 = 0,21 (log1 – log2)

E resolvendo a igualdade,

Log b= -12;

Onde b=10-12.

Isso expressa a probabilidade de que um esporo de C. botulinum sobreviva nesse caso em particular, ou seja, uma chance em 1012.

Como os esporos mais resistentes de C. botulinum têm um valor D de aproximadamente 0,21 minutos a 250°F, eles são submetidos a um processo térmico de 252 minutos 12D a 250°F (assumindo, é claro, que o aquecimento e o resfriamento são instantâneos).

Os pesquisadores Bigelow y Esty e Bigelow, em 1921, foram os primeiros a usar o termo taxa de morte térmica para relacionar a dependência da temperatura de D, de acordo com a seguinte imagem de referência:

Imagem 1. Curva de tempo de morte térmica (TDT). Fonte: Springer

Valores 12D para outras temperaturas são conhecidos se os logaritmos de tais tempos forem plotados em relação à temperatura correspondente. A curva normal de morte térmica (TDT) é obtida pela inclinação ou declividade da curva designada z, que é numericamente igual ao número de graus Fahrenheit para a curva T.D.T. passar por um ciclo logarítmico. Este valor depende do meio em que a resistência ao calor é estimada, que para esporos de C. botulinum é geralmente tomada como 18°F.

O que significa a letalidade do processo?

Ela representa a soma dos efeitos letais das mudanças de temperatura ao longo do tempo durante todo o funcionamento da autoclave.

A Unidade de Letalidade para cálculos de processo térmico é definida como o calor de remoção equivalente a UM minuto a 121°C contra um organismo com um determinado valor z. Além disso, todas as frações de UM minuto a 121°C ou seus equivalentes representam frações correspondentes de uma unidade de letalidade. Essas frações são conhecidas como “velocidades letais”.

No procedimento para determinação do tempo de processamento e letalidade do processo, as velocidades letais correspondentes às temperaturas sucessivas tomadas das curvas de penetração de calor e resfriamento do processo de autoclave são consideradas e integradas para determinar a letalidade do processo ou seu valor de esterilização (F0).

As velocidades letais são plotadas em função do tempo correspondente às curvas de aquecimento e resfriamento, respectivamente. A área total resultante sob esta curva de taxa letal dividida pela área correspondente a uma unidade de letalidade dá o letal total ou F0.

Importante: este artigo tem como objetivo orientar a indústria de alimentos sobre como interpretar um processo de validação. Ele não consiste em uma metodologia ou procedimento que você deve seguir. Para validação de processo térmico, sugerimos entrar em contato com seu provedor de validação de maior confiança.

Referência bibliográfica

5 min leituraAs empresas alimentícias no Brasil têm grandes desafios para atender aos requisitos de segurança dos alimentos fabricados, sobretudo aquelas que dependem de processos bactericidas com a finalidade de manter aos […]

2 min leitura
1

Carne com ouro. Será que faz mal?

2 min leitura

Recentemente veio à tona na imprensa em tons polêmicos o consumo de carne com ouro por jogadores da seleção brasileira na Copa.

Bem… nós aqui do Food Safety Brazil damos um drible nessa polêmica e nos perguntamos: será que a ingestão dessa carne com ouro pode trazer algum dano à saúde?

O uso de ouro na culinária não é exatamente uma novidade. O ouro comestível é um ingrediente que se originou há pelo menos 5.000 anos na história da culinária, sendo consumido em regiões da Europa, Ásia e África (veja mais aqui). Acreditava-se então que, ao ingerir ouro, a pessoa alcançava purificação espiritual e rejuvenescimento.

Hoje, folhas, flocos e pó de ouro são utilizadas principalmente em sobremesas e doces, para fins decorativos. Ele tem um leve sabor metálico quando provado sozinho. No entanto, quando é usado como ingrediente decorativo, os outros sabores superam facilmente qualquer sabor que o ouro comestível possa ter, resultando em uma decoração sem sabor.

A folha de ouro comestível é feita derretendo ouro puro a mais de 2.000 graus Fahrenheit e despejando-o em uma formação de barra. A barra é então esticada muito fina através de rolos até um certo ponto, sendo então martelada até atingir a espessura de 0,0001 mm. O ouro é um dos metais mais maleáveis e cada folha leva cerca de duas semanas para ser feita.

Fonte: The Spruce Eats – What is Edible Golden Leaf? (link)

O ouro comestível é aprovado como aditivo para alimentação humana (veja mais aqui). Ele é considerado um material inerte, o que significa que passa pelo trato digestivo sem ser absorvido (ou seja, não faz bem nem mal). Porém, ao adquirir este ingrediente, é importante se certificar de que ele seja de qualidade comestível e que seja o mais puro possível. O ouro comestível é considerado seguro para consumo quando é de 24 quilates (pureza maior do que a maioria das joias). Ouro com um valor de quilates menor tem mais impurezas químicas (como metais pesados e outros) e é menos seguro para comer (veja mais aqui).

Entretanto, há um sinal de alerta! Um artigo do professor Koichi Imai, Ph.D do Departamento de Biomateriais da Osaka Dental University, revelou que pequenos pontos metálicos do ouro ingerido podem permanecer por muito tempo nas paredes do trato digestivo de quem os consumiu, o que poderia potencialmente introduzir uma carcinogênese (fenômeno celular que forma o câncer).

Espero que tenham gostado! Até a próxima

2 min leituraRecentemente veio à tona na imprensa em tons polêmicos o consumo de carne com ouro por jogadores da seleção brasileira na Copa. Bem… nós aqui do Food Safety Brazil damos […]

2 min leitura
2

Baixe a cartilha para crianças que ensina Segurança de Alimentos

2 min leitura

A Cartilha de Atividades sobre Segurança de Alimentos é uma publicação lúdica, elaborada por especialistas em alimentos, com supervisão de profissionais da área de educação, que explica de maneira simples os conceitos envolvidos na produção e consumo seguro dos alimentos.

Desenvolvendo um ambiente divertido e recreativo, é possível envolver as crianças, público-alvo desse projeto, nesse tema tão importante, que pode ser complexo até mesmo para alguns adultos. Os conteúdos são divididos em explanações e atividades de fixação de conceitos.

Esse compêndio recreativo é fruto de um trabalho voluntário realizado pelos alunos da CASA – Academia de Cultura de Segurança dos Alimentos e o download para impressão pode ser feito por esse link. Ela é capaz de entreter e, ao mesmo tempo, ensinar assuntos como boas práticas de manipulação dos alimentos, rotulagem, perigos biológicos, físicos e químicos,  higiene do manipulador, alergênicos, contaminação cruzada e as chaves para uma alimentação segura, da OMS.

A utilização de cartilhas ilustradas e alegres, com linguagem adequadamente adaptada aos pequenos não é novidade em outros países e já é empregada em diversos temas importantes. Exemplos de atividades contempladas pela cartilha são: labirinto, palavras cruzadas, pintura, ligue os pontos, associação de imagens, além de exercícios dissertativos. A faixa etária visada no documento são as crianças entre 9 e 11 anos de idade, sendo que a assimilação é sempre potencializada com a participação e orientação de pais e educadores.

A utilização deste recurso para reforçar a Cultura de Segurança de Alimentos é um projeto inovador e que reforça a ideia de que essa não deve ser uma preocupação somente da indústrias e da cadeia produtiva, mas também de toda a sociedade. Os participantes do projeto acreditam que, influenciando cidadãos exigentes e cientes do que consomem, será possível reduzir a ocorrência de surtos alimentares e doenças transmitidas por alimentos.

Quero baixar a Cartilha de Atividades sobre Segurança de Alimentos.

