5 min leitura
3

Medidas de controles de perigos químicos à segurança dos alimentos

5 min leitura

Neste 3º post da série, abordaremos as medidas de controles (MC) dos perigos químicos nas matérias-primas/insumos e processos. Deve ser realizado levando-se em consideração sua origem e limites máximos de contaminantes químicos tolerados, de acordo com legislações ou referências técnicas internacionalmente reconhecidas, como:

  • Agroquímicos (pesticidas, fungicidas, herbicidas): água, produtos de origem vegetal e origem animal.

Referência: Ministério da Agricultura – Agrofit (para vegetais) e Ministério da Saúde – potabilidade de água

  • Resíduos de drogas veterinárias: produtos de origem animal

Referência: Ministério da Agricultura – legislações para uso de medicamentos veterinários

  • Metais pesados: água, ingredientes e aditivos que possuam limites de tolerância estabelecidos por legislação ou em padrões internacionalmente reconhecidos; materiais de embalagens.

Referência: ANVISA – Limites Máximos de Contaminantes Inorgânicos em Alimentos e Ministério da Saúde – potabilidade de água.

  • Migração de solventes e outras substâncias de embalagens

Referências: Regulamentos técnicos da ANVISA para materiais em contato com alimentos e lista positiva de monômeros, polímeros, aditivos e substâncias iniciadoras.

  • Micotoxinas: alimentos em grãos, cereais, leite

Referência: Resoluções da ANVISA, que tratam dos limites máximos tolerados para micotoxinas em alimentos e Codex CAC/RCP 51-2003.

  • Secagem artificial direta: quando os alimentos podem entrar em contato com gases de combustão; dependendo da qualidade do combustível utilizado e ajuste dos sistemas de combustão, substâncias indesejáveis podem surgir e contaminar os materiais; são substâncias como DNMA (dinitroso-metilamina), hidrocarbonetos policíclicos aromáticos (HPA), PCBs, dioxinas, NOx e SOx. Há substâncias com efeitos carcinogênicos comprovados e grande persistência ambiental.

Grupo de substâncias que se formam quando a matéria orgânica se expõe a altas temperaturas, em produtos como:

  • Defumados
  • Grãos que passam por secagem com gases de combustão
  • Produtos assados com madeira ou carvão
  • Café torrado
  • Processamento e envase de alimentos.
  • Benzeno: é um composto orgânico volátil, constituinte do petróleo, utilizado como solvente em laboratórios químicos (analíticos e de sínteses), como matéria prima nas indústrias químicas, e, encontrado nos parques petroquímicos, de refino de petróleo, nas companhias siderúrgicas, nas usinas de álcool anidro, na gasolina e na fumaça do cigarro. Vulcões e queimadas de florestas são fontes naturais que também contribuem para sua presença no meio ambiente ou alimentos. A formação de benzeno em refrigerantes resulta da descarboxilação do conservante ácido benzóico na presença de ácido ascórbico (vitamina C) principalmente sob a ação de calor e luz. A exposição ao benzeno pode causar câncer e algumas doenças no sangue.
  • Acrilamida: essa substância é fruto da reação de Maillard que ocorre em alimentos cozidos em altas temperaturas (batata frita, grelhados, assados). O problema é que a acrilamida também é causadora de câncer e os alimentos associados são geralmente de grande consumo entre a população.

Como ela é uma substância relacionada aos açúcares presentes nestes alimentos, uma forma de “amenizar” a formação destes compostos é a prática do branqueamento (principalmente de batatas) antes de fritá-las, eliminando parte dos açúcares da superfície do alimento ou inativação enzimática.

  • Injeção de vapor: a qualidade do vapor é importante porque o vapor entra em contato direto com os alimentos; a segurança do vapor é determinada pela qualidade e potabilidade da água utilizada e os agentes tecnológicos adicionados, como os agentes preventivos de corrosão e de tratamento de caldeira. Produtos inadequados podem causar arraste de substâncias indesejáveis para a linha de vapor.
  • Utilização de agentes tecnológicos de processo (como gesso, agentes fluidos, reguladores de acidez) e agentes técnicos (como lubrificantes): durante a produção e o processamento dos produtos alimentícios, agentes técnicos (lubrificantes) e tecnológicos (reguladores de acidez, conservantes) são frequentemente utilizados. Estes agentes adicionados podem ser incorporados nos produtos que estão sendo processados. Por isso, a segurança destes agentes adicionados é um importante ponto de atenção, especialmente se eles são de grau alimentício.
  • Agentes de limpeza e sanitização: quando são utilizados detergentes e/ou sanitizantes, deve-se assegurar que os sistemas de controle proporcionam a dosagem correta e efetiva dos mesmos, e que o procedimento de enxágue (quando necessário) garanta a remoção de resíduos dos produtos químicos. Os sistemas de dosagem devem ser calibrados por pessoal competente e registros de calibração mantidos. Somente produtos químicos compatíveis com alimentos devem ser permitidos (ex. registrados no Ministério da Saúde, não sendo domissanitário).
  • Bisfenol A (BPA): segundo a Anvisa, a substância bisfenol A é utilizada na produção de policarbonato e em vernizes epóxi.  O policarbonato, por sua vez, apresenta características como alta transparência e resistência térmicas e mecânicas. Por esse motivo, é utilizado na fabricação de mamadeiras e copos infantis, bem como em vernizes que revestem embalagens metálicas de alguns alimentos. A polêmica em torno desta substância seria que os problemas de saúde causados através da exposição à ela só seriam causados se a ingestão fosse em doses elevadas.
  • Acetaldeído: estudos relacionados a essa substância afirmam que este composto presente principalmente em garrafas PET, pode migrar para o alimento, bem como para o ambiente. É formado pela degradação do PET durante o processo de fusão, e migra da embalagem de PET para bebidas ao longo do tempo e a ele são atribuídas as alterações de sabor de água mineral e bebidas carbonatadas. A importância da detecção e controle dessa substância se dá devido a sua carcinogenicidade, pois foi comprovado que tal substância induziu câncer nasal em ratos após a administração por inalação.
  • DEHP (adipato de di(2-etil-hexila)) e DHA (ftalato de di-(2-etil-hexila) são compostos utilizados na elaboração de embalagens de vários produtos alimentícios e estudos bastante atuais estão sendo realizados para avaliação do percentual de migração destes compostos para os alimentos.
  • Radiológicos: Alimentos irradiados não representam perigos radiológicos! Deve-se consultar bibliografia e dados da cadeia produtiva – incidência de contaminação ambiental / origem, Questionário homologação de fornecedores e alimentos naturalmente radioativos onde não há limite em legislação e estudo indicam que não são perigos significativos: radônio-226 e potássio-40 em castanhas, por exemplo.
  • Alérgenos alimentares: Reação a alimentos ou aditivos envolvendo mecanismos imunológicos (produção de anticorpos, a imunoglobulina E – IgE). Nas reações bioquímicas acontece a liberação de histamina e outras substâncias nos tecidos. Estas substâncias provocam as reações nos olhos, pele, sistema respiratório e intestino. A reação alérgica ocorre em segundos quando o indivíduo é exposto à substância a que é alérgico. A concentração da substância pode ser tão baixa que o sistema imunológico responde com quadros de diarreia, vômitos, distensão e dores abdominais, sangramentos digestivos, enteropatia perdedora de proteína, colite, doença celíaca e choque anafilático.
  • E quando não temos legislação específica sobre um determinado contaminante no nosso alimento, objeto do nosso estudo ou a sensibilidade dos métodos analíticos não detecta?  Onde vamos buscar referência?  Como saber se existe algum nível seguro?

Resp.: “Se não existe legislação estabelecendo um limite máximo para um determinado contaminante, então significa que a tolerância é zero, ou seja, a presença deste contaminante no alimento (em qualquer concentração) não é aceita”.

