4 min leitura
0

Lubrificantes nas indústrias de alimentos e embalagens [VI Fórum de Segurança de Alimentos BRCGS] – Parte 1 de 2

4 min leitura

“Entendendo a importância e o papel dos lubrificantes nas indústrias de alimentos e de embalagens” foi o tema da palestra de Lilian Miakawa, da Fuchs Lubrificantes, no evento realizado pela BRCGS com a co-organizadora QIMA WQS.

Ao conversar com outros participantes, pude perceber que não foi apenas minha a sensação de que a palestra mereceu destaque, não só pelo nível técnico e pela didática de Lilian, mas mais do que isso, porque acrescentou muitas informações para um público que já tem muita experiência de indústria.

Tenho por costume, quando dou treinamentos, dar exemplos práticos da minha vivência, para que o público consiga visualizar situações diferentes do processo em que atua. Esses exemplos, muitas vezes, vão de um extremo a outro. Brinco que esses exemplos, quando são do extremo “positivo”, que seriam os modelos a seguir, são os casos “lunáticos”, porque parecem distantes da maioria das situações aqui da nossa realidade.

Mas Lilian foi muito mais longe que a Lua quando nos trouxe o insight de que os lubrificantes são utilizados nas naves espaciais e alcançam Marte.

Apesar do curto tempo que teve para nos apresentar tanto conteúdo, a apresentadora soube aproveitá-lo e nos mostrar slides autoexplicativos sobre as diferentes classificações dos lubrificantes food grade, além das diferenças entre o atendimento ao certificado NSF e à ISO 21469 (lembrando que este é um atendimento obrigatório aqui no Brasil, seguindo resolução da Agência Nacional do Petróleo).

Fonte: Apresentação de Lilian Miakawa no VI Fórum de segurança de alimentos BRCGS em 29/08/2024

Já tivemos aqui no blog um post sobre as legislações que regem os lubrificantes no Brasil, muito bem escrito por Cíntia Malagutti e que pode ser acessado aqui. Outro texto muito bom de ser consultado vez e outra e que vai direto ao ponto é esse da Juliane Dias: Legislação para lubrificantes de grau alimentício.

Interessante como os eventos e encontros do nosso setor são importantíssimos para discutirmos e aprofundarmos assuntos com quem atua diretamente com eles e que fazem parte dessa área tão abrangente que é a segurança de alimentos.

Além disso, demonstram a evolução dos temas e o desenvolvimento dos setores. Ter em um evento desse porte um fornecedor essencial para a cadeia de alimentos e com impacto direto na segurança dos consumidores, com uma representante que fala sobre HACCP, alergênicos, legislações e novidades que já estão sendo discutidas internacionalmente é reflexo do nível de cobrança e atualizações que precisamos para nossa área.

Vimos esse desenvolvimento acontecer na indústria de embalagens, como muito bem colocado por Liliana Batista, palestrante seguinte, que falou de como hoje podemos conversar com esse setor com uma linguagem muito diferente de 15 ou 20 anos atrás. O número de representantes da indústria de embalagens ali presentes é reflexo dessas mudanças.

E assim esperamos acontecer também com a indústria de equipamentos, não é mesmo?!…

Continuamos na esperança de que todos os elos da cadeia produtiva de alimentos falem a mesma língua, sem estarmos separados em “gavetas” diferentes, fazendo cada um o seu próprio evento, sem a representação das demais partes interessadas.

Esses eventos nos renovam a energia e a esperança de melhorias em todos os âmbitos, para lembrarmos de quando nos deparamos com situações que muitas vezes tendem a nos empurrar para baixar a régua, mas precisamos mantê-la ou até mesmo subir as exigências, como profissionais éticos e comprometidos que somos.

Lembro-me das vezes em que comentei sobre status alergênico dos lubrificantes, como cobra a norma BRCGS já há algum tempo, e isso foi considerado “preciosismo”. Agora a gente assiste a aula que a Lilian deu dos perigos discutidos na Europa, com substâncias que estão sendo discutidas e que vão muito além da nossa lista de alergênicos, como MOSH e MOAH (aguardem post com mais detalhes sobre eles!), e saí refletindo sobre o mínimo que é cobrado das empresas e o quanto às vezes até o mínimo é questionado…


Fonte: Apresentação de Lilian Miakawa no VI Fórum de segurança de alimentos BRCGS em 29/08/2024

Lembro também de quantas vezes falei sobre rastreabilidade no setor de lubrificantes e fui considerada exigente demais… Aliás, texto muito bem escrito sobre rastreabilidade de lubrificantes na indústria de alimentos é o da querida Gisele Mutti Capiotto, que pode ser lido novamente aqui.

O evento contou com os patrocinadores Sbcert (patrocinador ouro), NSF e Fuchs (como patrocinadores prata), além da SGS, ControlUnion e CJI Solutions (patrocinadores bronze).

Para quem quiser aprofundar a leitura sobre o tema, aguardem próximo post em que falaremos mais sobre as diferenças entre lubrificantes minerais e sintéticos, parâmetros de MOSH e MOAH mundialmente pesquisados, além dos requisitos para se escolher o melhor lubrificante, uma vez que o assunto está sendo atualizado e cada vez mais detalhes precisam ser discutidos entre todas as partes interessadas para se fazer a melhor escolha.

Enquanto isso, seguem outros textos que o Food Safety Brazil já publicou sobre lubrificantes:

Análise de lubrificantes – Manutenção preditiva na indústria de alimentos
Como avaliar se o processo de fabricação de lubrificantes é Food Grade de acordo com a ISO 21469
Controle de lubrificantes com TPM e manutenção autônoma
– O que você sabe sobre os lubrificantes food grade (partes I e II)
O futuro, não tão distante, das indústrias de alimentos e de lubrificantes

Referências:

https://food.ec.europa.eu/system/files/2022-07/reg-com_toxic_20220421_sum.pdf
https://www.efsa.europa.eu/en/efsajournal/pub/2704
https://www.efsa.europa.eu/sites/default/files/wgs/chemical-contaminants/wg-moh-food.pd

4 min leitura“Entendendo a importância e o papel dos lubrificantes nas indústrias de alimentos e de embalagens” foi o tema da palestra de Lilian Miakawa, da Fuchs Lubrificantes, no evento realizado pela […]

3 min leitura
0

Perigos químicos emergentes identificados pela EFSA

3 min leitura

A European Food Safety Agency – EFSA (Agência Europeia de Segurança de Alimentos) – recentemente publicou um relatório técnico sobre perigos químicos emergentes relacionados à segurança de alimentos para humanos e animais, compreendendo o período de 2020 a 2023.

Perigos químicos emergentes são aqueles que eram desconhecidos ou pouco mencionados até então. Durante o levantamento de dados pela EFSA, diversas fontes foram consideradas, como: projetos de avaliação da EFSA, como Screener Project, mudanças climáticas, desafios dos oceanos e outras ferramentas de dados (ex. JRC TIM Analytics tool e EuroCigua I and II projects).

A identificação destes perigos químicos emergentes foi baseada em análises a partir de uma abordagem multidisciplinar, considerando aspectos toxicológicos, químicos, epidemiológicos e outras informações relevantes.

No projeto SCREENER, a EFSA realizou avaliação de 212 substâncias químicas. Destas, 15 foram priorizadas por resultados de análises quantitativas em amostras de diversos alimentos. Na tabela abaixo são apresentadas 12 dessas substâncias, sendo que 3 ainda carecem de mais estudos (3,4-dimethylaniline, quinoline, n-methylacetamide).