2 min leituraCartilha educativa para crianças sobre segurança de alimentos

2 min leitura
0

Como o meio ambiente se relaciona com a segurança dos alimentos?

2 min leitura

Entidades governamentais, academia e organizações sociais estão refletindo sobre a preservação do meio ambiente como forma de evitar o aquecimento global devido a causas atribuíveis às atividades humanas. A contínua agressão ao meio ambiente rompe com o equilíbrio natural que há milênios possibilita a evolução da vida humana no planeta. Há algo que tem que ficar claro para nós: o planeta não precisa de nós, mas nós humanos precisamos do planeta.
Um exemplo claro do desequilíbrio brutal que o homem pode causar já foi discutido neste blog. Refere-se ao rompimento da barragem de Mariana ocorrido em 05 de novembro de 2015 em Minas Gerais. Naquela época, grandes quantidades de resíduos de produtos químicos utilizados na mineração de ferro foram repentinamente lançadas no meio ambiente, causando a maior tragédia ecológica da região. O impacto ambiental foi de tal magnitude que afetou o Rio Doce em uma bacia hidrográfica que atingiu 230 municípios e a costa atlântica do Espírito Santo.

Contaminação por produtos químicos que incluíam cádmio, arsênico, chumbo e mercúrio, entre outros, inviabilizavam a água do rio para consumo humano ou animal, além de contaminar os peixes.

Outros pontos fortes a serem levados em conta relacionados à agressão ao meio ambiente são dados pelo desmatamento acelerado e pela queima indiscriminada de pastagens e florestas. Além da perda da biodiversidade, isto obriga os animais silvestres a migrarem para outros locais. Os animais que abandonam o seu habitat têm a capacidade potencial de transmitir as suas doenças aos animais domésticos e através do consumo ou pela proximidade, transmitir a doença aos humanos. Lembremos que setenta e cinco por cento das doenças que nos afetam são de origem zoonótica e que esse processo põe em risco a segurança dos alimentos.
Os mesmos argumentos podem ser aplicados à poluição dos oceanos. Hoje se sabe que oitenta por cento do lixo dos oceanos é composto de plástico. Além disso, o aumento da temperatura do mar e sua acidificação, assim como a sobrepesca, modificam o equilíbrio ecológico. A importância de cuidar do meio ambiente é essencial para preservar a segurança dos alimentos
Não vou incluir aspectos relacionados ao sequestro de carbono, que é tão necessário, mas que foge ao escopo deste artigo.

2 min leituraEntidades governamentais, academia e organizações sociais estão refletindo sobre a preservação do meio ambiente como forma de evitar o aquecimento global devido a causas atribuíveis às atividades humanas. A contínua […]

7 min leitura
0

O ozônio tem outras aplicações na indústria de alimentos além de sanitizante?

7 min leitura

Como podemos ver no post “Cloro x Ozônio na Indústria de alimentos”, é permitido usar o ozônio como sanitizante na água e ele é 325 vezes mais rápido que o cloro a um custo similar.

Mas é só como sanitizante que se usa o ozônio?

Não. Ele tem várias outras aplicações na indústria de alimentos:

1. Na ETA – Estação de Tratamento de Água, para reduzir cor aparente, turbidez, metais pesados, pesticidas e material orgânico para que a água atinja os padrões de potabilidade necessários ao processamento de alimentos;

2. Na ETE – Estação de Tratamento de Efluentes, para reduzir DBO, DQO, cor aparente, turbidez, metais pesados, pesticidas, material orgânico e resíduos químicos específicos para que o efluente atinja os padrões exigidos pelos órgãos ambientais no Brasil para ser lançado na rede de esgoto ou nos rios e outros corpos de água;

3. Na redução de INSETOS nas matérias primas, produtos e processos das indústrias de alimentos;

4. Na redução de PESTICIDAS das matérias primas usadas na indústria de alimentos para que atendam aos LMRs – Limites Máximos de Resíduos, permitidos por lei no Brasil e no mundo

5. Na redução de MICOTOXINAS das matérias primas e produtos das indústrias de alimentos;

Vamos detalhar um pouco mais sobre cada uma dessas aplicações do ozônio.

  • Na ETA – Estação de Tratamento de Água

Esta aplicação foi bem explorada no artigo “Cloro x Ozônio na Indústria de alimentos” já mencionado acima.

  • Na ETE – Estação de Tratamento de Efluentes

O efluente proveniente de algumas operações de processamento de alimentos pode estar fortemente contaminado com material orgânico e resíduos químicos diversos.

Pesquisas demonstraram que uma degradação eficiente de contaminantes pode ser alcançada por meio da aplicação direta do ozônio em efluentes.

No Brasil os efluentes só podem ser lançados em corpos de água se atenderem aos parâmetros da resolução 430 de 2011 do CONAMA – Conselho Nacional do Meio Ambiente, pois seu descarte sem o tratamento adequado pode implicar em riscos para a saúde humana, além da degradação do meio ambiente. Isso porque, dependendo do setor de atuação, esses resíduos líquidos podem conter nível de material orgânico acima do permitido, o que aumentaria o consumo de oxigênio do corpo d´água, causando mortes dos peixes e demais seres aeróbios. Também pode conter pesticidas e outros contaminantes químicos provenientes de limpeza e desinfeção, resíduos de aditivos e coadjuvantes de processo danosos à nossa saúde e ao meio ambiente. O ozônio, com seu alto poder oxidante, degrada e desmonta essas moléculas trazendo o efluente aos padrões legais. Se o efluente tiver metais pesados como cádmio, cromo, manganês e níquel, o ozônio precipita-os, retirando-os da solução e permitindo que sejam retidos pelos filtros.

  • Na redução de INSETOS

Antes de mais nada, você pode estar se perguntando, mas sanitização não diz respeito a insetos? Não. Sanitização consiste em reduzir microrganismos críticos para a saúde pública em níveis considerados seguros. Então vamos falar em fumigação de insetos. Insetos consomem os alimentos, depreciam sua qualidade e podem trazer microrganismos.

A fumigação é um tipo de controle de pragas gasoso usado para controle de insetos (pragas) vivos presentes em produtos agrícolas. O ozônio tem grande eficácia sobre os insetos.

Veja na tabela abaixo a relação dos insetos mais comuns encontrados em grãos armazenados e a respectiva porcentagem de mortalidade sob tratamento com ozônio.

Grãos Insetos alvos Concentração do Ozônio Tempo de exposição Mortalidade Referência
Grão armazenado Duas espécies de Tribolium spp. (Coleoptera: Tenebrionidae) 45 ppmv 6.5 h 100% 6
Mistura de farinha/ fubá de milho Oryzaephilus surinamensis (L) 5 ppm 3 e 5 dias 100% 7
Grãos armazenados Tribolium confusum Tribolium castaneum e Sitophilus zeamais (Adulto) 50 ppmv 3 dias 100% 7
Milho T. castaneum (TC) Sitophilus zeamais (SZ) P. interpunctella (PI) 25 ppmv 5 dias 91,4% (TC) 99,9% (SZ) 77,0% (PI) 8
Milho Adulto- T. castaneum,

Adulto- S. zeamais, e

Larva– P. interpuntella

50ppmv 3 dias 92-100% 8
Milho Sitophilus zeamais. 50 ppm de ozônio (8L min-1) 48 h 100% 9
Milho Adultos de S. zeamais e T. castaneum 50 mg kg 1 23,76 e 64,19 h 95% 10
Trigo Sitophilus oryzae (L.) – adultos 25 e 50 ppmv 4 e 2 dias 100% 11
Trigo Tribolium castaneum-adultos 70 ppmv. 4 dias 100% 12
Trigo Ovos de P. interpunctella,