Plagiando o princípio de Paracelsius, que diz: “a dose faz o veneno” (1443 – 1541): “todas as substâncias são venenos, não existe nenhuma que não seja. A dose correta diferencia um remédio de um veneno”.

As medidas de controles de contaminantes químicos, por várias vezes, estão atreladas às boas práticas na cadeia produtiva de alimentos e usos de “doses” corretas para as finalidades tecnológicas de agroquímicos, assim como tecnologias como a blanchagem (despeliculamento) em amendoim para controle de aflatoxinas.

5 min leituraNeste 3º post da série, abordaremos as medidas de controles (MC) dos perigos químicos nas matérias-primas/insumos e processos. Deve ser realizado levando-se em consideração sua origem e limites máximos de […]

4 min leitura
0

O perigo de consumir peixes com alto teor de mercúrio durante a gravidez

4 min leitura

O peixe como componente da alimentação normal das pessoas é um alimento considerado saudável, que fornece nutrientes de grande valor biológico, como proteínas, vitaminas, minerais e gorduras insaturadas como o ômega 3, que são muito úteis para manter uma boa saúde cardiovascular. Os peixes como o bacalhau, a truta, o salmão, a pescada, corvina e outros de consumo massivo enquadram-se nesta categoria, com a vantagem adicional de apresentar um teor baixo e quase insignificante de mercúrio na carne.

No entanto, existem outras espécies de peixes de grande porte, que ocupam um lugar privilegiado no topo da cadeia alimentar marinha, como o tubarão, o espadarte, o marlim, o atum, que apresentam maior teor de mercúrio na sua carne e cujo consumo frequente em certas circunstâncias não é recomendado.

Em primeiro lugar, gostaria de comentar muito brevemente como o mercúrio se acumula nessas espécies. O mercúrio existe na natureza, às vezes tem origem vulcânica e faz parte dos chamados metais pesados, junto com o cádmio, o chumbo e o arsênio. A atividade industrial dos centros povoados também gera mercúrio, que por diferentes formas, seja pelo lançamento de água contaminada em córregos ou rios ou pelo ar (vapores que contêm mercúrio), acaba poluindo os mares e oceanos do mundo.

Nos oceanos, o mercúrio é metilado por processo bioquímico, por microalgas e outros microrganismos, formando um composto denominado metilmercúrio (CH3Hg) +. Este composto é considerado neurotóxico para o homem. Como é bem sabido no meio marinho, os peixes maiores se alimentam dos menores (os peixes grandes comem os peixes pequenos) e quando comem outros peixes comem também o metilmercúrio que carregam dentro. O mercúrio tem a característica de sua difícil eliminação uma vez que está dentro do peixe, razão pela qual se acumula dentro dele. Este processo de acumulação na cadeia alimentar é denominado biomagnificação e é por esta razão que peixes maiores, que comeram milhares de outros peixes, têm uma perigosa quantidade de mercúrio no corpo.

De acordo com um estudo da Emory University em Atlanta, Geórgia, o metilmercúrio é um conhecido neurotóxico que afeta o desenvolvimento do feto que é muito sensível à sua presença. O mercúrio pode vir da água de bebida ou da dieta de certas espécies de peixes que estão no topo da cadeia alimentar, como observado acima, que contêm altos níveis de mercúrio. Quando a mulher deseja iniciar um período de pré-concepção, é recomendado que veja seu médico e pergunte sobre os cuidados que devem ser tomados com o feto e entre eles há recomendações quanto à alimentação (veja aqui). Considerando que o metilmercúrio é eliminado do corpo naturalmente, mas pode levar mais de um ano para diminuir significativamente, a possibilidade de estar presente em seu corpo, mesmo antes de você engravidar é alta. Por este motivo, recomenda-se à mulher que está tentando engravidar que evite o consumo de certos tipos de peixes, como os mencionados (atum, espadarte, tubarão, cação azul).

Porém, o consumo de outras espécies de peixes, que não possuem alta carga de mercúrio, é recomendado para mulheres no período de pré-concepção, incluindo uma ou duas vezes por semana.

Um estudo publicado no Biomedical and Pharmacology Journal faz uma comparação muito interessante entre o teor de mercúrio no sangue de mães grávidas e no sangue do cordão umbilical de seus recém-nascidos. O estudo mostra que existe uma correlação positiva entre o conteúdo de mercúrio no sangue da mãe e o conteúdo de mercúrio no cordão umbilical de seus recém-nascidos.

O metilmercúrio é um composto altamente solúvel em lipídios e tem facilidade para atravessar a placenta. A membrana placentária é lipofílica e o metilmercúrio é lipossolúvel, por isso penetra facilmente na membrana placentária e também na barreira hematoencefálica do feto, tendendo a se acumular no tecido nervoso central e periférico e também na barreira sanguínea glomerular afetando os rins. Acredita-se que a ingestão repetida ou frequente de peixes com alto teor de mercúrio pela mãe, no período de pré-concepção e durante a gravidez, pode afetar o desenvolvimento do feto, restringindo o desenvolvimento intrauterino, podendo causar baixo peso ao nascer, parto prematuro e problemas de neurodesenvolvimento que podem se manifestar mesmo após o nascimento. Também o FDA dos Estados Unidos recomenda tomar o mesmo cuidado durante a amamentação.

O estudo realizado também mostra que as mães que consumiram 4 ou mais porções mensais de peixes com alto teor de mercúrio tiveram níveis de mercúrio no sangue até 10 vezes maiores do que aquelas que consumiram 1 vez por mês ou mesmo nenhuma. A mesma diferença foi observada no sangue do cordão umbilical de recém-nascidos. Portanto, a importância da frequência da ingestão de peixes nos níveis de mercúrio no sangue é clara. Outro fator a ser levado em consideração é que o mercúrio reduz a capacidade de transporte de oxigênio no sangue levando ao estado de hipóxia (baixo teor de oxigênio). Também foi demonstrado que inibe o transporte de nutrientes através da membrana placentária, o que pode levar a malformações, retardo do crescimento e, em casos mais graves, morte fetal. A correlação entre a frequência de consumo de peixes com alto teor de mercúrio no sangue materno e no sangue do cordão umbilical do recém-nascido foi confirmada por diversos estudos.

Da mesma forma, constatou-se que mães que não consumiram peixes correspondentes ao topo da cadeia alimentar marinha apresentam níveis desprezíveis de mercúrio no sangue, bem como no cordão umbilical de seus recém-nascidos. O FDA nos Estados Unidos divulgou um comunicado aconselhando mulheres em estágio de pré-concepção, grávidas ou amamentando e crianças pequenas, a não comerem tubarão, espadarte, cavala ou atum, porque contêm altos níveis de mercúrio. No que se refere ao limite de tolerância do teor de mercúrio para o mercado europeu, foi fixado em no máximo 1,0 mg/Kg de carne

Agradecimento à Dra. Natalia Pérez Pérez por sua colaboração neste artigo.