Com base no TIM Analytics tool, desenvolvido pelo Joint Research Centre (JRC), 60 químicos foram analisados, baseados na lista de 212 substâncias do EFSA e em outros químicos analisados utilizando o “TIM Technology” e “TIM News”. Nos estudos, foram considerados cerca de 3.000 artigos. Os químicos emergentes identificados são apresentados nas tabelas abaixo. A Tabela 2 refere-se aos resultados usando a ferramenta “TIM Technology”, enquanto a Tabela 3 usou a “TIM News”.

Com relação às mudanças climáticas, o CLEFSA Project identificou uma lista de 19 químicos emergentes, apresentados na Tabela 4, que representam impacto à saúde pública por serem caracterizados como novos perigos, pelo aumento à exposição de um perigo conhecido. Na Tabela 5, são apresentados perigos de variação de micro/macro nutrientes nas matrizes de alimentos.

Os projetos EuroCigua I and II identificaram ocorrências de ciguatoxinas, resultado da bioacumulação e biotransformação por precursores de toxinas produzidos por dinoflagelados Gambierdiscus spp. e Fukuyoa spp., com registro de um total de 209 casos em 34 surtos de ciguatera na União Europeia de 2012 a 2019.

Por fim, o projeto “Food and feed safety vulnerabilities in the circular economy” (Vulnerabilidades na segurança dos alimentos e de rações na economia circular), com base em diversos estudos, identificou alguns perigos químicos emergentes, como: metais pesados (em particular, altos níveis de Cd e Ni em pré-pupas), dioxinas, bifenilos policlorados (PCBs), hidrocarbonetos aromáticos policíclicos (HAPs), hidrocarbonetos de óleo mineral, medicamentos veterinários, pesticidas e a absorção de alérgenos por insetos do substrato (ex. glúten).

Além destes, também são apresentadas duas tabelas com alguns outros químicos que atualmente não podem ser concluídos como perigos emergentes, devido à insuficiência de dados e informações.

O estudo completo pode ser acessado diretamente no site da EFSA, clicando aqui.

Imagem em destaque gerada por inteligência artificial

3 min leituraA European Food Safety Agency – EFSA (Agência Europeia de Segurança de Alimentos) – recentemente publicou um relatório técnico sobre perigos químicos emergentes relacionados à segurança de alimentos para humanos […]

3 min leitura
0

Nova página do FDA: o que precisamos saber sobre microplásticos e nanoplásticos em alimentos

3 min leitura

 

No cenário atual, os plásticos são essenciais em uma variedade de produtos de consumo e industriais, abrangendo desde brinquedos e eletrodomésticos até cosméticos, dispositivos médicos, componentes de veículos, tecidos e materiais de construção. Apesar disso, a reciclagem e a incineração de plásticos são limitadas, resultando em uma acumulação significativa em aterros sanitários e no ambiente. A poluição plástica é onipresente, visível em áreas terrestres, riachos, rios, costas e oceanos.

Em 2022, a produção mundial de plásticos atingiu o recorde de 400,3 milhões de toneladas métricas, representando um aumento de aproximadamente 1,6% em relação ao ano anterior. Essa tendência de crescimento na produção de plásticos começou na década de 1950, impulsionada pela versatilidade e utilidade desses materiais.

A maioria dos plásticos não se biodegrada rapidamente, e ao longo do tempo, devido à exposição aos elementos ambientais, eles se fragmentam em partículas menores, conhecidas como microplásticos e nanoplásticos. Estes materiais podem permanecer como contaminantes marinhos ativos por até 450 anos.

A presença de microplásticos e nanoplásticos em alimentos é uma questão crescente, principalmente devido à contaminação ambiental nos locais de cultivo de alimentos. Embora não haja evidências científicas suficientes para afirmar que esses microplásticos e nanoplásticos migram de embalagens plásticas para alimentos e bebidas, a exposição humana a eles pode ocorrer através do ar, alimentos e absorção pela pele.

A preocupação com os impactos dos microplásticos é um foco crescente nos últimos anos, atraindo a atenção de formuladores de políticas, organizações ambientais e cientistas em todo o mundo. A busca por dados, informações e estratégias eficazes para mitigar seus efeitos no meio ambiente e na saúde humana é uma prioridade.

Em 2024, a celebração do Dia Mundial do Meio Ambiente reforça a necessidade urgente de combater a poluição plástica, um dos maiores desafios ambientais de hoje. O objetivo é aumentar a conscientização global e promover ações concretas para a proteção do meio ambiente.

Com base neste contexto, visando promover maior conscientização e material técnico informativo, a Food and Drug Administration (FDA) dos EUA lançou uma página específica para esclarecer as preocupações sobre microplásticos e nanoplásticos.

Algumas evidências sugerem que esses materiais estão entrando no suprimento de alimentos, principalmente através do ambiente. Apesar de não haver evidências científicas atuais de que os níveis de microplásticos ou nanoplásticos detectados em alimentos representam um risco à saúde humana, a FDA continua monitorando a situação.

A página da FDA inclui informações sobre saúde, regulamentação e ciência. Em termos de saúde, estudos mostram que microplásticos e nanoplásticos foram encontrados em amostras humanas, mas os potenciais efeitos na saúde ainda são pouco compreendidos, e mais pesquisas são necessárias. A Agência de Substâncias Tóxicas e Registro de Doenças dos EUA e o Centro Nacional de Saúde Ambiental dos Centros de Controle e Prevenção de Doenças estão trabalhando para avaliar os riscos à saúde humana e compartilharão suas descobertas com a comunidade científica.

No campo científico, a FDA reconhece que, embora existam muitos estudos sobre microplásticos e alguns sobre nanoplásticos, há lacunas significativas na pesquisa. A falta de definições padronizadas, materiais de referência, métodos de coleta e preparação de amostras, além da ausência de controles de qualidade adequados, dificulta a avaliação de risco regulatória. Além disso, os métodos disponíveis para detectar nanoplásticos são menos confiáveis devido ao tamanho minúsculo dessas partículas.

A FDA está comprometida em avançar na ciência por meio da análise de metodologias de teste e outros trabalhos relacionados, incluindo a participação em grupos de trabalho governamentais e interinstitucionais. A agência também está monitorando a pesquisa sobre microplásticos e nanoplásticos em alimentos, buscando desenvolver, validar e implementar métodos analíticos para a tomada de decisões regulatórias.

A FDA não possui regulamentações que autorizem microplásticos ou nanoplásticos como ingredientes acidentais em alimentos. Para plásticos usados em contato com alimentos, a legislação exige que todos os materiais sejam aprovados antes de serem comercializados. A agência avalia dados de testes para garantir que a exposição do consumidor seja segura.

A responsabilidade legal recai sobre as empresas que cultivam, produzem alimentos ou fabricam produtos destinados ao uso com alimentos. Se a FDA determinar que os níveis de microplásticos ou nanoplásticos tornam os alimentos inseguros, a agência tomará medidas regulatórias.

Pode-se inferir que na busca pela segurança dos alimentos, a FDA permanece à frente, vigilante e comprometida em garantir que os produtos disponíveis no mercado norte-americano atendam aos padrões de qualidade e segurança. Através de regulamentações, monitoramento contínuo e pesquisa científica avançada, a agência trabalha para proteger os consumidores de potenciais riscos, incluindo a presença de microplásticos e nanoplásticos em alimentos.

À medida que a ciência evolui e novas informações se tornam disponíveis, a FDA adapta-se, atualizando suas diretrizes e práticas para manter a saúde pública como sua prioridade máxima. Com a página recém-lançada sobre microplásticos e nanoplásticos, a agência oferece uma ferramenta valiosa para educar o público e divulgar suas ações.  Conheça a página aqui.