S. zeamais-adulto e S. oryzae-adulto

1800 ppm 180, 120 e 60 min 100% 13
Trigo Ephestia kuehniella (EK) e Tribolium confusum (TC) 13,88 mg/L Tratamento de liberação de ozônio com intervalo de 30 min por 5 h 90-100% (L, P e A de EK) 72,6% (L) 1,3-22,7% (E, P e A de TC) 14
Feijão-caupi Adultos de Callosobruchus maculatus

Pupa

500 ppmv 274,40 min

 

 

1.816,54 min

100%

 

 

100%

15
  • PESTICIDAS das matérias primas usadas na indústria de alimentos para que atendam aos LMRs – Limites Máximos de Resíduos, permitidos por lei no Brasil e no mundo

Entre os diversos métodos aplicados para a degradação de resíduos de agrotóxicos usuais, o tratamento químico com ozônio gasoso ou água ozonizada é uma tecnologia emergente com grande potencial e diversas vantagens. Muitas pesquisas têm sido realizadas com o ozônio gasoso para remoção de resíduos de agrotóxico em vegetais, frutas e grãos de cereais.

Veja na tabela abaixo os resultados da degradação de resíduos de agrotóxicos em alguns alimentos pelo ozônio:

Grãos tratados Tipo de toxicidade dos pesticidas Condições de tratamento Nível de redução Referência
Milho Pirimifos-metila 0,86 mg L -1 de ozônio gasoso, 60 min > 91% 22
Trigo Pirimifos-metila 60 mol mol 1 de ozônio gasoso, 30 min 71,1% 21
Deltametrina e Fenitrothion 60 mol mol 1 de ozônio por 60, 120 e 180 min 67,5%, 88,1% e 89,8% 21
Arroz Bifentrina e deltametrina 3 mg L 1 e fluxo contínuo de 1,0 L min 1por períodos definidos de até 10 h. 91,9% – Bifentrina

92,7% – Deltametrina

23

 

A eficiência do ozônio gasoso na degradação de resíduos de agrotóxicos deve-se em grande parte à sua capacidade de reagir com estruturas moleculares contendo ligações duplas, como compostos aromáticos e aminas.

  • Na redução de MICOTOXINAS das matérias primas e produtos das indústrias de alimentos

As micotoxinas são metabólitos secundários produzidos por uma grande variedade de espécies de fungos que causam as perdas nutricionais e a ingestão de alimentos que contenham micotoxinas pode causar graves efeitos sobre a saúde animal e humana.

O tratamento com ozônio gasoso tem demonstrado eficiência em reduzir contaminação por aflatoxina B1 em figos secos e patulina em sucos de maçã.

O ozônio também é útil na detoxificação e eliminação de micotoxinas em grãos de amendoim, milho, trigo e ração para aves.

Entretanto, dependendo do tipo e quantidade de micotoxina já formada e do alimento, não se consegue reduzir ao nível aceitável sem afetar algo no alimento e, como os fungos Alternaria sp., Aspergillus sp., Aureobasidium sp., Cladosporium sp., Geotrichum sp., Mucor sp., Penicillium brevicompactum, Stachybotris chartarium, Trichoderma viride, Ulocladium sp., Botrytis cinerea, Fusarium verticillioides e Colletotrichum magna já demonstraram serem sensíveis ao ozônio em vários estudos efetuados, a melhor estratégia é reduzir ou eliminar esses fungos bem no comecinho de seu aparecimento. Existem formas de aplicação do ozônio imediatamente após a colheita ou mesmo antes da colheita, em casas de vegetação ou descontaminar o solo dos canteiros.