Fontes:

https://biomedpharmajournal.org/vol12no2/effect-of-fish-frequency-consumption-on-serum-mercury-levels-in-pregnant-mothers-and-their-newborns/

https://www.fda.gov/food/metals-and-your-food/fdaepa-2004-advice-what-you-need-know-about-mercury-fish-and-shellfish

Hamid ER A, Hashem S. A, Sherif L. S, Ahmed H. H, Hassanain A. I, Ahmed A, Hassan NE Efecto del consumo de frecuencia de pescado en los niveles séricos de mercurio en madres embarazadas y sus recién nacidos. Biomed Pharmacol J 2019; 12 (2).

https://foodsafetybrazil.org/alimentos-seguros-na-gravidez/

https://foodsafetybrazil.org/metais-pesados-toxicos-cadmio/

4 min leituraO peixe como componente da alimentação normal das pessoas é um alimento considerado saudável, que fornece nutrientes de grande valor biológico, como proteínas, vitaminas, minerais e gorduras insaturadas como o […]

2 min leitura
0

NonFood Compounds: reduzindo riscos de contaminação cruzada na produção de alimentos

2 min leitura

O contexto de cases de recalls por produtos químicos vale a informação dada neste post, como os de 2011 e 2013 com soda cáustica do CIP e em 2020 com dietilenoglicol, todos aqui no Brasil, seja por uso incorreto de produtos, falhas de higienização, falha de manutenção preventiva e do sistema HACCP. Assim, há o programa NonFood Compounds que verifica a segurança dos produtos químicos usados no processamento e manuseio de alimentos, ajudando os usuários finais a gerenciar com eficácia os riscos destes, com base na aceitabilidade de todos os ingredientes e conformidade com a 21 e 40 CFR (incluindo os rótulos baseados no FIFRA, EPA e SCC). Dentre estes compostos e equipamentos, citamos:

– H1: lubrificante contato incidental

– G5: produtos para água de arrefecimento e retorta

– G6: caldeiras, linha de vapor – contato incidental

– A1: limpeza geral

– E3: sanitizantes de mãos

– NSF/ANSI 51: food equipment materials

– NSF/ANSI 5: water heaters, hot water supply, boilers and heat recovery equipamento

– NSF/ANSI 42, 53, 401: filtration systems standards

– NSF/ANSI 14: plastic piping system components

– NSF/ANSI STD 60: drinking water treatment chemicals

Todos podem ser consultados no White Book podendo ser pesquisado por empresa, por nome comercial do produto, pelo nº de registro, pelo país, pelo estado, por categoria, função do produto ou pesquisa mista:

O programa tem mantido permanentemente crescimento:

A ideia é termos controles de produtos químicos nos processos, sejam eles: lubrificantes, produtos de limpezas, químicos para tratamento de caldeira e de resfriamento, líquidos refrigerantes e gases, elementos filtrantes e superfícies de equipamentos. Agora é só aplicar nos seus processos!

2 min leituraO contexto de cases de recalls por produtos químicos vale a informação dada neste post, como os de 2011 e 2013 com soda cáustica do CIP e em 2020 com […]

< 1 min leitura
0

China lança padrão preliminar para limites máximos de resíduos de pesticidas em alimentos

< 1 min leitura

Em 23 de novembro de 2020, o Departamento de Produção Vegetal do Ministério da Agricultura e Assuntos Rurais (MARA) da China divulgou para comentários domésticos o esboço da norma nacional de segurança alimentar Limites Máximos de Resíduos de 75 Pesticidas (incluindo 2,4-D-dimetilamina) em Alimentos.

O rascunho da norma fornece 212 limites máximos de resíduos (LMRs) para 75 pesticidas em uma variedade de frutas, vegetais, grãos, sementes oleaginosas e bebidas vegetais.

A China deve notificar os MRLs preliminares ao Comitê SPS da OMC após o período de comentários domésticos.

Os comentários podem ser enviados para o Secretariado do Comitê Nacional de Padrões de Limite de Resíduos de Pesticidas em nyclbz@agri.gov.cn.

 Clique aqui  para acesso ao documento completo. 

< 1 min leituraEm 23 de novembro de 2020, o Departamento de Produção Vegetal do Ministério da Agricultura e Assuntos Rurais (MARA) da China divulgou para comentários domésticos o esboço da norma nacional […]

4 min leitura
11

Alerta: óxido de etileno em sementes de gergelim – o que podemos aprender com este caso?

4 min leitura

A presença de uma substância não autorizada nas sementes de gergelim da Índia gerou uma enxurrada de recalls de produtos em toda a Europa. O alerta de óxido de etileno foi levantado pela primeira vez pela Bélgica no início de setembro, mas agora diz respeito a quase 20 países. O óxido de etileno é um carcinógeno genotóxico após o consumo regular. Foi encontrado em quantidades acima de 186 ppm. A questão foi tão grave que um regulamento da União Europeia foi criado especificamente para gergelim originário da Índia (CE 1540/2020).

Sementes de gergelim foram utilizadas na produção de farinha e os produtos recolhidos incluem pães e bagels. Várias cadeias de supermercados na Bélgica retiraram produtos das prateleiras devido ao alto teor de resíduos nas sementes de gergelim.

O uso de óxido de etileno como pesticida e componente de produtos fitofarmacêuticos é proibido pela regulamentação da União Europeia, mas seu uso como parte de produtos biocidas é autorizado para alguns itens (não alimentícios). Se consultarmos o database de pesticidas da UE, veremos que o limite máximo de resíduo (LMR)  de óxido de etileno para gergelim é de 0,05 ppm – este é igual ao limite de quantificação, de acordo com o regulamento CE 396/2005. O LMR foi definido com esse valor, justamente porque o óxido de etileno não é permitido como pesticida.

Para a FAO também não é permitido realizar o tratamento das sementes de gergelim com óxido de etileno – inclusive o óxido de etileno configura-se como pesticida banido por sua toxidade crônica.

No Brasil o óxido de etileno não está autorizado para uso em alimentos, ao contrário do Canadá e dos Estados Unidos, onde o uso ainda é permitido:

– De acordo com o 10 CFR §185, o FDA aprovou apenas a fumigação com óxido de etileno para especiarias cruas, vegetais desidratados e misturas de especiarias que não contenham sal. Seu uso em outros alimentos é proibido.

– No final de 2019, a Agência Reguladora de Controle de Pragas do Health Canada propôs estabelecer limites máximos de resíduos (MRL) para óxido de etileno em vegetais secos e sementes de gergelim para permitir a venda de alimentos que contenham esses resíduos. É um inseticida registrado no Canadá para uso em especiarias inteiras ou moídas e temperos naturais processados. Os MRLs propostos para o óxido de etileno de 7 partes por milhão (ppm) são os mesmos que as tolerâncias americanas. Não há MRLs do Codex listados para óxido de etileno em ou sobre qualquer mercadoria. Para ler sobre o trabalho do Canadá acesse aqui.

Diante disso, o óxido de etileno pode ser usado no controle de insetos como fumigante para especiarias, temperos e alimentos, para prevenir e/ou reduzir contaminantes microbiológicos, como Salmonella e E. coli, leveduras e fungos, coliformes e outros patógenos.

O gás de óxido de etileno (EO ou ETO) é bombeado para uma câmara hermética para esterilizar o que quer que esteja dentro. Normalmente, são coisas como dispositivos cirúrgicos e equipamentos odontológicos, mas este processo de tratamento também é usado para alguns itens comestíveis, como especiarias.

Quer sejam bactérias, vírus, fungos, insetos ou outros organismos, qualquer forma de vida na câmara de gás, é rapidamente morta. O EO altera proteínas em suas células, essenciais para a vida, e altera permanentemente seu DNA, deixando-as incapazes de sobreviver.

Uso de EO como um tratamento antimicrobiano é mais complexo do que vapor e irradiação devido ao grande número de variáveis que deve ser controlado para que o tratamento seja eficaz. De acordo com USP, as variáveis incluem temperatura, tempo de exposição, umidade, vácuo ou pressão positiva e concentração de gás.

Para complicar a avaliação, há denúncias de grupos militantes nos Estados Unidos que, na verdade, algumas empresas podem estar escolhendo especificamente esse tratamento porque ele não precisa ser divulgado. Ao contrário da irradiação, para a qual os EUA e a UE exigem rotulagem, o mesmo ainda não se aplica à esterilização por óxido de etileno.