Imagem gerada por inteligência artificial

3 min leitura  No cenário atual, os plásticos são essenciais em uma variedade de produtos de consumo e industriais, abrangendo desde brinquedos e eletrodomésticos até cosméticos, dispositivos médicos, componentes de veículos, tecidos […]

3 min leitura
0

Micotoxinas em alimentos são mais comuns do que você imagina!

3 min leitura

O termo micotoxina é derivado da palavra grega “mykes” que significa fungo e do latin “toxican” que significa toxinas. Designa um grupo de compostos produzidos por algumas espécies fúngicas durante seu crescimento. Micotoxinas em alimentos podem causar doenças ou morte quando ingeridas pelo homem ou animais.

As micotoxinas são contaminantes naturais que desafiam o controle da segurança dos alimentos. Estima-se que cerca de 25% de todos os produtos agrícolas do mundo estejam contaminados por tais substâncias.

As principais micotoxinas de importância global são: ocratoxina A, tricotecenos, zearalenona, fumonisina e aflatoxinas.

Micotoxinas e os correspondentes produtos de fungos toxicogênicos

No último relatório RAASF de 2023 (Rapid Alert System for Food and Feed – sistema para intercâmbio de informações sobre notificações referentes à segurança de alimentos entre os países europeus), as aflatoxinas estão entre as Top 10 notificações, pelo perigo, categoria do produto e origem, apresentando 85 notificações, atrás de resíduos de pesticidas, Salmonella e migração.

Notificações por perigo, categoria de produto e origem

Fonte: RASFF, 2023

As micotoxinas ocorrem em uma extensa classe de alimentos e estão envolvidas em uma série de doenças humanas e animais. Podem ser cancerígenas, mutagênicas, teratogênicas e imunossupressoras. A capacidade de algumas micotoxinas de comprometer a resposta imune e, consequentemente, reduzir a resistência a doenças infecciosas é hoje amplamente considerada o seu efeito mais importante, principalmente nos países em desenvolvimento.

Os fungos que invadem sementes e grãos em geral são frequentemente divididos em dois grupos: fungos do campo, que infectam o produto ainda no campo, e fungos de armazenamento, que invadem o grão pouco antes e durante o armazenamento.

Os fungos do campo requerem uma umidade relativa de 90-100% para crescerem. Os principais gêneros são Cephalosporium, Fusarium, Gibberella, Nigrospora, Helminthosporium, Alternaria e Cladosporium que invadem grãos e sementes durante o amadurecimento e o dano é causado antes da colheita. Estes fungos não se desenvolvem normalmente durante o armazenamento, exceto em milho armazenado com alto teor de umidade.

Os fungos de armazenamento, como por exemplo, o Aspergillus, Penicillium, Rhizopus e Mucor, em condições favoráveis, desenvolvem-se com rapidez durante o processo de cultivo, colheita, transporte e armazenamento.

Os principais fungos produtores de micotoxinas, conhecidos como micotoxicogênicos, correspondem ao gênero Aspergillus, Penicillium e Fusarium.

Nas tabelas abaixo, estão as principais micotoxinas, fungos produtores, ocorrência em alimentos, destacando o impacto em cereais, leite e derivados, chás, café e algumas frutas.

Micotoxinas, fungos produtos e ocorrência em alimentos

Fonte: EMBRAPA, 2015

Principais efeitos de algumas micotoxinas na saúde humana e animal

Fonte: Embrapa, 2015

Um ponto relevante foi a escolha do Brasil pela FAO para ser o estudo de caso sobre micotoxinas em cereais. Ainda há muitos desafios neste tema, mas estamos avançando em técnicas e ações de mitigação para o controle de micotoxinas no Brasil e no mundo.

Referência: Micotoxinas: Importância na Alimentação e na Saúde Humana e Animal – Embrapa, 2007 

Renata Cerqueira é farmacêutica e bioquímica, com especializações em Qualidade e Produtividade, Ciência e Tecnologia de Alimentos, Cosméticos e Segurança dos Alimentos. Mestre em Toxicologia de Alimentos e doutoranda em Ciência dos Alimentos. Docente em cursos de especialização de segurança de alimentos e de gestão da qualidade. Possui 27 anos de experiência em Gestão de Controle e Garantia da Qualidade em indústrias químicas e de alimentos.

Leia também:

Micotoxinas em alimentos processados: devo me preocupar?

3 min leituraO termo micotoxina é derivado da palavra grega “mykes” que significa fungo e do latin “toxican” que significa toxinas. Designa um grupo de compostos produzidos por algumas espécies fúngicas durante […]

6 min leitura
0

Risco de dioxinas e furanos nos alimentos

6 min leitura

Entre os riscos de contaminantes químicos potenciais nos alimentos, um dos mais temidos são as dioxinas e os furanos. São compostos solúveis em gordura (lipofílicos) e, assim, bioacumulativos na cadeia alimentar, especialmente associados com carne, leite e seus derivados.

Dioxinas e furanos são duas classes de compostos aromáticos tricíclicos, de função éter, com estrutura quase planar e que possuem propriedades físicas e químicas semelhantes.

Nestes compostos, os átomos de cloro se ligam aos anéis benzênicos, possibilitando a formação de um grande número de congêneres: 75 para as dioxinas e 135 para os furanos, totalizando 210 compostos.

Das 210 dioxinas e furanos existentes, 17 compostos com substituições nas posições 2, 3, 7 e 8 destacam-se sob o ponto de vista toxicológico. A toxidade aguda mais elevada é para o 2,3,7,8-tetraclorodibenzo-p-dioxina (2,3,7,8-TCDD), que é ultrapassado somente por algumas outras toxinas de origem natural. Veja a tabela a seguir:

A contaminação em pequenas doses não é facilmente perceptível, porque em curto espaço de tempo não gera sintomas, mas como são cumulativas no organismos, podem causar intoxicações a médio e longo prazo.

Problemas comumente associados com estas moléculas são a cloroacne, que se apresenta como um tipo de erupção, cistos ou fissuras semelhantes à acne na pele, além de manchas escuras e mudanças nas funções do fígado.

Porém, os casos podem ser mais graves. As dioxinas e os furanos foram incluídos na lista de substância cancerígenas do programa Nacional de Toxicologia (NTP) dos EUA, com base nos estudos do Instituto Nacional da Saúde (NHIS – National Health Interview Survey) em 2001. Até então, eram classificados pela Agência de Proteção Ambiental dos EUA (USEPA – United States Environmental Protection Agency) no grupo B1 (provável carcinogênico).

As evidências disponíveis apontam fortemente que a TCDD exerce seu efeito carcinogênico primariamente por meio de sua efetividade como agente promotor de estimulação de replicação de células de maneira reversível e inibindo apoptoses.

O 2,3,7,8-TCDD tem a propriedade de se tornar um produtor de proteínas se inserido nas células do corpo. Ele penetra no núcleo da célula e combina-se com o DNA, depois direciona a função das células para a produção de proteínas, o que resulta finalmente em um enfraquecimento do sistema celular, inclusive o imunológico.

ROTAS DE EXPOSIÇÃO

As rotas de exposição identificadas incluem exposição direta pelas emissões atmosféricas e de chaminés e exposição indireta pela contaminação do solo e de produtos alimentícios, água e outros elementos.

ar > solo > vegetais > animais > seres humanos

O isômero 2,3,7,8-TCDD é extremamente estável quimicamente e é consideravelmente insolúvel em água e em muitos compostos orgânicos, mas é muito solúvel em óleos e gorduras. Assim,  suas propriedades fazem com que não seja levado pela chuva, tornando-se um resíduo cumulativo.