Literatura citada

  1. HUANG, C.P., DONG, C. AND TANG, W.Z. (1993) ADVANCED CHEMICAL OXIDATION: ITS PRESENT ROLE AND FUTURE POTENTIAL IN HAZARDOUS WASTE TREATMENT, WASTE MANAGEMENT, 13(5/7): 361–77.
  2. RICE, R.G. (1986) APPLICATION OF OZONE IN WATER AND WASTEWATER TREATMENT, IN RICE, R.G., BOLLYKY L.J. AND LACY, W.J. (EDS) ANALYTICAL ASPECTS OF OZONE TREATMENT OF WATER AND WASTEWATER, CHELSEA, MI: LEWIS PUBLISHERS, PP. 7–26
  3. USHARANI, K., MUTHUKUMAR, M., & KADIRVELU, K. (2012). EFFECT OF PH ON THE DEGRADATION OF AQUEOUS ORGANOPHOSPHATE (METHYLPARATHION) IN WASTEWATER BY OZONATION
  4. BELTRAN, F.J. (2004) OZONE REACTION KINETICS FOR WATER AND WASTEWATER SYSTEM, NEW YORK, NY: CRC PRESS CLL.
  5. EVANS, F.L. (1972) OZONE IN WATER AND WASTEWATER TREATMENT, ANN ARBOR, MI: ANN ARBOR SCIENCE PUBLISHERS.
  6. ERDMAN, H. E. (1980). OZONE TOXICITY DURING ONTOGENY OF TWO SPECIES OF FLOUR BEETLES, TRIBOLIUM CONFUSUM AND T. CASTANEUM. ENVIRONMENTAL ENTOMOLOGY, 9(1), 16-17.
  7. MASON, LINDA J., C. P. WOLOSHUK, AND D. E. MAIER. “EFFICACY OF OZONE TO CONTROL INSECTS, MOLDS, AND MYCOTOXINS.” IN INTERNATIONAL CONFERENCE ON CONTROLLED ATMOSPHERE AND FUMIGATION IN STORED PRODUCTS, ED BY DONAHAYE EJ, NAVARRO, S., VARNAVA, A., PRINTCO, LTD, NICOSIA, CYPRUS, PP. 665-670. 1997.
  8. KELLS, STEPHEN A. ET AL. EFFICACY AND FUMIGATION CHARACTERISTICS OF OZONE IN STORED MAIZE. JOURNAL OF STORED PRODUCTS RESEARCH, V. 37, N. 4, P. 371-382, 2001.
  9. FARONI, LRD, PEREIRA, AM, SOUSA, AH, SILVA, MTC, & URRICHI, WI (2007). INFLUENCE OF MAIZE GRAIN MASS TEMPERATURE ON OZONE TOXICITY TO SITOPHILUS ZEAMAIS (COLEOPTERA: CURCULIONIDAE) AND ON THE QUALITY OF OIL EXTRACTED FROM OZONIZED GRAINS. AT THE IOA CONFERENCE AND EXHIBITION (VOL. 1, PP. 1-6). VALENCIA: IOA.
  10. ROZADO, A.F., FARONI, L.R., URRUCHI, W.M., GUEDES, R.N. AND PAES, J.L., 2008. OZONE APPLICATION AGAINST SITOPHILUS ZEAMAIS AND TRIBOLIUM CASTANEUM ON STORED MAIZE. REVISTA BRASILEIRA DE ENGENHARIA AGRÍCOLA E AMBIENTAL, 12(3), PP.282-285.
  11. BONJOUR, EL, JONES, CL, NOYES, RT, HARDIN, JA, BEEBY, RL, ELTISTE, DA, & DECKER, S. (2008). EFICÁCIA DO OZÔNIO CONTRA INSETOSPRAGA EM TRIGO ARMAZENADO EM CAIXAS DE AÇO PARA GRÃOS. IN PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON CONTROLLED ATMOSPHERE AND FUMIGATION IN STORED PRODUCTS (PP. 522-529).
  12. BONJOUR, EL, OPIT, GP, HARDIN, J., JONES, CL, PAYTON, ME E BEEBY, RL, 2011. EFICÁCIA DA FUMIGAÇÃO COM OZÔNIO CONTRA AS PRINCIPAIS PRAGAS DE GRÃOS EM TRIGO ARMAZENADO. JOURNAL OF ECONOMIC ENTOMOLOGY, 104 (1), PP.308-316.
  13. MCDONOUGH, MARISSA X. ET AL. OZONE APPLICATION IN A MODIFIED SCREW CONVEYOR TO TREAT GRAIN FOR INSECT PESTS, FUNGAL CONTAMINANTS, AND MYCOTOXINS. JOURNAL OF STORED PRODUCTS RESEARCH, V. 47, N. 3, P. 249-254, 2011
  14. I?IKBER, A. A., & ÖZTEKIN, S. (2009). COMPARISON OF SUSCEPTIBILITY OF TWO STOREDPRODUCT INSECTS, EPHESTIA KUEHNIELLA ZELLER AND TRIBOLIUM CONFUSUM DU VAL TO GASEOUS OZONE. JOURNAL OF STORED PRODUCTS RESEARCH, 45(3), 159-164.
  15. PANDISELVAM, R., THIRUPATHI, V., MOHAN, S., VENNILA, P., UMA, D., SHAHIR, S., & ANANDAKUMAR, S. (2019). GASEOUS OZONE: A POTENT PEST MANAGEMENT STRATEGY TO CONTROL CALLOSOBRUCHUS MACULATUS (COLEOPTERA: BRUCHIDAE) INFESTING GREEN GRAM. JOURNAL OF APPLIED ENTOMOLOGY, 143(4), 451-459.
  16. IKEURA, H.; KOBAYASHI, F.; TAMAKI, M. REMOVAL OF RESIDUAL PESTICIDE, FENITROTHION, IN VEGETABLES BY USING OZONE MICROBUBBLES GENERATED BY DIFFERENT METHODS. JOURNAL OF FOOD ENGINEERING, V. 103, N. 3, P. 345-349, 2011.
  17. SOUZA, LAUANA PELLANDA ET AL. OZONE TREATMENT FOR PESTICIDE REMOVAL FROM CARROTS: OPTIMIZATION BY RESPONSE SURFACE METHODOLOGY. FOOD CHEMISTRY, V. 243, P. 435-441, 2018
  18. HELENO, F. F., DE QUEIROZ, M. E. L., NEVES, A. A., FREITAS, R. S., FARONI, L. R. A., & DE OLIVEIRA, A. F. (2014). EFFECTS OF OZONE FUMIGATION TREATMENT ON THE REMOVAL OF RESIDUAL DIFENOCONAZOLE FROM STRAWBERRIES AND ON THEIR QUALITY. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH, PART B, 49(2), 94-101
  19. RODRIGUES, ALESSANDRA APARECIDA ZINATO ET AL. USE OF OZONE AND DETERGENT FOR REMOVAL OF PESTICIDES AND IMPROVING STORAGE QUALITY OF TOMATO. FOOD RESEARCH INTERNATIONAL, P. 108626, 2019
  20. SAVI, G.D.; PIACENTINI, K.C.; BORTOLOTTO T.; SCUSSEL, V.M. DEGRADATION OF BIFENTHRIN AND PIRIMIPHOSMETHYL RESIDUES IN STORED WHEAT GRAINS (TRITICUM AESTIVUM L.) BY OZONATION. FOOD CHEMISTRY, N.203, P.246–251, 2016
  21. SAVI, GD, PIACENTINI, KC E SCUSSEL, VM, 2015. REDUÇÃO DE RESÍDUOS DE DELTAMETRINA E FENITROTION EM GRÃOS DE TRIGO ARMAZENADOS PELO OZÔNIO GASOSO. JOURNAL OF STORED PRODUCTS RESEARCH, 61, PP.65-69.
  22. FREITAS, ROMENIQUE DA SILVA ET AL. DEGRADATION KINETICS OF PIRIMIPHOSMETHYL RESIDUES IN MAIZE GRAINS EXPOSED TO OZONE GAS. JOURNAL OF STORED PRODUCTS RESEARCH, V. 74, P. 1-5, 2017.
  23. AVILA, MARIANE BR ET AL. OZONE AS DEGRADATION AGENT OF PESTICIDE RESIDUES IN STORED RICE GRAINS. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, V. 54, N. 12, P. 4092-4099, 2017
  24. VON GUNTEN, U. (2003). OZONATION OF DRINKING WATER: PART I. OXIDATION KINETICS AND PRODUCT FORMATION. WATER RESEARCH, 37(7), P. 1443-1467
  25. ZORLUGENÇ, B. ET AL., THE INFLUENCE OF GASEOUS OZONE AND OZONATED WATER ON MICROBIAL FLORA AND DEGRADATION OF AFLATOXIN B1 IN DRIED FIGS. FOOD AND CHEMICAL TOXICOLOGY, V. 46, N. 12, P. 3593-3597, 2008.
  26. CATALDO, F. OZONE DECOMPOSITION OF PATULIN-A MICOTOXIN AND FOOD CONTAMINANT. OZONE: SCIENCE AND ENGINEERING, V. 30, N.3, P. 197-201, 2008
  27. ALENCAR, ERNANDES RODRIGUES ET AL. EFFICACY OF OZONE AS A FUNGICIDAL AND DETOXIFYING AGENT OF AFLATOXINS IN PEANUTS. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, V. 92, N. 4, P. 899-905, 2012.
  28. SAVI, GEOVANA D. ET AL. FUMONISINS B1 AND B2 IN THE CORNMILLING PROCESS AND CORNBASED PRODUCTS, AND EVALUATION OF ESTIMATED DAILY INTAKE. FOOD ADDITIVES & CONTAMINANTS: PART A, V. 33, N. 2, P. 339-345, 2016.
  29. TORLAK, E.; AKATA, I.; ERCI, F.; UNCU, A.T. USE OF GASEOU OZONE TO REDUCE AFLATOXIN B1 AND MICROORGANISMS IN POULTRY FEED. JOURNAL OF STORED PRODUCTS RESEARCH, V.68, P.44-49, 2016.

7 min leituraComo podemos ver no post “Cloro x Ozônio na Indústria de alimentos”, é permitido usar o ozônio como sanitizante na água e ele é 325 vezes mais rápido que o […]

2 min leitura
0

O que significa a sigla USP em ingredientes alimentícios?

2 min leitura

Os últimos acontecimentos com o propilenoglicol e etilenoglicol geraram muitas dúvidas sobre a sigla USP utilizada no rótulo dos produtos contaminados.

A sigla USP significa United States Pharmacopeia, ou seja, significa que o produto foi analisado pela metodologia disponibilizada na farmacopeia americana. Garante-se que produtos analisados conforme esta metodologia contenham um nível de pureza de 99,99%.

A USP é uma organização científica independente e sem fins lucrativos focada no fornecimento de medicamentos e ingredientes para alimentos seguros e de qualidade.

A Farmacopeia dos Estados Unidos (USP) é uma farmacopeia (compêndio de informações sobre medicamentos) para os Estados Unidos publicada anualmente pela United States Pharmacopeial Convention (geralmente também chamada de USP), uma organização sem fins lucrativos que detém a marca registrada e também os direitos autorais sobre a própria farmacopeia. A USP oferece mais de 7.000 Padrões de Referência USP, amostras físicas altamente caracterizadas de substâncias medicamentosas, excipientes, ingredientes alimentícios, impurezas, produtos de degradação, suplementos alimentares, reagentes, compêndios e calibradores de desempenho. Seus padrões são reconhecidos em várias disposições da Lei Federal de Alimentos, Medicamentos e Cosméticos (FDCA) e em leis, regulamentos e políticas promulgadas pelos estados. Esses padrões são aplicados pela Food and Drug Administration (FDA) dos EUA, estados e outras organizações de supervisão.