Esse caso me chamou atenção e trouxe “bandeiras vermelhas” à minha mente – diante de tantas questões, suposições e informações (ou falta de), o que podemos aprender com ele?

  • Para indústrias que possuem o gergelim como matéria prima, um caso como esse leva a uma avaliação mais rigorosa: origem do fornecedor, revisão de especificações, com desdobramento dos estudos de segurança de alimentos da planta reavaliando perigo e risco;
  • A importância de conhecer as legislações não apenas do país de fabricação do produto, mas também dos países de destino daquele produto – embora todas as normas de certificação de segurança de alimentos cobrem as questões regulatórias, será que o SGSA gerencia isso de forma efetiva? Adicionalmente aos requisitos regulatórios, e tão importante quanto, estão os requisitos de comunicação – muitas vezes as legislações foram levantadas, mas foram adequadamente comunicadas ao pessoal relevante? Ou muitas vezes foram sim comunicadas ao pessoal relevante mas alguém, em algum momento, tomou a decisão de realizar fumigação em um palete/carga de produto acabado e esqueceu de envolver a equipe de segurança de alimentos nesta decisão;
  • Atividades de fumigação que podem acontecer na sua indústria foram adequadamente avaliadas pela ESA no que diz respeito ao produto utilizado (autorização de uso), capacidade e qualificação do prestador de serviço, levantamento e análise de perigos no estudo HACCP? Essas atividades estão sendo adequadamente monitoradas? O monitoramento das concentrações do produto utilizado e período de carência são alguns dos aspectos mais críticos de qualquer fumigação. Nas auditorias realizadas, internas e externas, estamos verificando se a empresa mantém o controle e gerenciamento destas atividades, ou está deixando essa responsabilidade na mão do prestador quase sem nenhum envolvimento da ESA?

Todos os pontos acima descritos, bem como outros questionamentos que um alerta rápido nos traz, podem e devem ser levantados pela ESA como uma ferramenta de abordagem na manutenção do SGSA proativo – reorientado e assegurando um sistema cada vez mais efetivo quanto às novas questões que são apresentadas em nosso dia-a-dia, tanto para este, quanto para outros eventos ou incidentes que possam aparecer futuramente.

4 min leituraA presença de uma substância não autorizada nas sementes de gergelim da Índia gerou uma enxurrada de recalls de produtos em toda a Europa. O alerta de óxido de etileno […]

3 min leitura
1

Sulfitos no camarão: qual é o risco?

3 min leitura

O camarão é um crustáceo decápode porque tem dez patas. Habita água doce e salgada, enquanto o lagostim habita os mares do mundo. Nesta ocasião, quero fazer referência ao camarão, que, como já se sabe, tem bom valor comercial, desde que mantida a qualidade original. As formas de apresentação mais comuns são: 1) inteiro; 2) descabeçado e 3) descascado. Nos três casos é apresentado fresco refrigerado ou congelado.

Quando o camarão é retirado da água e morre, inicia-se um fenômeno bioquímico que afeta sua coloração e é conhecido como melanose, mancha preta ou black spot. Essa mudança de cor afeta muito o seu valor comercial, no mercado local e internacional, a ponto de ser rejeitada pelos consumidores, embora por si só não tenha efeitos prejudiciais à saúde. Essa descoloração ocorre poucas horas após a pesca ou colheita em empresas de camarão, começando pela cabeça (cefalotórax) e se espalhando pelo resto do corpo, incluindo a casca e a carne, dando-lhe um aspecto desagradável que diminui sua qualidade, prazo de validade e anula seu valor comercial. O escurecimento do camarão se deve à atividade da enzima polifenoloxidase ou tirosinase, que atua sobre certo aminoácido e está localizada abaixo do exoesqueleto. Embora a refrigeração pós-colheita do camarão seja necessária para evitar a deterioração microbiana, ela por si só se mostrou inadequada para interromper o processo de melanose além de algumas horas.

A indústria do camarão usa vários aditivos como conservantes para prevenir a melanose. Entre os mais utilizados por sua estabilidade química, sua alta solubilidade em água e seu baixo custo está o metabissulfito de sódio. Este aditivo (INS 223) atua inibindo a enzima polifenoloxidase e, portanto previne ou retarda a melanose preservando a qualidade do camarão. A forma de utilização é imergir o camarão, imediatamente após a colheita, em uma solução que pode ser de 10% a 12% por quinze a vinte minutos com água e gelo. A temperatura da solução não deve ser superior a 2°C. É importante fazer este tratamento antes do início da melanose. Desta forma, o camarão absorve o metabissulfito de sódio. Posteriormente, é transportado para a planta de beneficiamento para ser classificado e embalado in natura, refrigerado ou congelado. Durante esse processo, o dióxido de enxofre SO2 é gradualmente eliminado por drenagem e evaporação, diminuindo sua concentração inicial.

Desvantagens do metabissulfito de sódio: os sulfitos residuais na carne do camarão têm a desvantagem de produzir reações adversas ao consumidor, quando ultrapassam os limites máximos permitidos pelas disposições legais. Essas reações podem ser graves em usuários sensíveis e especialmente em asmáticos. Por esse motivo, os níveis de SO2 devem ser controlados antes de lançar o produto no mercado. É importante que exista um sistema ou norma que estabeleça um estudo e gestão de riscos para evitar que um produto com falta de segurança entre no mercado. Os seguintes sintomas foram observados em consumidores: constrição brônquica; reação semelhante à asma (sem ser alérgica) e pode ter efeitos adversos como irritação da pele, olhos e trato respiratório, dor de cabeça, dificuldade em respirar, náuseas, vômitos, diarreia.

O único método de detecção de resíduos de dióxido de enxofre (SO2) internacionalmente reconhecido é o Monier Williams. Em nível de planta, outros métodos são usados com resultados mais rápidos, como a iodometria. O metabissulfito de sódio é seguro e não causa danos à saúde quando utilizado nas quantidades delimitadas pela legislação.

O Codex Stan 92 reconhece a concentração de sulfito de 100 ppm na parte comestível do camarão cru. No Uruguai, o limite máximo de dióxido de enxofre é de 30 ppm no camarão cozido. Na União Europeia, a EFSA concluiu que a IDA (Ingestão Diária Aceitável) é 0,7 mg expressa como equivalente de dióxido de enxofre por kg de peso corporal por dia. Nos Estados Unidos da América, o FDA (Food and Drug Administration) estabelece o limite de SO2 em 150 ppm. Portanto o aditivo INS 223 ou E223, em níveis legais, pode ser utilizado com segurança no tratamento de camarões e lagostins. Os sulfitos no camarão não causam alergias. Veja aqui.

Fontes:

https://core.ac.uk/download/pdf/11052167.pdf

http://www.elika.net/consumidor/es/alergia_alimentaria_sulfitos.asp

https://www.monografias.com/trabajos81/metabisulfito-sodio-preservante-camaroneras/metabisulfito-sodio-preservante-camaroneras2.shtml

https://foodsafetybrazil.org/por-favor-parem-de-chamar-os-sulfitos-de-alergenicos/

https://www.aquaculturebrasil.com/artigo/42/a-utilizacao-do-metabissulfito-de-sodio-como-conservante-na-industria-do-camarao-cultivado

3 min leituraO camarão é um crustáceo decápode porque tem dez patas. Habita água doce e salgada, enquanto o lagostim habita os mares do mundo. Nesta ocasião, quero fazer referência ao camarão, […]

2 min leitura
0

Avaliação de risco de ésteres de 3-MCPD em alimentos: conclusões e recomendações do JECFA

2 min leitura

O Joint Expert Committee on Food Additives (JECFA) é um grupo internacional de cientistas especialistas que avalia a segurança de aditivos alimentares, contaminantes (incluindo toxinas que ocorrem naturalmente) e resíduos de medicamentos veterinários nos alimentos. A pedido do Comitê do Codex sobre Contaminantes em Alimentos (CCCF), o JECFA realizou em 2016 uma avaliação de risco de ésteres de 3-monocloro-1,2-propanodiol (3-MCPD). Os ésteres 3-MCPD são contaminantes presentes em óleos e gorduras refinados e são formados a partir de acilgliceróis na presença de compostos clorados durante a desodorização em alta temperatura.