A sequência de reações de formação dos PCDD e PCDF não é bem entendida ou conhecida, mas existem três teorias básicas para a ocorrência desses compostos em incineradores:

  1. Ocorrem como constituintes em pequeníssimas quantidades, traços, no próprio resíduos e uma parte passa através do incinerador, sem transformação;
  2. São produzidos durante a incineração ou em caldeiras, a partir de precursores, como o PCB (bifenila policlorada), os pentaclorofenois e os benzenos clorados;
  3. São produzidas a partir de materiais não diretamente relacionados a esses compostos (ex.: produtos de petróleo em geral, hidrocarbonetos clorados, íons cloreto inorgânico e plásticos).

A 1ª hipótese tem sido descartada nos casos em que a temperatura de combustão dos fornos é alta o suficiente para destruir os PCDD e PCDF, como ocorre na incineração de resíduos em que a temperatura está próxima ou acima de 900ºC e o tempo de residência é alto (1 a 2 segundos).

A 3ª hipótese é a mais aceita, pelo mecanismo conhecido como síntese “de novo” que permite chegar a moléculas complexas a partir de moléculas simples por reações elementares entre C, H, O e Cl.

Observa-se a formação de dioxinas, furanos e compostos relacionados com o benzeno e fenóis clorados no carbono residual coletado na saída de sistemas de combustão (região de temperatura entre 300 a 400ºC), quando na presença de HCl, O2 e H2O. Essas reações são catalisadas por vários metais, óxidos metálicos e silicatos, também presentes no material particulado arrastado.

Por isso, sua geração está associada a processos de combustão que podem ocorrer em:

  1. Incineradores de lixo municipal, de resíduos industriais, de lodos residuários e hospitalares;
  2. Plantas de preparação e termelétricas de carvão;
  3. Queima ao ar livre de resíduos de madeira;
  4. Veículos automotores;
  5. Fumaça de cigarro;
  6. Lareiras que queimam madeira;
  7. Aciarias;
  8. Fundições de cobre;
  9. Outros processos similares.

Tal síntese ocorre especialmente quando na combustão há presença de subproduto da sínteses de herbicidas, desinfetantes e outros; PCB (formação de furanos somente); componentes agente laranja (2,4,5-T e 2,4-D); benzenos clorados; compostos de cloro e bromo assemelhados; diversos derivados de petróleo.

O NOTÓRIO CASO BELGA

O caso mais conhecido de alimentos contaminados com dioxinas e furanos ocorreu em 1999, quando um produtor de Roulers, norte da Bélgica, ficou intrigado com a falta de apetite de seus frangos e com a diminuição da produção de ovos.

Nesta ocasião, os veterinários levantaram a hipóteses de uma contaminação por dioxina na ração dos frangos.

Certificados da hipótese, o governo belga estimou que 80 mil toneladas de ração potencialmente contaminada foram fornecidas a 1400 fazendas, o que corresponde a metade das granjas daquele país, sendo que 40% de produção suína e 17% da pecuária foram atingidas.

O governo da Bélgica, apenas pela hipótese de algumas fazendas não terem se submetido ao controle de qualidade dos seus rebanhos, resolveu interditar 230 fazendas e proibir a comercialização de centenas de milhares de animais.

Vários países na Europa, EUA, Japão e inclusive Brasil cancelaram as exportações de produtos granjeiros provenientes da Bélgica, tais como linguiças, carne de aves, de gado, leite e derivados, o que evidentemente levou o país a ter um prejuízo de milhões de euros.

O Ministro da Agricultura da Holanda teve de renunciar após descobrirem que conscientemente havia importado ração de origem belga potencialmente contaminada com dioxina.

A Nestlé suspendeu temporariamente a produção em sua fábrica de chocolates na Bélgica. Em Paris e na França, a cadeia McDonalds recolheu do mercado toda sobremesa à base de leite, pois o fornecedor de produtos para fabricação de sorvetes era uma companhia belga.

Inicialmente as autoridades belgas não concluíram se a dioxina teve origem numa fábrica de Ghent ou se veio de material vendido à fábrica por fornecedores que reaproveitam azeite e gorduras usados em restaurantes.

Houve muitas hipóteses sobre a origem da contaminação. Por isso, foi investigada uma ampla gama de possibilidades: detergentes, pesticidas, tintas etc., mas ao final, a ração diária do rebanho foi identificada como principal responsável pela contaminação.

Vários componentes da ração foram analisados separadamente e o farelo de polpa cítrica, proveniente justamente do Brasil, foi identificado como fonte potencial mais provável de contaminação.

A rastreabilidade demonstrou que esta polpa cítrica tinha sua acidez neutralizada por cal (CaO) e este foi identificado como principal contaminante potencial: a cal é obtida pela combustão do CaCO3 em fornos, e se este processo for realizado sem os devidos cuidados e com a utilização de materiais impróprios como combustível (como plásticos, pneus, madeira fumigada, etc), pode haver formação de dioxinas e furanos que vão se impregnar na cal.

Rastreabilidade da possível rota de contaminação da polpa cítrica por dioxinas.

Milhares de toneladas de polpa cítrica foram destruídas no exterior e outras milhares de toneladas deixaram de ser exportadas pelo Brasil.

PARA CONCLUIR

Dioxinas e furanos são perigos normalmente de baixa probabilidade na cadeia produtiva de alimentos, exceto quando as rotas produtivas esbarram direta ou indiretamente com suas fontes geradoras. No entanto, quando ocorrem, são de alta gravidade, seja pelos danos à saúde humana que devem ser o elemento de consideração prioritária, como também pelos colossais prejuízos econômicos que podem ocasionar em decorrência do rompimento de contratos e consequente perda de credibilidade em relação aos produtores.

Leia também:

Bioacumulação de pesticidas e dioxinas em moluscos bivalves

Severidade de perigos químicos em alimentos

Medidas de controles de perigos químicos à segurança dos alimentos

Europa publica relatório sobre resíduos de dioxina em alimentos

Poluentes Orgânicos Persistentes: eles estão entre nós

Como interpretar laudos de dioxinas e PCBs? – Parte 1 de 2

Como interpretar laudos de dioxinas e PCBs? – Parte 2 de 2

6 min leituraEntre os riscos de contaminantes químicos potenciais nos alimentos, um dos mais temidos são as dioxinas e os furanos. São compostos solúveis em gordura (lipofílicos) e, assim, bioacumulativos na cadeia […]

5 min leitura
0

Cerveja envenenou 6000 pessoas por arsênio e matou mais de 70 na Inglaterra

5 min leitura

Nos anos 1900, mais de 6.000 pessoas na Inglaterra foram envenenadas por cerveja contaminada com arsênio, resultando na morte de mais de 70.  Estima-se que essa grande crise de segurança de alimentos foi se alastrando silenciosamente por anos, por causa de um erro sistemático de diagnóstico.

Os médicos atribuíam aos pacientes “bons de copo” a sentença de neurite periférica, vinculando os sintomas ao alcoolismo, sem enxergar algo muito mais grave que estava acontecendo. As vítimas apresentavam severa fraqueza muscular e dormência nas mãos ou nos pés.

Foi então que o inconformado médico Ernest Septimus Reynolds iniciou uma extensa pesquisa para entender a epidemia. Ele começou com o levantamento de dados de ocorrência na cidade de Manchester, que era muito maior comparado com Londres e outras mais distantes.

Outras cidades das proximidades tiveram suas estatísticas de internações aumentadas, sendo que, em comum, todos os pacientes tinham o currículo de bebedores  regulares de cerveja. Alguns deles apresentavam também alterações na pele, como vermelhidões, descamações, ou pele pálida. Outro ponto comum é que pertenciam às classes sociais mais desvaforecidas, ou então eram indigentes e ou alcoólatras. Contudo, a pesquisa mostrou que essa doença não afetava da mesma maneira os bebedores de vinho ou uísque e também que a quantidade consumida era baixa a moderada em muitos casos. Pesquisando as causas para a fraqueza muscular, amostras de cervejas foram coletadas e foi detectado arsênio. Era hora de rastrear a causa-raiz.