Os principais compêndios de normas da USP são a United States Pharmacopeia e o National Formulary (USPNF). Estas normas podem ser adaptadas ou adotadas por qualquer organização ou governo em todo o mundo.

O que é estar em conformidade com a USP?

Um produto comercializado reconhecido na USP está em conformidade com estas normas quando cumpre todos os requisitos indicados na monografia do produto, nos Capítulos Gerais aplicáveis e nos Avisos. As normas aplicáveis valem para toda a vida útil do material, da produção à validade. Assim, espera-se que qualquer material oficial cumpra as normas do compêndio, se testado, e que qualquer material oficial efetivamente testado conforme indicado na monografia pertinente, cumpra essas normas para demonstrar conformidade. A frequência de teste e de amostragem vai depender das preferências ou da orientação de quem realiza o teste de conformidade, e de outros usuários do USP, incluindo fabricantes, compradores ou autoridades reguladoras.

Todos os testes especificados em uma monografia precisam ser realizados para assegurar a conformidade?

Especificações de um fabricante aprovadas pela FDA e boas práticas de fabricação (BPF) atuais relacionadas para medicamentos e produtos farmacêuticos acabados, exigidas pelas regulamentações da FDA podem ajudar a assegurar que um produto esteja e continue em conformidade com as normas de compêndio.

Qualquer empresa pode usar a marca de verificação USP?  

Para obter a marca de verificação USP, os fabricantes devem passar por:

– Auditoria de instalações de fabricação para conformidade com o Capítulo Geral da USP Práticas de Fabricação para Suplementos Dietéticos e Boas Práticas de Fabricação atuais da FDA;

– Revisão da documentação de fabricação e controle de qualidade do produto;

– Testes laboratoriais de amostras de produtos para conformidade com os padrões de qualidade encontrados no USP, ou com especificações farmacopeicas ou do fabricante apropriadas;

– Testes de prateleira dos produtos verificados para confirmar que o produto continua a atender aos padrões de qualidade baseados na ciência.

Assim, a empresa que utilizar o símbolo USP precisa ter sido aprovada para tal e percebemos fraude eminente com a utilização do símbolo USP para propilenoglicol contaminado e que causou uma grande crise em indústrias de fabricação de alimentação animal e humana. Usar um símbolo de garantia de pureza e conformidade com fins lucrativos é mais um daqueles golpes bem baixos contra o consumidor.

Boa leitura e até o próximo post!

2 min leituraOs últimos acontecimentos com o propilenoglicol e etilenoglicol geraram muitas dúvidas sobre a sigla USP utilizada no rótulo dos produtos contaminados. A sigla USP significa United States Pharmacopeia, ou seja, significa […]

< 1 min leitura
0

O que faz a European Food Safety Authority (EFSA)?

< 1 min leitura

A sigla EFSA (European Food Safety Authority) está intimamente relacionada à segurança de alimentos. É uma Agência Europeia financiada pela União Europeia e gerida independentemente das outras instituições da União e dos Estados membros.
Surge como uma agência de assessoria científica sobre os riscos associados à cadeia alimentar, incluindo claramente o conceito de “One health”, envolvendo riscos alimentares existentes e emergentes.
Legalmente, foi criada em 2002 pelo Regulamento (CE) nº 178/2002 e sua sede está localizada na cidade de Parma, Itália.

A EFSA presta assessoria científica à Comissão Europeia, ao Parlamento Europeu e aos Estados membros da UE, trabalhando em prol da segurança dos alimentos destinados a humanos e alimentos para animais. Desempenha também a tarefa de publicar os resultados científicos da sua investigação no EFSA Journal e outras publicações, que estão à disposição de quem queira se informar.
Sua ampla gama de tópicos inclui:

Alimentação Animal;

Contaminantes químicos;

Bem-estar animal;

Riscos Biológicos;

Uso de pesticidas;

Novos alimentos;

OGM;

Riscos emergentes;

Parasitas nos alimentos;

Resistência antimicrobiana;

Materiais em contato com alimentos; entre outra longa lista de interesse científico.

Como pode ser visto, o campo de pesquisa é muito amplo e seus avanços e conclusões servem de insumo para a elaboração de regulamentações alimentares e ambientais para a UE.

Imagem: foto de Thais Freires no Pexels

Leia também:

EFSA questiona eficácia da inspeção visual de carcaças

< 1 min leituraA sigla EFSA (European Food Safety Authority) está intimamente relacionada à segurança de alimentos. É uma Agência Europeia financiada pela União Europeia e gerida independentemente das outras instituições da União […]

3 min leitura
0

Existe mais de um tipo de requeijão?

3 min leitura

O requeijão é um queijo tipicamente brasileiro. À massa da coalhada são acrescentados creme de leite, água e sais fundentes. Ele pode se apresentar de 2 formas: cremoso ou de corte. São envasados ainda a quente. Tem coloração branca, sabor suave e lácteo. Isso é o que encontramos como definição do que seria requeijão. E na prática, o que estamos consumindo?

Se você reparar nas gôndolas dos supermercados temos algumas possibilidades para o que então chamamos de requeijão: requeijão cremoso, queijo processado sabor requeijão e mistura de requeijão com amido. Por isso é importante estar atento na hora da compra para saber qual produto está sendo levado para casa e entender o que pode ser produzido pensando em cumprimento de requisitos legais. A leitura do rótulo é importante, tanto para identificar o nome do produto – que pode aparecer em letras pequenas na base do rótulo – quanto para analisar a lista de ingredientes.

E por que isso? Antes era possível produzir e registrar um requeijão com determinados ingredientes, como o próprio amido, mas isso mudou quando o MAPA passou a não permitir o amido como ingrediente desse produto. Era frequente encontrarmos o produto denominado: requeijão cremoso com amido (algumas vezes com letras bem pequenas para esse último ingrediente). E uma das justificativas do MAPA para excluir esse ingrediente da formulação do requeijão cremoso era o não cumprimento da quantidade máxima de amido permitida.

O Regulamento Técnico para fixação de identidade e qualidade do requeijão (Portaria n° 359, de 04 de setembro de 1997) coloca como ingrediente obrigatório o leite ou leite reconstituído e traz uma lista de ingredientes opcionais, sendo o último deles: outras substâncias alimentícias, o que na minha opinião foi o motivo para muitos incluírem o amido em suas formulações.

A partir da decisão oficial de excluir o amido como ingrediente do requeijão, caso a empresa quisesse produzir um produto semelhante utilizando amido como ingrediente, esse produto entraria na categoria de mistura láctea e pode ser registrado como mistura de requeijão e amido. Esse produto inicialmente precisava ter como ingrediente preponderante a massa láctea. No ano passado, após análise pelo MAPA, foi aprovado que o creme de leite também pode ser o ingrediente em maior quantidade, desde que declarado e aprovado na PGA (Plataforma de Gestão Agropecuária) onde é feita a submissão dos processos de aprovação de registro dos produtos regulamentados pelo MAPA, conforme explicado aqui.

Uma outra alternativa usada por alguns laticínios é o queijo processado sabor requeijão, que deve seguir o Regulamento Técnico para Fixação de Identidade e Qualidade de Queijo Processado ou Fundido, Processado Pasteurizado e Processado Fundido U.H.T (Portaria n° 356, de 4 de setembro de 1997). Esse produto precisa ter como ingrediente obrigatório um ou alguns queijos de uma ou mais variedades e agentes emulsificantes, e permite-se uma lista de ingredientes opcionais, sendo o amido um deles, desde que não ultrapasse a concentração final de 3% (m/m) no produto. Quando pensamos em queijo processado sabor requeijão, temos o uso de um aromatizante sabor requeijão.