As concentrações de ésteres 3-MCPD em óleos refinados aumentam gradativamente na seguinte ordem: óleo de colza <óleo de soja<óleo de girassol <óleo de cártamo <óleo de noz <óleo de palma.

Evidências experimentais indicam que os ésteres de 3-MCPD são substancialmente hidrolisados em 3-MCPD no trato gastrointestinal e provocam toxicidade como 3-MCPD livre. Desta forma o Comitê baseou sua avaliação na suposição conservadora de hidrólise completa de ésteres de 3-MCPD em 3-MCPD. O Comitê estabeleceu um grupo PMTDI (provisional maximum tolerable daily intake) de 4 microgramas / kg de peso corporal para ésteres de 3-MCPD e 3-MCPD isoladamente ou em combinação (expresso como equivalentes de 3-MCPD). O Comitê observou que as exposições dietéticas estimadas ao 3-MCPD para a população em geral, mesmo para grandes consumidores não excediam o novo PMTDI. As estimativas da exposição dietética média ao 3-MCPD para bebês alimentados com fórmula, no entanto, podem exceder o PMTDI em até 2,5 vezes para certos países. O Comitê observou que não existem métodos que tenham sido estudados em colaboração para a determinação de ésteres de 3-MCPD em alimentos complexos, em contraste com a situação com gorduras e óleos.

Desta forma deve-se ter cuidado ao interpretar dados analíticos de alimentos complexos. O Comitê notou ainda que havia incerteza na comparação dos níveis relatados nos mesmos alimentos de diferentes regiões devido à falta de comparações interlaboratoriais e à ausência de dados decorrentes de programas de ensaios de proficiência. Assim, atualmente, por requisitos de clientes mutuamente acordados, as indústrias de óleos e gorduras realizam monitoramentos e tentam desenvolver tecnologias para mitigar tal perigo químico, tais como, entre 1 a 5 ppm de 3-MCPD em alimentos e  0,35 ppm para baby food. Para glicidiol já tem limite de 1 ppm na Europa, segundo o regulamento europeu 290 de 2018.

Fonte: Palestra SBOG no II Meeting on Fats and Oils – Vittorio Fattori – FAO

2 min leituraO Joint Expert Committee on Food Additives (JECFA) é um grupo internacional de cientistas especialistas que avalia a segurança de aditivos alimentares, contaminantes (incluindo toxinas que ocorrem naturalmente) e resíduos […]

9 min leitura
0

O cádmio e a segurança dos pescados

9 min leitura

Neste artigo vou me referir ao metal cádmio, com número atômico 48 e símbolo químico Cd na Tabela Periódica dos Elementos, e ao risco envolvido no consumo de peixes, moluscos e crustáceos contaminados. Um elemento tóxico é aquele que gera um efeito adverso à saúde. O desenvolvimento do organismo humano necessita de certos compostos minerais, entre os quais estão metais considerados essenciais, como ferro, cobre, magnésio, zinco, entre outros. Esses metais são necessários como constituintes dos tecidos humanos e estão envolvidos em várias funções metabólicas de grande importância. Existem também na natureza outros elementos metálicos considerados não essenciais como mercúrio, chumbo, cádmio, que quando entram no corpo humano têm efeitos tóxicos, causando doenças crônicas na maioria das vezes, devido ao seu efeito cumulativo ao longo do tempo.

O cádmio é um constituinte natural encontrado em pequenas quantidades na terra e na água do mar. Assim é há milhares de anos, mas a partir do século XX, ele passou a ser isolado e utilizado nas mais diversas aplicações industriais, como na fabricação de baterias, na indústria de plásticos, na metalurgia, como pigmento em tintas, em fertilizantes fosfatados, semicondutores, e também é um resíduo da queima de combustíveis fósseis (petróleo). Os resíduos desses processos tornaram-se um grave problema ambiental, o que aumentou a incidência do cádmio nas terras agrícolas, bem como na vida marinha.

Como o cádmio entra no corpo humano?

O cádmio entra de várias maneiras. Vamos considerar aqui alguns dos casos mais estudados. Em primeiro lugar, lembre-se de que é um metal tóxico para o corpo e que se acumula nos tecidos. No caso de alimentos, incluindo água potável contaminada, ele entra no trato digestivo e é distribuído pelo sistema circulatório por todo o corpo. No caso de pessoas expostas ao cádmio devido a processos industriais, na mineração e nas pessoas que fumam, entra pelo trato respiratório, afetando principalmente os pulmões. Uma rota de entrada menos importante seria pela pele. Em uma região mineira do Japão, com alta concentração de cádmio, foi observada uma doença chamada itai-itai, sendo que os principais sintomas eram osteomalácia, osteoporose e disfunção renal.

Fora das pessoas expostas ao cádmio por processos industriais e fumantes, a via de entrada mais importante para a população são os alimentos contaminados. Vegetais cultivados em terras contaminadas (alguns dos fertilizantes fosfatados contêm cádmio) ou irrigados com água contaminada. Com relação aos alimentos de origem marinha, os mais envolvidos são os moluscos cefalópodes (lulas), diferentes espécies de crustáceos (caranguejos) e moluscos bivalves (mariscos).

No que se refere à lula, que é o alimento marinho mais estudado, observou-se que a maior quantidade de cádmio se encontra nas vísceras, com foco no fígado, embora também seja detectável em menor grau, na musculatura do corpo e nos tentáculos. Na Coréia, por uma tradição cultural gastronômica, a lula é consumida inteira, inclusive com suas vísceras, e é aí que reside a maior contaminação que atinge o homem. Em alguns países europeus é comum o uso de tinta de lula em preparações culinárias, o que também envolve um risco.

A quantidade de cádmio em peixes, moluscos e crustáceos está relacionada à área de captura, encontrando mais contaminação naqueles que são capturados em áreas costeiras próximas a áreas urbanas e industriais, embora grandes quantidades também tenham sido detectadas em peixes capturados nas proximidades da Antártica, onde se presume que existam condições ambientais com a presença de emanações subaquáticas que contêm o metal. Nessas áreas, níveis elevados foram encontrados no plâncton (várias vezes mais elevados do que na água do mar) e nos peixes. Lembre-se de que o cádmio se acumula na cadeia alimentar.

Como o cádmio afeta os humanos?

Em primeiro lugar, mencionamos que a Agência Internacional de Pesquisa sobre o Câncer (IARC, sua sigla em inglês) classificou os compostos de cádmio e o cádmio como cancerígenos para humanos (Grupo 1). Tem a característica de se ligar a proteínas de baixo peso molecular, às vezes substituindo ferro ou cálcio e causando inadequado funcionamento das células tubulares do rim, permitindo a permeabilidade das proteínas, que assim passam à urina, o que em casos graves leva à doença renal de importância. Acomete também os ossos causando osteoporose, com aumento da fragilidade dos ossos com tendência à fratura e / ou osteomalácia, com amolecimento dos ossos.

O cádmio se acumula no rim e tem meia-vida de 16 anos, podendo chegar em alguns casos até 40 anos no homem, devido à enorme dificuldade de removê-lo pela urina.  O acúmulo causa disfunção das células tubulares renais.

O caso do rompimento da barragem em Mariana, Minas Gerais (Brasil).