Foi fraude em cima de outra fraude

Uma vez identificadas as cervejarias afetadas, investigou-se a origem do contaminante. Verificou-se que o arsênio estava presente no açúcar invertido fornecido às cervejarias pela Bostock & Co., de Garston. Para reduzir os custos no mercado cervejeiro inglês, algumas cervejarias substituíram o malte de cevada de alta qualidade por malte de baixa qualidade, suplementado com açúcar invertido. Essa prática era um tanto controversa e fez parte da discussão do movimento “Pure Beer”, quando se abriu um inquérito sobre o uso de substitutos da cerveja. Este inquérito, que começou em 1896 e terminou em 1899, concluiu que os substitutos da cerveja não eram “materiais deletérios” sob a Lei de Venda de Alimentos e Medicamentos de 1875 e que não era necessário regulamentar. Bem, para alguns era uma fraude, mas para outros fazia parte de um padrão de “qualidade alternativa”, justamente a qualidade que aquele público consumidor podia comprar.

Lembrando que o açúcar invertido é obtido por hidrólise ácida do açúcar comum (sacarose), que é aquecido na presença de um ácido para formar glicose e frutose. Essa tecnologia era empregada comercialmente desde pelo menos 1814. A Bostock & Co. usou ácido sulfúrico para realizar a hidrólise ácida. Este ácido, adquirido da Nicholson & Sons e, era feito de piritas que continham arsênico, que não era eliminado no processo.

A John Nicholson & Sons, de Leeds, fornecia ácido sulfúrico para a Bostock & Co. desde 1888. Também fornecia para outras duzentas cervejarias. Durante a maior parte do relacionamento comercial, o ácido fornecido era isento de arsênico, com o que hoje em dia chamamos de “food grade”. No entanto, em março de 1900, a Nicholson começou a fornecer ácido sulfúrico não purificado contaminado com arsênio. Essa prática continuou até novembro de 1900, quando se descobriu que o ácido era a causa do surto. Nicholson alegou que não conhecia o uso intencional do ácido por Bostock e que poderia ter fornecido ácido livre de arsênio se isso tivesse sido especificado.

Bônus: o carvão da secagem do malte também estava contaminado

Os peritos da época tinham outras frentes de pesquisa e não se deram por satisfeitos com a conclusão de que o ácido sulfúrico sozinho foi a causa-raiz do problema.  Eis que uma segunda fonte de contaminação foi identificada: a cevada maltada. Para realizar a secagem do malte, utilizavam-se fornos a coque ou carvão. O coque é um tipo de combustível derivado da hulha. Quando o arsênio estava presente no combustível, ele se depositava na cevada antes da maceração, permanecendo no produto final. A investigação sobre o surto revelou que a maioria dos casos de neuropatia alcoólica endêmica em Manchester foram, na verdade, envenenamento por arsênio mal diagnosticado, sendo esta rota alternativa responsável pelo envenenamento de milhares de pessoas nos anos anteriores ao surto.

Comportamento do mercado e punição aos fabricantes

Como sempre ocorre após uma crise dessas, de largo impacto na opinião pública, medidas foram tomadas. As autoridades da época determinaram que qualquer cerveja produzida a partir do açúcar invertido da Bostock fosse imediatamente recolhida e, se fosse considerada contaminada, destruída. Além disso, nenhuma cerveja deveria ser expedida sem ter sido previamente testada, e certificados que verificassem a sua ausência de arsênio deveriam ser emitidos com a cerveja.

Após a divulgação da causa do envenenamento pela mídia, notou-se uma redução considerável no consumo de cerveja na região.

Qualquer semelhança não é mera coincidência. Escândalos sempre mexem com a opinião pública, o que pode ser conferido nas publicações de noticiário do Brasil sobre o famoso caso de uma cervejaria no Brasil que causou  mortes e sequelas em várias pessoas.

Caso Backer abala mercado que cresce cerca de 30% ao ano

Prejudicados pelo caso Backer e pandemia, cervejeiros só veem recuperação em 2023

Em defesa de seu mercado, cervejarias e pubs usaram a panfletagem e os cartazes (como o mostrado abaixo) para divulgar que seus produtos eram livres de arsênio. Outras deixavam claro que não utilizavam açúcar do fornecedor culpado e que faziam análises do produto.

Quanto ao recall, a resposta da indústria cervejeira foi variada. Houve uma reação de compromisso com a segurança de alimentos forte e imediata  liderada pela grande cervejaria de Manchester Groves e Whitnall, que chegaram a enviar telegramas a todas as tabernas e pousadas que haviam comprado sua cerveja. As cervejarias descartaram milhares de barris de cerveja jogando-os nos esgotos da cidade.

Outras cervejarias demoraram a tomar uma atitude, sendo necessário criar uma lei segundo a qual seriam multadas se a sua cerveja ainda pudesse ser comprada pelos investigadores. Além disso, pubs foram multados por vender cerveja contaminada,  mesmo tendo sido notificados pelo fabricante sobre a presença de arsênio.

A Bostock & Co. entrou em falência e processou a Nicholson & Sons por danos, por violação de uma condição implícita na Lei de Venda de Mercadorias de 1893. O caso foi julgado no Tribunal Superior: o juiz concedeu a Bostock a indenização do valor do ácido contaminado e o valor de seus produtos perdidos, mas nenhuma indenização especial pela perda de reputação ou pelos danos reclamados pelos cervejeiros, decorrentes do uso do produto contaminado na fabricação de seu açúcar. A Nicholson & Sons sobreviveu e mais tarde foi adquirida por outra empresa.

Os efeitos sobre o mercado cervejeiro foram efêmeros e o consumo de cerveja foi retomado ao longo do ano. As tentativas de reviver o movimento da cerveja pura foram anuladas pelo relatório da comissão técnica e pelo fato de que o arsênio estava presente tanto na cevada maltada quanto no açúcar. Parecia não haver efeitos diretos na legislação resultante do incidente.

O dia seguinte… danos além dos efeitos agudos

O envenenamento resultou na nomeação de uma Comissão Real liderada por Lord Kelvin, que apresentou um relatório preliminar em 1901 e um relatório final em 1903.

Em 1901, um declínio considerável na taxa de natalidade foi observado em Manchester, Salford e Liverpool. Este declínio foi maior nas áreas mais afetadas, levando a Comissão Real a concluir que a causa foi a epidemia.

Fontes: 

https://en.wikipedia.org/wiki/1900_English_beer_poisoning

Death in the beer-glass: the Manchester arsenic-in-beer epidemic of 1900-1 and the long-term poisoning of beer (inclui as imagens utilizads aqui), de TN Kelynack, W Kirkby (Life time)

5 min leituraNos anos 1900, mais de 6.000 pessoas na Inglaterra foram envenenadas por cerveja contaminada com arsênio, resultando na morte de mais de 70.  Estima-se que essa grande crise de segurança […]

3 min leitura
3

Contaminantes químicos em alimentos: como evitá-los?

3 min leitura

A contaminação de alimentos é uma preocupação constante em todos os países do mundo. De acordo com a Anvisa, contaminantes em alimentos são “agentes biológicos, físicos ou químicos que são introduzidos no alimento de forma não intencional e que podem trazer danos à saúde da população”. Entre esses contaminantes, estão os de natureza química, que podem oferecer risco aos consumidores, dependendo das concentrações presentes no alimento.