Pensando em aprovação desses itens, muitos deles são de aprovação direta na PGA o que faz com que a empresa tenha total responsabilidade sobre o que produz, sem que o registro seja avaliado por um fiscal federal, então faz-se necessário o compromisso das empresas, cumprimento dos requisitos legais e bom senso na produção desses itens.

Não podemos esquecer a questão sensorial e de custo. Como há um número grande de indústrias que produzem esses itens, o consumidor tem muitas possibilidades de escolha. Com atenção ao rótulo, tanto para o nome do produto quanto para a lista de ingredientes, é possível selecionar aquele que melhor atende o quesito financeiro e em algumas situações ter gratas ou ingratas surpresas no quesito sabor.

Esse é um ponto importante com relação à segurança de alimentos, uma vez que algumas pessoas podem apresentar quadros alérgicos a alguns ingredientes, inclusive ao amido. Ou seja, os ingredientes utilizados devem estar declarados e suas quantidades máximas respeitadas nas formulações não apenas pensando em cumprimento de requisitos legais, mas também pensando em possíveis riscos a quem consome. A lista de aditivos permitidos é grande e temos alternativas às formulações cumprindo concentrações máximas de cada um deles.

Imagem: foto de Kyle Killam no Pexels

3 min leituraO requeijão é um queijo tipicamente brasileiro. À massa da coalhada são acrescentados creme de leite, água e sais fundentes. Ele pode se apresentar de 2 formas: cremoso ou de […]

2 min leitura
0

Como a febre aftosa afeta a segurança dos alimentos

2 min leitura

Caro leitor, segue um breve relatório informativo sobre uma doença complexa e altamente importante em todo o mundo: a Febre Aftosa (FMD).

Comecemos por contextualizar a doença. Ela é altamente contagiosa, de origem viral, e acomete animais biungulados (com cascos fendidos). Seu impacto econômico é enorme.

Qual é o organismo que causa a febre aftosa?

É um aphtovírus da família Picornaviridae, da qual existem 7 cepas. Os animais acometidos por esta doença são bovinos, ovinos, suínos, veados, antílopes e alguns tipos de búfalos, além de outros animais silvestres como o javali. Este último pode se infectar e ser portador da doença e espalhá-la.
Nos animais, o aparecimento de um foco infeccioso tem a capacidade de se espalhar rapidamente, afetando uma grande área do território e causando danos econômicos significativos. Animais doentes apresentam aftas ou vesículas na boca, língua, lábios, geralmente com salivação intensa, nos dedos dos pés e em alguns casos podem acometer os úberes, e também apresentam magreza. Em animais mais jovens, a doença causa a morte.

Prevenção

Dentre as várias medidas de prevenção, destacam-se: isolamento de animais doentes e eventualmente o seu sacrifício; proibição da circulação de animais no território; vacinação massiva de  animais saudáveis com vacinas de vírus inativados, específicas para a cepa do vírus atuante e para a espécie animal a que se destina. Duas doses anuais são administradas. A Organização Internacional de Epizootias da OIE, atualmente conhecida como OMSA, possui uma série de requisitos e recomendações a serem seguidas em caso de surto.

Os humanos podem ser infectados?

Dificilmente, por isso não representa um perigo para a saúde pública. Alguns casos foram registrados em humanos com o aparecimento de vesículas nas mãos e na boca, mas com caráter benigno. Isso foi visto em pessoas que entram em contato com animais infectados.

Biossegurança

Um papel importante é desempenhado pelos laboratórios que manipulam esse vírus e fabricam as vacinas para imunizar os animais. Protocolos rigorosos de biossegurança são necessários para evitar acidentes que podem ser catastróficos. A OIE desenvolveu um Padrão de Qualidade e Diretrizes para Laboratórios Veterinários, tratando de doenças infecciosas. Esses laboratórios são inspecionados pela autoridade sanitária de cada país para verificar o estrito cumprimento da Norma.

Referências

https://www.paho.org/es/temas/fiebre-aftosa

https://www.gov.br/agricultura/pt-br/assuntos/noticias/brasil-tem-mais-seis-estados-reconhecidos-como-areas-livres-de-febre-aftosa-sem-vacinacao

Leia também

FDA disponibiliza cenários para simulação de crises

2 min leituraCaro leitor, segue um breve relatório informativo sobre uma doença complexa e altamente importante em todo o mundo: a Febre Aftosa (FMD). Comecemos por contextualizar a doença. Ela é altamente […]

3 min leitura
1

Os 6 passos para tornar-se perito judicial de alimentos

3 min leitura

Neste post tenho a felicidade de compartilhar com vocês alguns passos utilizados para tornar-se um perito. No próximo post vou escrever sobre outra especialidade em que atuo: a de assistente técnica que presta serviços para outras empresas.

Sou perita judicial há 14 anos, ministro cursos desta especialidade, trabalhei nos mais diversos casos realizando laudos provenientes de consumidores, de empresas que possuem casos a resolver com seus fornecedores ou outros assuntos, perícias fiscais e outras. Importante salientar que este é um trabalho autônomo e uma forma de renda extra.

Confesso que as palavras perito judicial, tribunal de justiça e justiça federal causam um certo pavor nas empresas quando atuamos em outras áreas. Uma empresa acredita que você pode denunciá-la por perceber algum comportamento estranho ou por uma irregularidade percebida. Enganam-se porque um perito atua em casos por solicitação do judiciário e jamais é aceito pela justiça que informações sigilosas de qualquer empresa sejam repassadas a estes órgãos. Um perito atua diretamente e imparcialmente para o juiz, sendo que é vetada a utilização de informações técnicas de qualquer empresa, assim como suspeitas enquanto realizam-se trabalhos de consultoria, auditoria ou CLT. Não existe um canal de denúncias e nem é permitido tal comportamento e sinceramente isto geraria incômodos desnecessários, sem lucro, e o perito pode ser desconstituído do encargo.  Um perito só pode atuar em empresas com as quais nunca teve contato, porque os próprios advogados descobrem isto realizando pesquisas minuciosas. Um perito não tem poder de prejudicar os envolvidos em nenhuma empresa que atue e sim oferecer um serviço técnico, de saber notório, sendo os olhos do juiz no caso, elaborando laudos originais e imparciais com ética e cumprindo os regulamentos do  código civil. Peritos devem ser exemplo de boa conduta.

Enfim, se você adora um desafio, tem paciência para ler inúmeras legislações, estudar muito, cumprir prazos, atuar em casos complexos, eu o convido a ler os 6 PASSOS PARA ATUAR COMO PERITO DE ALIMENTOS.

PASSO 1) INSCREVA-SE

A inscrição é on line e precisa de alguns minutos e documentos a serem enviados. É gratuita e fácil de realizar.

A inscrição deve ser realizada no Tribunal de Justiça no estado de sua residência e os ícones para inscrição denominam o perito como assistente judicial ou especialista. Você pode inscrever-se e selecionar a região em que deseja atuar ou optar em atender o estado todo (uso esta opção) porque atualmente os processos são eletrônicos e o trabalho é em home-office.

O link abaixo indica como inscrever-se no site do Tribunal de Justiça de São Paulo.

www.tjsp.jus.br/AuxiliaresdaJustica

PASSO 2) SUA EXPERTISE

Descreva sua expertise para disponibilizar ao tribunal. Por meio dela, o juiz irá fazer sua nomeação, porque precisa estar de acordo com a necessidade do processo.