Conforme Nota Técnica nº 8/2019, em 5 de novembro de 2015, houve derramamento de resíduo contido em barragem no município de Mariana, correspondente à operação da mineradora Samarco e foram liberados 39 milhões de metros cúbicos de resíduos que se espalharam por vasta área, contaminando cursos de água e chegando à costa marítima do Espírito Santo. Amostras de peixes foram coletadas no Rio Doce e na costa atlântica para estudar o conteúdo de metais essenciais e não essenciais, cádmio entre os últimos. Da mesma forma, a ANVISA determinou os efeitos adversos do cádmio, de acordo com o citado acima (Como o cádmio afeta os seres humanos?). No estudo do impacto da concentração de cádmio nos peixes de água salgada da região afetada pelo derramamento de resíduo, constatou-se que eles apresentaram níveis superiores aos peixes comercializados mundialmente. Concluiu-se também “que 6% dos resultados em peixes de água salgada e 2% dos resultados em crustáceos apresentaram valores superiores aos limites máximos permitidos”.

Limites máximos permitidos de cádmio em frutos do mar

Os especialistas em aditivos alimentares da FAO/OMS (JECFA) estabeleceram em 2010 uma ingestão mensal tolerável provisória (IMTP) de 25 µg/kg de peso corporal. No “regulamento técnico do Mercosul sobre limites máximos de contaminantes inorgânicos em alimentos”, encontramos (valores expressos em mg/kg):

Peixe cru ou resfriado em geral 0,05
Bonito, mojarra, enguia, tainha, cavala, imperador, sardinha, linguado, atum 0,10
Anchova, espadarte 0,30
Moluscos cefalópodes 2,00
Moluscos Bivalves 2,00
Crustáceos 0,50

Regulamento da Comissão (UE) N ° 488/2014, que altera o Regulamento (CE) N ° 1881/2006 (valores expressos em mg/kg)

Carne de peixe em geral 0,050
Cavala, atum 0,1
Anchova, espadarte, sardinha 0,25
Crustáceos 0,50
Moluscos bivalves 1,0
Cefalópodes (sem vísceras) 1,0

Plano de Controle: O pessoal que trabalha na área de Segurança de Alimentos deve considerar no documento de Boas Práticas de Fabricação (BPF), antes da liberação para o mercado local ou para exportação, uma amostra representativa do produto final, do lote ou lotes produzidos, para envio a laboratório especializado, a fim de analisar o teor de metais pesados tóxicos, para verificar se o resultado está dentro dos limites permitidos para consumo humano. Da mesma forma, caso indique que o resultado ultrapassa o limite permitido, medidas cautelares devem ser tomadas.

 

Metales pesados tóxicos: cadmio

En este artículo me voy a referir al metal Cadmio, de número atómico 48 y símbolo químico Cd en la Tabla periódica de los elementos, y el riesgo que implica el consumo de pescados, moluscos y crustáceos contaminados. Un elemento tóxico es aquel que genera un efecto adverso para la salud. El desarrollo del organismo humano necesita de ciertos compuestos minerales, entre los que se encuentran metales considerados esenciales, como el hierro, cobre, magnesio, zinc, entre otros. Estos metales son necesarios como constituyentes de los tejidos humanos e intervienen en diversas funciones metabólicas de gran importancia. Pero también en la naturaleza existen otros elementos metálicos considerados no esenciales como el mercurio, plomo, cadmio, que cuando ingresan al cuerpo humano tienen efectos tóxicos, produciendo enfermedades crónicas las más de las veces, debido a su efecto acumulativo a través del tiempo.

El Cadmio es un constituyente natural, que se encuentra en pequeñas cantidades en la tierra y en el agua del mar. Esto ha sido así durante miles de años, pero a partir del siglo XX se comenzó a aislar y a utilizarse en una gran diversidad de aplicaciones industriales, como ser en la fabricación de baterías; en la industria del plástico; en la metalúrgica; como pigmento en pinturas; en fertilizantes fosfatados; semiconductores y además es un desecho de la quema de combustibles fósiles (petróleo). Los desechos de estos procesos pasaron a ser un grave problema medioambiental, lo cual aumentó su incidencia en tierras de cultivo, así como en la vida marina.

¿Cómo ingresa el Cadmio al organismo humano? El Cadmio ingresa de numerosas formas; vamos a considerar aquí algunas de las más estudiadas. En primer lugar tener en cuenta que es un metal tóxico para el organismo y se acumula en los tejidos. Tratándose de alimentos, incluida el agua de beber contaminados, ingresa por la vía digestiva y se distribuye por medio del sistema circulatorio a todo el organismo. En el caso de las personas expuestas al Cadmio a causa de procesos industriales; en la minería y en las personas que fuman, ingresa por la vía respiratoria, afectando principalmente a los pulmones. Una vía de ingreso menos importante sería a través de la piel. En una región minera de Japón, con alta concentración de Cadmio, se observó una enfermedad llamada Itai-Itai, donde los principales síntomas fueron osteomalacia, osteoporosis y disfunción renal.

Fuera de las personas expuestas al Cadmio por los procesos industriales y de las personas que fuman, la fuente de ingreso más importante para la población es a través de  los alimentos contaminados. Los vegetales cultivados en tierras contaminadas (algunos de los fertilizantes fosfatados contienen Cadmio) o regadas con agua contaminada. Con respecto a los alimentos de origen marino, los que se encuentran más involucrados son los moluscos cefalópodos (calamar);  diferentes especies de crustáceos (cangrejos) y moluscos bivalvos (almejas).

Con referencia al calamar, que es el alimento marino que más se ha estudiado, se observó que la mayor cantidad de Cadmio se encuentra en las vísceras, con el centro de atención en el hígado, aunque también es detectable en menor medida, en la musculatura del cuerpo y en los tentáculos. En Corea, debido a una tradición cultural gastronómica, el calamar se consume entero, incluyendo sus vísceras y es allí donde radica la mayor contaminación que afecta al ser humano. En algunos países europeos se estila utilizar la tinta del calamar en preparaciones culinarias, lo cual también implica un riesgo.

La cantidad de Cadmio en los pescados, moluscos y crustáceos, está relacionada con el área de captura, encontrándose más contaminación en los que se capturan en zonas costeras cercanas a las áreas urbanas e industriales; aunque también se han detectado cantidades altas en pescados capturados en la cercanía de la Antártida, donde se presume que existen condiciones medioambientales con presencia de emanaciones subacuáticas que contengan el metal. En esas áreas se encontraron tenores altos en el plancton (varias veces mayores al tenor del agua de mar) y en el pescado. Hay que tener en cuenta que el Cadmio se acumula en la cadena alimentaria.

¿Cómo afecta el Cadmio al ser humano? En primer lugar mencionar que la Agencia Internacional para la Investigación del Cáncer (IARC, por su sigla en inglés), clasificó al Cadmio y los compuestos de Cadmio como cancerígenos para los seres humanos (Grupo 1). Tiene la característica de enlazarse con proteínas de bajo peso molecular, algunas veces sustituyendo al hierro o al calcio y provocando mal funcionamiento en las células tubulares del riñón, permitiendo la permeabilidad a las proteínas, detectándose proteinuria, que en casos graves llega a producir nefropatías de importancia. También afecta a los huesos provocando osteoporosis, con aumento de la fragilidad de los huesos con tendencia a quebrarse y/o osteomalacia, con el consecuente ablandamiento de los huesos.

El Cadmio se acumula en el riñón y tiene una vida media de 16 años, pudiendo llegar en algunos casos hasta 40 años en el ser humano, debido a la enorme dificultad para expulsarlo por la orina. La acumulación provoca una disfunción de las células tubulares renales.