Esse tipo de contaminação pode ocorrer devido à presença de substâncias químicas em excesso, tais como metais pesados, antibióticos, resíduos de praguicidas e de agrotóxicos presentes nas matérias-primas, além de toxinas microbianas.

Diferentes reações adversas causadas por contaminantes químicos podem ser desencadeadas nos consumidores, podendo ser de natureza aguda (curto prazo) ou crônica (longo prazo). Os efeitos observados incluem distúrbios gastrointestinais, urticária, angiodema (inchaço nos olhos e lábios) e, até mesmo, toxicidade severa, como choque anafilático.

Um fator preocupante é que, muitas vezes, os contaminantes químicos não alteram o aspecto sensorial dos alimentos, como o sabor, textura, cor ou o aroma, diferentemente de alguns contaminantes biológicos que, ao promoverem alterações nas características sensoriais dos alimentos, podem levar a sua rejeição pelos consumidores, evitando-se a ocorrência de surtos alimentares.

A presença de contaminantes químicos em alimentos dificilmente pode ser totalmente evitada, mas pode ser minimizada. Dessa forma, considerando-se o potencial tóxico dessas substâncias, recomenda-se que suas concentrações sejam as menores possíveis, mediante a aplicação das melhores práticas e tecnologias de produção disponíveis, adotando-se práticas agrícolas e de produção adequadas. Ações como redução da poluição ambiental, boas práticas de produção, manuseio, armazenamento, processamento, embalagem de alimentos e medidas de descontaminação de alimentos contaminados podem ser usadas para evitar que estes contaminantes estejam presentes nos alimentos em níveis acima daqueles considerados seguros.

A adoção do sistema de Análise de Perigos e Pontos Críticos de Controle (APPCC) é de extrema importância, por se tratar de um sistema preventivo de garantia da segurança dos alimentos. Considerando que este sistema tem por objetivo principal a identificação dos perigos potenciais presentes nas matérias primas, assim como aqueles que poderão ser inseridos durante o processamento, e o estabelecimento de medidas preventivas a serem adotadas em pontos específicos, denominados Pontos Críticos de Controle (PCC), muitos contaminantes podem ser controlados, garantindo a inocuidade dos alimentos e a segurança dos consumidores.

A metodologia pode ser aplicada em qualquer etapa da cadeia produtiva de alimentos, incluindo a produção primária, contribuindo para redução da contaminação das matérias primas que serão recebidas pelas indústrias de alimentos.

Há situações em que pequenas quantidades desses agentes podem ser toleradas sem trazer prejuízos significativos à saúde. Para estes casos, existem os limites máximos aceitáveis (LMT), os quais normalmente variam com o tipo de alimento e estão disponíveis na Instrução Normativa nº 160, de 1° de julho de 2022 (Anvisa). Os limites são baseados em estudos científicos e fundamentados para proteção da saúde humana. Alimentos com teores de contaminantes superiores aos estipulados nos regulamentos não podem ser comercializados.

Autoras: Daiana Júnia de Paula Antunes, Tássia Estevão Oliveira Furtado, Wellingta Cristina Almeida do Nascimento Benevenuto, Eliane M. Furtado Martins, do Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, campus Rio Pomba.

Leia também:
Medidas de controles de perigos químicos à segurança dos alimentos [link]

Referências

INTERNATIONAL LIFE SCIENCES INSTITUTE. Contaminantes químicos em alimentos. 2022. Disponível em: https://ilsibrasil.org/3954-2/. Acesso em 11 abril 2024.

OLIVEIRA et al. Substâncias químicas presentes em sucos de frutas em pó comercializados no Brasil. Rev. Bras. Alergia Imunopatol, v. 29, p.127-132, maio-jun. 2006.

SEIXAS, P.; MUTTONI, S.M.P. Doenças transmitidas por alimentos, aspectos gerais e principais agentes bacterianos envolvidos em surtos: uma revisão. Nutrivisa, v. 7, p. 23-30, 2020.

SOUZA. R. Contaminantes Em Alimentos: Quais São e Como Evitar. Gepea, 2023. Disponível em: https://gepea.com.br/contaminantes-em-alimentos/. Acesso em 07 de abril de 2023.

3 min leituraA contaminação de alimentos é uma preocupação constante em todos os países do mundo. De acordo com a Anvisa, contaminantes em alimentos são “agentes biológicos, físicos ou químicos que são introduzidos […]

3 min leitura
2

Como interpretar laudos de dioxinas e PCBs? – Parte 2 de 2

3 min leitura

Na semana passada começamos a falar sobre este tema (laudos de dioxinas e PCBs). Leia aqui antes de prosseguir.

Neste post vamos focar a interpretação de laudos voltados ao mercado feed (produtos para alimentação de animais de criação), incluindo legislações europeias.

Segue novamente um exemplo de laudos de dioxinas e PCBs:

IN nº 1 (MAPA), de 23/01/2018 – Limites máximos de dioxinas e bifenilas policloradas sob a forma de dioxinas em produtos destinados à alimentação animal

Esta instrução (ver na íntegra aqui) traz o seguinte padrão:

Contaminantes

Produtos destinados à alimentação animal

Limite máximo em ng PCDD/F-TEQ-OMS/kg de alimento1 para um teor de umidade de 12 %

Dioxinas [soma das dibenzo-para-dioxinas policloradas (PCDD) e dos dibenzofuranos policlorados (PCDF), expressa em equivalente tóxico OMS com base nos fatores de equivalência tóxica da OMS (TEF-OMS)

Ingredientes de origem vegetal, incluindo os óleos vegetais e seus subprodutos

0,75 ng TEQ PCDD/F OMS/kg

Ingredientes para alimentação animal de origem mineral

0,75 ng TEQ PCDD/F OMS/kg

Para avaliar o laudo acima, avaliamos o OMS (2005)-PCDD/F TEQ upper-bound.

O resultado do laudo foi 0,1465 ng/kg, inferior a 0,75 ng/kg. Neste caso, o produto está dentro do padrão (seja para ingredientes de origem vegetal ou mineral).

Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed – Council statement

A legislação do European Commission (ver aqui na íntegra) é um pouco mais complexa que a do MAPA. Há diferentes padrões conforme o tipo de feed. Seguem abaixo padrões para feeds de origem vegetal e óleos:

Observação: o mesmo padrão é seguido também no GMP+ FSA em seu documento TS 1.5.

Substância indesejável

Produtos destinados à alimentação animal

Limite máximo em mg/kg (ppm) relativo a produtos para alimentação animal com teor de umidade de 12 %

Dioxinas (soma de dibezo-para-dioxinas policloradas (PCDD’s) e dibenzofuranos policlorados (PCDF’s) expressa em equivalente tóxico OMS com base nos fatores de equivalência tóxica da OMS (TEF-OMS)

Feed materials de origem vegetal, exceto óleos vegetais e seus subprodutos

0,75 ng WHO-PCDD/ F-TEQ/kg

Óleos vegetais e seus subprodutos

0,75 ng WHO-PCDD/ F-TEQ/kg

Soma de dioxinas e PCB’s semelhantes a dioxinas (soma de dibezo-para-dioxinas policloradas (PCDD’s), dibenzofuranos policlorados (PCDF’s) e bifenilas policloradas (PCB’s) expressa em equivalente tóxico OMS com base nos fatores de equivalência tóxica da OMS (TEF-OMS)

Feed materials de origem vegetal, exceto óleos vegetais e seus subprodutos

1,25 ng WHO-PCDD/ F-TEQ/kg

Óleos vegetais e seus subprodutos

1,5 ng WHO-PCDD/ F-TEQ/kg

Começando com o padrão de dioxinas, segue o mesmo do exemplo anterior. O resultado está dentro do padrão (abaixo de 0,75 ng/kg).