Descreva de forma sucinta e de fácil compreensão. Termos complexos não são inteligíveis porque o Judiciário é formado por pessoas das áreas de Direito e afins, sendo a intimação por expertise no assunto.

Sugestões de descrição de expertise (descreva quantas especialidades desejar):

– Especialista em formulações (não escreva P&D)

– Especialista em equipamentos e processos de alimentos;

– Especialista em identificar materiais estranhos e perigos ao consumidor

– Especialista em análises laboratoriais em alimentos.

Nota: não descreva palavras como BPF, APPCC, ISO.

Passo 3: INTIMAÇÃO

A intimação é para o perito avaliar se domina o assunto e se deseja ou não atuar no processo. Exemplo: o assunto refere-se a um objeto estranho encontrado em uma garrafa de bebidas. O requerente é o consumidor e a requerida é a empresa fornecedora. Leia todo processo e conclua se está dentro de suas competências. Caso positivo, faça uma petição com a aceitação do encargo, tendo o prazo de 5 dias para enviar a petição.  Após isso, ocorrerá a intimação para realizar a pretensão honorária.

Segue um exemplo de como montar sua proposta.

Tabela 01: Valor de honorário periciais.

Horas trabalhadas Valor da hora R$ Deslocamento+ hospedagem Horas elaboração do laudo (hs) Horas de visita à fábrica (hs) Horas para resposta dos quesitos complementares (hs)
40 hs 180 500 26 8 6
Valor total: R$7.700,00

Nota: Este valor é depositado antes das diligências legais.

Caso seja um processo em que o juiz decida por AJG (assistência judiciária gratuita), o valor estipulado é de aproximadamente R$ 447,00 e neste caso o perito avalia a prova que é enviada para seu endereço ou na direção do fórum da comarca de sua residência. Neste caso, o valor não cobre o valor de visita à fabrica.

Passo 4: PERÍCIA, LAUDO E QUESITOS COMPLEMENTARES

Realizada a avaliação da prova pericial, visita à fábrica (quando estipulado) no processo, o perito precisa responder os quesitos elaborados pelas partes, juntamente com um laudo e fotos retiradas das provas e do processo. Os quesitos são perguntas técnicas e o prazo de entrega é de 15 dias. Se precisar de mais tempo, deve-se peticionar no processo.

Passo 5: QUESITOS COMPLEMENTARES

As partes irão avaliar o laudo e os quesitos e formular os quesitos complementares, que são apresentados para que o perito responda às dúvidas ou contestações das partes.

Passo 6: ENCERRAMENTO DO TRABALHO PERICIAL

Finalizada a perícia, o juiz irá avaliar todos os fatores expostos pelas partes e seu laudo e o perito não possui mais nenhum envolvimento com o processo.

No próximo post, descreverei a atuação de um assistente judicial.

Boa leitura e até breve!

Leia também:

https://foodsafetybrazil.org/entrevista-com-medico-veterinario-perito-criminal-da-policia-federal/

https://foodsafetybrazil.upper.rocks/fsb-entrevista-angela-busnello/

https://foodsafetybrazil.org/carne-fraca-o-que-pode-acontecer-agora-opiniao-de-uma-perita/

3 min leituraNeste post tenho a felicidade de compartilhar com vocês alguns passos utilizados para tornar-se um perito. No próximo post vou escrever sobre outra especialidade em que atuo: a de assistente […]

2 min leitura
1

Não confunda food fraud e food defense

2 min leitura

Muitas pessoas se confundem com os termos Food Defense e Food Fraud e ainda desconhecem os meios para implantar estes programas nas indústrias de alimentos.

Food Fraud está relacionado com situações que promovem ganhos financeiros. Caracteriza-se pela substituição, diluição ou adição fraudulenta e intencional de um produto ou matéria-prima, ou adulteração do alimento ou material, com a finalidade de ganho financeiro, aumentando o valor aparente do alimento ou reduzindo o custo de sua produção. Exemplos: alteração de ingredientes, omissão de informação no rótulo, adição de água para aumento do volume.

Já Food Defense refere-se à prevenção de uma sabotagem com caráter ideológico, com objetivo de contaminação intencional ou maliciosa em alimentos ou em processos de produção de alimentos. Os itens Defesa de Alimentos e Fraude Alimentar são citados nos requisitos adicionais da FSSC 22000.

Para Food Defense, a norma requer uma avaliação para identificar e avaliar as potenciais ameaças, além de desenvolver e implantar medidas de mitigação para as ameaças significativas.

Para Fraude Alimentar, a norma cita a necessidade de uma avaliação de vulnerabilidade para identificar e avaliar as potenciais vulnerabilidades e desenvolver e implementar medidas de mitigação para as significativas.

Ambos os programas – food fraud e food defense – requerem um procedimento documentado.

Além dos requisitos adicionais, o item de Food Defense e Bioterrorismo é citado também na ISO/TS (Programas de Pré-Requisitos).

Como fazer a análise de risco e quais são as possíveis medidas de controle?

A avaliação deve ser feita envolvendo toda a cadeia de produção do alimento, desde o monitoramento dos fornecedores até análise do produto acabado. Para Food Fraud, podemos usar a ferramenta SSAFE. É uma ferramenta gratuita para avaliação de vulnerabilidade às fraudes em alimentos. Ela contém um questionário que nos ajudar a identificar e avaliar quais situações de fraudes podem ocorrer com os alimentos da empresa. Veja a explicação completa nesse post já publicado aqui no blog.

Para Food Defense, a empresa pode realizar uma análise de ameaça para verificar quais pontos são mais vulneráveis e apresentam risco nas instalações e, dessa forma, estabelecer um plano de ação.

Nas indústrias, podemos implantar um check list de controle em pontos de acesso restrito (caixas d’agua, sala de armazenamento de produtos químicos e materiais de limpeza, local de acesso a gases, etc). Podemos ainda instalar lacres nas portas para evitar acesso de pessoas estranhas e também em locais não permitidos e monitorar a numeração desses lacres para que não sejam rompidos ou trocados.

Outro ponto muito importante para o Food Defense é a destruição de logomarcas. Caso sua marca esteja exposta em embalagens que não serão utilizadas, estas embalagens devem ser destruídas para evitar casos de sabotagem.

O monitoramento por câmeras e o controle de entrada de visitantes e colaboradores também são formas de controle para o Food Defense. A área de TI pode auxiliar no controle das informações, restringindo o acesso a pastas com documentos sigilosos, procedimentos internos, acesso por visitantes, etc. Para os caminhões, é recomendado o uso de lacres para evitar a abertura e possível sabotagem durante o transporte.

Todos esses procedimentos ajudam a garantir a segurança dos alimentos, evitando ataques intencionais, que podem levar à contaminação de alimentos.

2 min leituraMuitas pessoas se confundem com os termos Food Defense e Food Fraud e ainda desconhecem os meios para implantar estes programas nas indústrias de alimentos. Food Fraud está relacionado com […]

< 1 min leitura
0

O Blog Food Safety Brazil retornará dia 20/05!

< 1 min leitura

É isso mesmo, depois de um período de manutenção e melhorias, nosso site retornará com seus novos conteúdos no próximo dia 20 de maio (sexta-feira).

Aproveitamos para informar a todos, principalmente àqueles que utilizam nosso site para pesquisa ou apoio, que os nossos conteúdos antigos já estão no ar. O site já pode ser acessado para consultas dos posts realizados anteriormente.

Estamos ansiosos para esse nosso retorno. Tem muita coisa boa vindo por aí!