El caso de la rotura de la represa en Mariana; Minas Gerais (Brasil). Según la Nota Técnica N°8/ 2019, el 05 de noviembre del año 2015, ocurrió un derrame de los desechos contenidos en una represa en el municipio de Mariana, correspondientes a las operaciones de la minera Samarco y liberó 39 millones de metros cúbicos de desecho que se extendieron por una amplia zona, contaminando cursos de agua y accediendo al litoral marítimo de Espíritu Santo. Se procedió a recolectar muestras de pescado del Río Doce y del litoral atlántico para el estudio del tenor de metales esenciales y no esenciales, entre estos últimos el Cadmio. Asimismo ANVISA determinó los efectos adversos del Cadmio, de acuerdo con lo expuesto más arriba (¿Cómo afecta el Cadmio al ser humano?). Del estudio del impacto de la concentración de Cadmio en el pescado de agua salada de la región afectada por el derrame de desechos, presentaron niveles mayores a los pescados comercializados a nivel mundial. También se concluyó “que el 6% de los resultados en pescado de agua salada y el 2% de los resultados en crustáceos, presentaron valores mayores a los límites máximos permitidos”.

Límites máximos permitidos de Cadmio en alimentos marinos.

Comité de Expertos Conjunto FAO/OMS en aditivos alimentarios (JECFA), estableció en 2010 una ingesta mensual tolerable provisional (IMTP) de 25 µg/kg de peso corporal. Según el “Reglamento técnico Mercosur sobre los límites máximos de contaminantes inorgánicos de alimentos” (Los valores se expresan en mg/kg)

Pescados crudos o refrigerados en general 0,05
Excepciones: Bonito, Mojarra, Anguila, Lisa, Jurel, Emperador, Caballa, Sardina, Lenguado, Atún, 0,10
Anchoa , Pez espada 0,30
Moluscos cefalópodos 2,00
Moluscos bivalvos 2,00
Crustáceos 0,50

 

Reglamento (UE) N° 488/ 2014 de la Comisión, que modifica el Reglamento (CE)       N° 1881/ 2006 (Los valores se expresan en mg/kg)

Carne de pescado en general 0,050
Caballa, Atún 0,1
Anchoa, Pez espada, Sardina 0,25
Crustáceos 0,50
Moluscos bivalvos 1,0
Cefalópodos (sin vísceras) 1,0

 

Plan de Control: El personal que trabaja en el área de Seguridad de Alimentos, debe considerar en el Documento relativo a Buenas Prácticas de Fabricación (BPF), previamente a la salida al mercado local o a la exportación, un muestreo representativo sobre el producto final, del lote o de los lotes producidos, para su envío a laboratorio especializado, a los efectos de analizar el tenor de Metales pesados tóxicos, para verificar que el resultado se encuentra dentro de los límites permitidos para el consumo humano. Asimismo, en el caso que indicara que el resultado excede el límite permitido, deberá haber previstas medidas precautorias.

Fontes / Fuentes consultadas:

 https://www.intral.es/alerta-seguridad-alimentaria-niveles-elevados-de-cadmio-en-calamar/.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867147/

https://apps.who.int/iris/bitstream/handle/10665/329480/WHO-CED-PHE-EPE-19.4.3-eng.pdf?ua=1

http://portal.anvisa.gov.br/documents/33880/2568070/rdc0042_29_08_2013.pdf/c5a17d2d-a415-4330-90db-66b3f35d9fbd

http://portal.anvisa.gov.br/documents/2857848/5519746/SEI_ANVISA+-+0596655+-+Nota+T%C3%A9cnica+-+Pescado+Rio+Doce.pdf/86d2736c-cefc-40c3-9c70-4cb48fd7df9d

https://www.boe.es/doue/2014/138/L00075-00079.pdf

Texto em espanhol não revisado por nossa redação.

9 min leituraNeste artigo vou me referir ao metal cádmio, com número atômico 48 e símbolo químico Cd na Tabela Periódica dos Elementos, e ao risco envolvido no consumo de peixes, moluscos […]

3 min leitura
2

Análise de pesticidas em alimentos: o que você precisa saber a respeito

3 min leitura

Falar de pesticidas é sempre um assunto difícil. Muito já se falou sobre os LMR (limites máximos de resíduos) e as diversas legislações existentes acerca do assunto. Aqui no Food Safety Brazil esse tema já foi abordado diversas vezes (veja aqui).

Hoje vou falar do aspecto prático. Supondo, por exemplo, que a sua empresa monitora pesticidas em matérias primas e/ou produtos acabados e, dentro de uma frequência pré-estabelecida, manda para análise em laboratório externo. Você sabe quais os cuidados e avaliações necessários antes de escolher um laboratório? Muitas vezes pensamos que basta ser ISO 17025 e assim já estamos assegurados, atendendo a todas as normas de certificação de segurança de alimentos, não é mesmo?

Porém, análises de pesticidas têm algumas particularidades que são importantes de serem consideradas, como por exemplo:

A escolha do laboratório – Os provedores de serviços de testes laboratoriais são melhores realizando os testes no país de produção. Por que isso? Primeiro porque as amostras, particularmente as de origem animal, podem ser barradas pela alfândega do outro país e, com isso, você perdeu a sua amostragem, o seu tempo e o seu dinheiro. Aliado a isso há o custo de exportar 1 kg de amostra, que pode ser muito alto. Segundo porque nem todos os pesticidas são estáveis no produto, na amostra homogeneizada ou no extrato e, por isso, precisam ser analisados rapidamente. Dependendo do tipo de extração realizada, quebras devido à hidrólise, reações enzimáticas ou oxidação não serão reveladas – para minimizar a degradação de pesticidas, os laboratórios usam mistura criogênica por gelo seco.

Métodos de análise – Um método pode não ser apropriado para todos os pesticidas que você precisa testar – as matrizes podem ter pH, gordura ou pigmentos diferentes e irão modificar algumas etapas e a velocidade para completar toda a análise. A calibração da matriz é difícil se você tiver uma grande variedade de tipos de amostra. Testes rápidos com amostras positivas e resíduos excedendo os LMR precisam ser repetidas com determinação e calibração que permitam a quantificação do nível. O desafio é fornecedor isso dentro do tempo de resposta requerido pelo cliente. Além de tudo isso, os padrões de referência são extremamente caros e podem ser difíceis de obter em determinados países. Portanto, esteja atento ao verificar orçamentos com valores muito diferentes entre si.

O que esperar, então, do laboratório?

  • Apesar de não ser uma exigência das normas de certificação de segurança de alimentos, neste caso específico é altamente desejável que laboratórios possuam a acreditação ISO 17025 para controle oficial de pesticidas e estejam inscritos para testes de proficiência. Você pode ler mais sobre isso em um ótimo artigo já publicado aqui no Food Safety Brazil;
  • Os métodos utilizados devem obedecer às regras comunitárias ou reconhecidas internacionalmente;
  • O método de análise de pesticidas deve ser validado;
  • O transporte rápido deve ser facilitado – as análises devem iniciar preferencialmente dentro de 01 dia;
  • Flexibilidade para a demanda súbita da indústria por análise de pesticidas, o que inclui tempo de resposta rápido.

Qualificar um serviço de laboratório vai muito além de pedir cópia do certificado ISO 17025. Há vários detalhes que deveríamos conhecer e sobre os quais deveríamos questionar os laboratórios. É importante reavaliarmos a nossa abordagem quando o assunto se trata de qualificação de serviços de análises. Algumas dicas já foram publicadas pelo Food Safety Brazil e podem ser vistas aqui.

Em termos de certificação e/ou auditoria de segurança de alimentos, o auditor pode ficar satisfeito com a apresentação apenas do certificado e entender que a sua empresa cumpre os requisitos, mas na prática, você pode estar perdendo dinheiro com análises que fornecem resultados não tão confiáveis assim.