Sobre o parâmetro soma de dioxinas e PCBs semelhantes a dioxinas, avaliamos o OMS (2005)-PCDD/F+PCB TEQ upper-bound.

O resultado do laudo foi 0,1465 ng/kg, inferior a 1,25 ng/kg (considerando feed material de origem vegetal). Neste caso, o produto está dentro do padrão.

Quer ler mais sobre interpretação de laudos? Dê uma olhada nos seguintes posts:

– Laudos de análises microbiológicas: você sabe interpretar os resultados? [link]
– Dúvida de leitor: unidade de medida em laudos de análises microbiológicas [link]
– Tudo o que você sempre quis saber sobre laudos de migração de embalagens de alimentos [link]

3 min leituraNa semana passada começamos a falar sobre este tema (laudos de dioxinas e PCBs). Leia aqui antes de prosseguir. Neste post vamos focar a interpretação de laudos voltados ao mercado […]

3 min leitura
0

Fatores antinutricionais sob a ótica da segurança de alimentos

3 min leitura

Apesar de inúmeros benefícios, alguns alimentos possuem fatores antinutricionais (FANs), como metabólitos secundários, que nos alimentos de origem vegetal atuam como mecanismo de defesa contra fungos, bactérias, insetos e animais. Estes fatores são chamados de antinutricionais, pois interferem negativamente no processo de digestão e absorção de nutrientes presentes nos alimentos e podem, até mesmo, serem tóxicos, dependendo da quantidade ingerida. O efeito tóxico ou antinutricional pode ocorrer quando os alimentos que os possuem são consumidos crus, sem cozimento.

Grãos, raízes, leguminosas e cereais são aliados importantes da dieta, mas possuem antinutrientes incluindo saponinas, taninos, fitatos, compostos polifenólicos e inibidores de protease. Esses componentes interferem no valor nutricional dos alimentos, reduzindo a absorção de vitaminas e minerais, principalmente cálcio e ferro. Também dificultam a digestibilidade de proteínas e carboidratos, causando toxicidade e distúrbios de saúde e flatulência quando presentes e ingeridos em altas concentrações. Dessa forma, o tratamento térmico é uma das técnicas usadas para reduzir ou inativar os antinutrientes indesejáveis, sob a ótica da segurança.

Na figura abaixo, são apresentados alguns fatores antinutricionais, os alimentos que os contêm e seus principais efeitos:


Os cianetos e saponinas, encontrados em vegetais como grão de bico, ervilhas e feijões, podem ser reduzidos com o processamento a quente e cozimento, mas a inativação desses inibidores é dependente do tempo e temperatura adotados durante o tratamento térmico. Já os inibidores de proteases, como a tripsina, podem ser reduzidos de forma mais eficaz ao se utilizar o método a vapor, a 100°C.

Os oxalatos, encontrados principalmente nas leguminosas, nozes e diversas farinhas à base de grãos, podem ser eliminados com métodos úmidos, com o uso de remolho, fervura e cozimento a vapor. O elevado consumo de oxalato é preocupante, visto que o ácido oxálico pode formar sais insolúveis com cálcio e magnésio, promovendo a formação de cálculos renais.

O remolho em água, previamente ao cozimento, também é uma forma de reduzir os FANs, uma vez que muitos deles são hidrossolúveis e, dessa forma, eliminados.

Portanto, uma alimentação diária variada aliada às técnicas mencionadas, é de suma importância para obtenção de uma dieta segura, evitando o acúmulo dos antinutrientes no organismo.

Autoras: Patrícia Cândido da Silva, Nataly Almeida Marques e Eliane M. Furtado Martins

Leia também: 

Quais são os perigos de uma alimentação à base de plantas?

Referências:

ALSALMAN, F.B.; RAMASWAMY, H. Reduction in soaking time and anti-nutritional factors by high pressure processing of chickpeas. Journal of Food Science and Technology, v. 57, n. 7, p. 2572–2585, 2020.

CHAI, W.; LIEBMAN, M. Oxalate content of legumes, nuts and grain-based flours. Journal of Food Composition and Analysis, v. 18, n. 7, p.723-729, 2005.

DEL-VECHI, G.; CORRÊA, A.D.; ABREU, C.M.P.; SANTOS, C.D.  Efeito do tratamento térmico em sementes de abóboras (Cucurbita spp.) sobre os níveis de fatores antinutricionais e/ou tóxicos. Ciências Agrotecnologicas, v. 29, n.2, p. 369-376, 2004.

GEMEDE, H. F.; RETTA, N. Antinutritional Factors in Plant Foods: Potential Health Benefits and Adverse Effects. International Journal of Nutrition and Food Sciences, v. 3, n. 4, p. 284, 2014.

HIGASHIJIMA, N. S.; LUCCA, A.; REBIZZ, L. R. H.; REBIZZI, L. M. H. Fatores antinutricionais na alimentação humana. Segurança Alimentar e Nutricional, v. 27, 2020.

SAMTIYA, M.; ALUKO, R.E.; DHEWA, T. Plant food anti-nutritional factors and their reduction strategies: an overview. Food Production Processing and Nutrition, v. 2, p. 6, 2020. 

WANG, N.; LEWIS, M.J.; BRENNAN, J.G.; WESTBY, A. Effect of processing methods on nutrients and anti-nutritional factors in cowpea. Food chemistry, v.58, n.2, p.59-68, 1997.

3 min leituraApesar de inúmeros benefícios, alguns alimentos possuem fatores antinutricionais (FANs), como metabólitos secundários, que nos alimentos de origem vegetal atuam como mecanismo de defesa contra fungos, bactérias, insetos e animais. […]

4 min leitura
1

Como interpretar laudos de dioxinas e PCBs? – Parte 1 de 2

4 min leitura

Você já leu um laudo de análise laboratorial de dioxinas? Já se perdeu naquela sopa de letrinhas e números? Pois bem… fique tranquilo que o Food Safety Brazil irá ajudá-lo a desvendar este laudo.

Uma breve introdução sobre dioxinas e PCBs:

  • Dioxinas: É o nome genérico dado a um conjunto de dibenzo-P-dioxinas policloradas (PCDDs) e dibenzo-furanos policlorados (PCDFs). Apresentam-se sob um total de 210 formas (congêneros), sendo apenas 17 tóxicos ou carcinogênicos (aqueles contendo átomo de cloro na posição 2, 3, 7 e 8). São subprodutos da combustão incompleta de matérias orgânicas contendo halogênios e fonte de cloro.
  • PCBs:  É a sigla de Bifenilas Policloradas, um grupo de compostos produzidos até a década de 1980 para uso industrial. São exemplos de usos de PCBs: fluidos dielétricos em transformadores, condensadores e óleos de corte, lubrificantes hidráulicos, lubrificantes hidráulicos, tintas e adesivos.

Dioxinas e PCBs são substâncias químicas diferentes com propriedades e características distintas. Em suma, temos:

Falando especificamente dos PCBs, eles compreendem diferentes tipos de moléculas semelhantes, ao todo 209 congêneres, mas que variam a depender da quantidade de átomos de cloro ligados às cadeias aromáticas e da posição destes átomos. Alguns deles estão abaixo:

Quem estudou química orgânica já deve saber que pequenas mudanças em uma cadeia geram grandes diferenças. E é exatamente o que ocorre aqui. Alguns PCBs induzem respostas bioquímicas e tóxicas semelhantes às das dioxinas. A estas moléculas convencionou-se denominar: dioxin-like PCBs (em bom português: PCBs semelhantes a dioxinas). São eles:  PCB 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169 e 189.