Agradecemos imensamente a todos os leitores, amantes da segurança de alimentos e aos que nos mandaram mensagens a espera dessa volta.

Nosso propósito é levar informação, conteúdo de qualidade, opinião e muito conhecimento a todos. E esse trabalho não pode parar. Aguardem!

Diretoria Food Safety Brazil.

< 1 min leituraÉ isso mesmo, depois de um período de manutenção e melhorias, nosso site retornará com seus novos conteúdos no próximo dia 20 de maio (sexta-feira). Aproveitamos para informar a todos, […]

3 min leitura
0

Pasteurização x Esterilização de alimentos: quais as diferenças?

3 min leitura

O tratamento térmico é uma prática comum e importante na indústria de alimentos e bebidas. Ele é aplicado com o objetivo de oferecer um produto seguro ao consumidor. O emprego de calor aquece o alimento ou bebida e consequentemente reduz sua carga microbiológica. Os processos térmicos mais conhecidos e utilizados nestas indústrias são a pasteurização e a esterilização.

A diferença entre os dois processos térmicos está somente na temperatura?

Em linhas gerais, podemos dizer que tanto a pasteurização quanto a esterilização são técnicas de conservação de alimentos que se baseiam na eliminação de microrganismos e enzimas por meio do emprego de calor por um determinado tempo, o chamado binômio ‘’tempo’’ e ‘’temperatura’’.

Apesar de esta ser a diferença mais comum e conhecida por todos nós, a maior e mais importante diferença entre elas é o microrganismo que se pretende atingir.

Para iniciar o levantamento dos microrganismos-alvos, temos que primeiramente conhecer as características do alimento a ser processado. Alimentos com alta acidez ou baixa atividade de água já possuem uma resistência natural ao crescimento dos microrganismos. Por outro lado, alimentos que possuem baixa acidez e alta atividade de água possuem menor resistência ao desenvolvimento dos microrganismos.

Em seguida, temos que conhecer as características dos microrganismos. Eles podem ser vegetativos ou esporulados. Os vegetativos são menos resistentes ao calor enquanto os esporulados possuem maior resistência.

Como definir o tratamento térmico mais indicado para o alimento?

Depois que conhecermos as características do alimento e analisarmos os microrganismos que precisam ser destruídos, ficará fácil definir o melhor tratamento térmico. A pasteurização é utilizada para destruição de patogênicos vegetativos, com baixa resistência térmica. Geralmente é aplicada em produtos com pH abaixo de 4,6. É um tratamento que possui três modalidades: lenta, rápida e muito rápida e geralmente altera pouco as características sensoriais do produto e o valor nutritivo. Em geral, a pasteurização envolve aquecimento a temperaturas abaixo de 100°C, por um período curto de tempo.

A esterilização é o processo utilizado para destruição de microrganismos esporulados e com alta resistência térmica e consequentemente destrói também os de baixa resistência. Geralmente é aplicado em alimentos de baixa acidez (pH > 4,6) e alta atividade de água (Aw > 0,85). Por conta da particularidade do processo, o alimento pode sofrer alterações mais severas de sabor, cor e aroma.  O método envolve o aquecimento de alimentos a temperaturas elevadas, entre 115°C a 125°C, durante minutos ou segundos.

Tabela de comparação entre esterilização e pasteurização

Parâmetros de Comparação Esterilização Pasteurização
Definição É um método utilizado para eliminar todos os microrganismos e seus esporos. É um método usado para destruir formas vegetativas de bactérias
Tipos Pode ser física ou química. A esterilização física significa esterilização com calor ou mesmo esterilização a frio. A esterilização química significa esterilização a gás usando agentes químicos ou esterilização a frio. A pasteurização depende da temperatura e pode ser pasteurização em cuba, HHST, HTST.
Efeito Este método mata todos os microrganismos, incluindo formas vegetativas e de esporos. Este método elimina apenas as formas vegetativas de bactérias.
Uso A esterilização é usada em microbiologia, indústria alimentícia, indústria de embalagens etc. A pasteurização é utilizada em medicamentos, meios de cultura etc. É utilizada em métodos de conservação de alimentos na indústria alimentícia.
Período de validade O período de validade dos produtos esterilizados é maior do que os produtos de pasteurização. O prazo de validade dos produtos pasteurizados é menor que o dos produtos esterilizados.

Fonte: https://askanydifference.com/difference-between-sterilization-and-pasteurization/. Acesso: 21 de fevereiro de 2022.

Independentemente do método escolhido, é importante lembrar que a avaliação tem de ser baseada nas características do alimento (pH, Aw, etc), para garantir sua vida de prateleira e a segurança.

3 min leituraO tratamento térmico é uma prática comum e importante na indústria de alimentos e bebidas. Ele é aplicado com o objetivo de oferecer um produto seguro ao consumidor. O emprego […]

2 min leitura
0

Spray para limpeza de tanques na indústria de alimentos: opções e critérios

2 min leitura

A limpeza de tanques é um dos pontos mais críticos na higienização de indústrias de alimentos e há muitas dúvidas se o spray instalado é realmente o melhor.

Para pensar na melhor alternativa de spray, os pontos mais importantes são a eficácia da limpeza e o consumo otimizado de água e produtos. Há muitas outras variáveis a serem verificadas, conforme mostra um outro artigo aqui publicado. No post de hoje, vou abordar apenas o tema dos sprays.

A limpeza eficaz depende do controle de parâmetros já especificados e baseados no ciclo de Sinner.

Ter um consumo otimizado não necessariamente é ter a menor vazão, pois é preciso ter uma instalação que integre a limpeza interna dos tanques e a limpeza das tubulações de entrada e/ou de saída.

As opções de sprays estão divididas em 3 grupos:

  • sprays estáticos (fixos)
  • sprays rotativos
  • cabeçotes rotativos

Figura 1: Exemplos de modelos de fabricante

Quanto ao número de sprays, a quantidade pode mudar em função de geometria dos agitadores e acessórios internos dos tanques. Também é preciso analisar dimensões do tanque, produtos, processos e temperaturas.

A ilustração abaixo apresenta as opções de sprays com recomendações em linhas gerais. As definições podem variar em função do fabricante.

Figura 2: Resumo de aplicações dos sprays

Fonte: autora

Ao trocar o modelo do spray, é necessário analisar a bomba que envia as soluções de limpeza para que a vazão e pressão sejam adequadas. Muitas vezes é possível reduzir consideravelmente o consumo de água, seja pela redução de vazão ou pelo tempo da etapa de enxágue.

É bom analisar a necessidade de instalação de filtros antes do spray para evitar que partículas obstruam os orifícios. Há alguns fabricantes que fornecem sensores de verificação de funcionamento no caso de cabeçotes rotativos.

Há estudos práticos disponíveis com várias opções de sprays e respectivas soluções, tanto para melhorar a limpeza como para reduzir o consumo de água. Na dúvida, o melhor é consultar um especialista.

Referências

https://www.youtube.com/watch?v=lFaYgR4zlrc

https://www.csidesigns.com/blog/articles/how-rotary-spray-heads-work

https://www.spray.com.br/Literature_PDFs/Portuguese/LI022-BR_Limpeza_Tanques_para_Industria_de_Laticinios.pdf

https://www.spray.com.br/Literature_PDFs/Portuguese/LI050-BR_Lavadores-Automaticos-De-Tanques-Na-Industria-De-Alimentos.pdf

Limpeza de tanques para alimentos e bebidas – Cuidados Importantes

 

2 min leituraA limpeza de tanques é um dos pontos mais críticos na higienização de indústrias de alimentos e há muitas dúvidas se o spray instalado é realmente o melhor. Para pensar […]

Compartilhar
Pular para a barra de ferramentas