Já parou para pensar nisso?

Referências 

3 min leituraFalar de pesticidas é sempre um assunto difícil. Muito já se falou sobre os LMR (limites máximos de resíduos) e as diversas legislações existentes acerca do assunto. Aqui no Food […]

4 min leitura
1

Importância da temperatura para o controle do teor de histamina em pescado

4 min leitura

A intoxicação por histamina (intoxicação por escombrídeo) é um distúrbio que pode ocorrer na ingestão de certas espécies de pescado consideradas formadoras de histamina, pertencentes a alguns dos chamados peixes azuis, ricos em gordura, como atum, cavala, espadarte, anchova, mahi mahi e sardinha, entre as mais consumidas, quando são manuseadas de forma inadequada e sem controle da temperatura após a captura. São espécies que contêm alto teor do aminoácido histidina, a partir do qual, como veremos, se forma a histamina. A flora bacteriana normal dos peixes é composta por microrganismos que não são patogênicos para o homem, a menos que as capturas sejam feitas em águas costeiras contaminadas. A flora dos peixes é composta  por bactérias do gênero Pseudomonas, Morganella, Klebsiella, Proteus, Enterobacter sendo suficiente para atuar nos processos de decomposição post mortem de pescados. As Boas Práticas de Manufatura (GMP por sua sigla em inglês) indicam que quando o pescado é colocado a bordo do navio de pesca, ele deve ser manuseado com cuidado para evitar quebras, lavado com água do mar limpa e resfriado o mais rápido possível.  Quando essas medidas não são cumpridas, a decomposição dos pescados é favorecida pela atividade das bactérias presentes e que potencialmente poderiam ser agregadas por defeitos de higiene. Isso também favorece a formação de histamina.

O sistema de resfriamento pode ser variado, mas o mais econômico e eficiente é através do uso de gelo em pedaços ou flocos. Também há alguns anos se usa o “gelo líquido”, que é uma mistura de finas partículas de gelo transportadas pela água. Água do mar resfriada com gelo e água do mar refrigerada com serpentina são outras opções de resfriamento. O gelo é um meio inócuo quando é fabricado com água potável ou água do mar limpa, relativamente barato e em contato direto com a superfície dos peixes. A fusão da água do gelo absorve o calor dos peixes e também contribui para a lavagem da superfície e evita a dessecação ou desidratação. A capacidade de resfriamento da fusão do gelo se deve ao calor latente de fusão que é de 80 Kcal/kg, e este é um dos motivos da eficácia de seu uso para resfriar e manter a temperatura dos pescados próxima a 0°C , conforme recomendado pela União Europeia (UE) e, em geral, pelas leis e regulamentos dos países produtores. Independentemente do método de resfriamento utilizado, o importante é atingir uma temperatura próxima a 0°C no centro térmico do pescado, o mais rápido possível após sua captura.

O Regulamento (CE) n.º 853/2004 do Parlamento Europeu e do Conselho estabelece que o pescado, após ser levantado a bordo, deve ser rapidamente resfriado a uma temperatura próxima do ponto de fusão do gelo. O Regulamento (CE) nº 854/2004 do Parlamento Europeu e do Conselho estabelece que a autoridade sanitária deve auditar os seguintes aspectos:

-O correto manuseio dos produtos da pesca.
-O cumprimento dos requisitos de higiene e temperatura.
-Limpeza de estabelecimentos, inclusive de navios e higiene pessoal.
-Controle sobre as condições de armazenamento e transporte.

Como a histamina é formada em pescado e quais são os sintomas da intoxicação por histamina?

Em pescado post-mortem fresco, a formação de histamina ocorre como consequência da descarboxilação do aminoácido histidina, pela ação da enzima histidina descarboxilase, devido à atividade bacteriana, em geral por bactérias mesófilas, favorecidas por condições adequadas de temperatura e umidade. Como consequência, a histamina é formada e seu conteúdo pode aumentar para ultrapassar a tolerância máxima permitida pelos padrões internacionais e, se tornar um perigo para a saúde do consumidor. A histamina é um “aminoácido modificado” (amina biogênica), e sua liberação pode levar à intoxicação alimentar, causando vasodilatação e contração da musculatura lisa, levando aos sinais característicos de anafilaxia. Esses sinais incluem, mas não estão limitados a, eritema e prurido, dificuldades respiratórias, náuseas, que aparecem nas primeiras 3 horas após a ingestão e podem reverter em 24 horas. Em casos graves, pode causar choque anafilático, o que é raro.

Limites máximos de histamina em pescado fresco ou congelado

Em primeiro lugar, devemos ter em mente que a histamina, uma vez produzida na carne de pescado, não pode ser eliminada. É resistente ao calor (termoestável) e não é eliminada pelo congelamento.

Sobre a amostragem

A Comunidade Europeia estabeleceu um critério de amostragem de acordo com o seguinte plano, com 9 amostras representativas e estabelecendo 2 limites.

n = 9 e c = 2; Limites m = 100 mg/kg e M = 200 mg/kg. O método analítico de referência é a cromatografia líquida de alta resolução (HPLC).

Portanto, de acordo com o Regulamento 91/493 / CEE, nenhuma das amostras pode ter um resultado superior a 200 mg/kg. A legislação dos Estados Unidos da América, por meio do FDA, tem tolerância máxima de risco tóxico de 500 mg/kg, embora essa tolerância tenda a diminuir; e estabelece um limite para a decomposição de peixes de 50 mg/kg. Na legislação brasileira, a Instrução Normativa nº 60 (ANVISA), de 23 de dezembro de 2019, estabelece o limite máximo de histamina de 100 mg/kg de tecido muscular, com base em uma amostragem composta por 9 unidades e nenhuma pode apresentar resultado superior a 200 mg/kg.

O Brasil possui uma legislação sobre pescado, Portaria MAPA – 185, de 13/05/1997, que define nível máximo por 100 ppm no músculo nas espécies pertencentes às famílias Scombridae, Scombresocidae, Clupeidae, Coryyphaenidae, Pomatomidae.

Como prevenir a formação de histamina?

A aplicação de Boas Práticas de Fabricação e planos de limpeza e desinfecção são suficientes para prevenir a formação de histamina nos pescados. Os pesquisadores Huss e Klausen demonstraram que em temperaturas entre 0°C e 4°C, a histamina não é formada pela atividade bacteriana. Em temperaturas próximas a 0°C, a formação de histamina é limitada a níveis desprezíveis. Portanto, o resfriamento dos pescados imediatamente após a captura e a manutenção da cadeia de frio, durante a vida útil do alimento, seriam suficientes para a prevenção.

A verificação do teor de histamina do pescado fresco ou congelado, em qualquer uma das etapas de sua produção, desde a captura até o consumo, pode ser realizada por meio da análise química. Quando o resultado for superior a 200 mg/kg, o pescado não é próprio para consumo humano.

 

Fontes consultadas:

Natureza e propriedades do gelo (FAO); Regulamento (CE) 853/4004 e Regulamento (CE) 854/2004 do Parlamento Europeu; Diretiva 91/493 / CEE; Instrução Normativa nº 60 (ANVISA); Desinfecção da água, como proceder? (Food Safety Brazil); Qual a importância da água para a indústria de alimentos? (Food Safety Brazil); Tecnologia de produtos de pescado, moluscos e crustáceos. (V. Bertullo); Biologia de microorganismos (Brock); Fish and Fishery Products Hazards and Controls (FDA)

4 min leituraA intoxicação por histamina (intoxicação por escombrídeo) é um distúrbio que pode ocorrer na ingestão de certas espécies de pescado consideradas formadoras de histamina, pertencentes a alguns dos chamados peixes […]

Compartilhar
Pular para a barra de ferramentas