Os PCBs que não induzem respostas bioquímicas e tóxicas semelhantes às das dioxinas são denominados non-dioxin-like PCBs (PCBs não semelhantes a dioxinas). São todos os congêneros, exceto os citados acima.

E feita esta introdução, segue abaixo um exemplo de laudo de análise:

Observe o primeiro item: 1, 2, 3, 4, 6, 7, 8-HeptaCDD. Trata-se de uma dibenzo-P-dioxina policlorada (PCDD) — ou seja, um composto pertencente ao grupo das dioxinas — contendo 7 átomos de cloro, distribuídos nas posições 1, 2, 3, 4, 6, 7 e 8.

Outro exemplo, o quinto item: 1, 2, 3, 4, 7, 8-HexaCDF. Trata-se de um dibenzo-furano policlorado — ou seja, um composto pertencente ao grupo das dioxinas — contendo 6 átomos de cloro, distribuídos nas posições 1, 2, 3, 4, 7 e 8.

Vamos avançar.
Há uma legislação brasileira prevendo padrões de dioxinas e PCBs em alimentos. Trata-se da IN nº 160/2022 (Anvisa).
Segue o trecho dela que trata deste tema:

 

Por exemplo, para carne bovina, a legislação prevê limite máximo tolerável (nível aceitável):

  • soma de PCDD, PCDF e PCB: 4,0 pg/g
  • soma de PCDD e PCDF: 2,5 pg/g

 

Para avaliar o laudo, vamos primeiro converter a unidade de medida do padrão, de pg/g (que é o padrão da legislação) para ng/kg (que é o padrão do laudo). Assim, fica… a mesma coisa!

  • soma de PCDD, PCDF e PCB: 4,0 ng/kg
  • soma de PCDD e PCDF: 2,5 ng/kg

 

Agora sim, onde encontrar os parâmetros abaixo no laudo? Veja abaixo:

  • soma de PCDD, PCDF e PCB = OMS (2005)-PCDD/F+PCB TEQ upper-bound
  • soma de PCDD e PCDF =OMS (2005)-PCDD/F TEQ upper-bound

 

Ou seja, se fôssemos considerar o laudo acima*, o produto analisado estaria dentro do padrão:

  • soma de PCDD, PCDF e PCB: 0,02121 ng/kg (< 4,0 ng/kg)
  • soma de PCDD e PCDF: 0,1465 ng/kg (< 2,5 ng/kg)

Nota: O laudo, em particular, trata de uma análise de produto de origem vegetal. O MC12% na frente dos resultados indica isso. O padrão para produtos de origem animal é em função do teor de gordura do produto. Então, considere o explicado acima como uma aplicação teórica.

 

E aí? Ajudei a entender melhor?

Em breve, escreverei outro post voltado a produtos para alimentação animal.

4 min leituraVocê já leu um laudo de análise laboratorial de dioxinas? Já se perdeu naquela sopa de letrinhas e números? Pois bem… fique tranquilo que o Food Safety Brazil irá ajudá-lo […]

7 min leitura
5

Perigos radiológicos em alimentos

7 min leitura

Os perigos radiológicos em alimentos provêm de radioisótopos, também chamados de radionuclídeos. São átomos sujeitos ao processo de decaimento radioativo, liberando assim radioatividade através de partículas alfa, beta e gama. Eventualmente, podem chegar à cadeia produtiva de alimentos, expondo as pessoas à contaminação e gerando efeitos adversos à saúde, cuja gravidade dependerá especificamente do radioisótopo e do grau de radiação ao qual um indivíduo foi exposto.

No entanto, segundo a Organização Mundial da Saúde (OMS), os perigos radiológicos são incomuns na cadeia produtiva de alimentos. A grande questão é que quando ocorrem, podem representar um risco de elevada significância, principalmente se a exposição ao risco for prolongada ao longo do tempo.

A ingestão de alimentos ou água com radioisótopos leva a uma contaminação interna na qual o material radioativo irá se depositar no organismo, podendo ser transportado para vários locais, tais como a medula óssea, onde continua a emitir radiação, aumentando a exposição da pessoa à radiação, até ser removido ou emitir toda sua energia (desintegração).

A contaminação interna com radioisótopos é mais difícil de remover do que a contaminação externa.

O consumo de alimentos contaminados com radioisótopos aumenta a quantidade de radioatividade a qual a pessoa é exposta, o que pode provocar efeitos agudos como vermelhidão da pele (eritemas), queda de cabelo e síndrome de radiação aguda, que inclui sintomas iniciais como náuseas, vômitos, dor de cabeça e diarreia. Com o tempo, pode chegar a uma perda de apetite, fadiga e possivelmente convulsões e coma. Em alguns casos, pode provocar doenças graves, inclusive alguns tipos de câncer, como na tireoide e leucemia.

A maioria dos elementos radioativos naturais tem sua origem na crosta terrestre como o Potássio-40 (K-40), Urânio-238 (U-238) e Tório-232 (Th-232), que são elementos radioativos primitivos, ou seja, estão presentes desde a formação da Terra há cerca de 4,6 bilhões de anos.

A população mundial está exposta diariamente à radiação natural, que vem do espaço através dos raios cósmicos e de materiais radioativos que ocorrem no solo, na água e no ar, quase sempre, em quantidades ínfimas e inócuas à saúde.

Porém, a radiação pode ocorrer também devido aos efeitos antrópicos, tendo como exemplos os acidentes nucleares ocorridos em Chernobyl, na Ucrânia, em 1986, quando esta pertencia à URSS (União das Repúblicas Socialistas Soviéticas) e em Fukushima no Japão em 2011. Em consequência, a superfície de alimentos como cereais, frutas e legumes ou destinados para alimentação de animais para leite ou corte, pode se tornar radioativa devido à deposição de poeira com radioisótopos ou da água da chuva contaminada.

Além do efeito imediato, os locais onde houve exposição aos elementos radioativos se tornarão áreas de risco, uma vez que o solo ficará contaminado. Com o tempo, a radioatividade também poderá ser detectada nos alimentos porque os radioisótopos do solo serão absorvidos pelas plantas, e em seguida, pelos animais que se alimentam delas, chegando à carne, ao leite e derivados, portanto, à cadeia alimentar humana.

O Césio-137 tem um período de semidesintegração de 30 anos, e por isso afeta áreas agricultáveis durante décadas.

Como exemplo, ainda citando o fatídico acidente de Chernobyl, a nuvem de poeira radioativa cujos principais radioisótopos produzidos na reação de fissão (divisão) nuclear do Urânio-235 (combustível nuclear do reator) foram o Iodo-131, Césio-137, Césio-134 e o Estrôncio-90, varreu a Europa e causou a precipitação destes radioisótopos em diversos países da Europa e da Ásia. Isto é mostrado no mapa a seguir, com graves perturbações na produção e no comércio de produtos alimentícios.

Mapa com a nuvem de radiação que envolveu a Europa durante o desastre de Chernobyl em 1986.

Na ocasião do acidente em Chernobyl, o Brasil havia importado carne bovina e leite de países que estavam dentro do raio atingido pela poeira radioativa, como a Alemanha, Holanda e França. Descobriu-se mais tarde que estes alimentos  estavam contaminados com os radioisótopos Césio-137 e Césio-134, potencialmente cancerígenos.

Jornal Correio do Povo de 21 de janeiro de 1988.

Já no acidente mais recente em Fukushima não houve impactos no Brasil, uma vez que não somos um importador habitual de alimentos do Japão. No entanto, naquele país diversos alimentos como carne, chá, cogumelos e verduras cultivados nas proximidades da região de Fukushima, foram identificados com níveis de radioatividade acima do permitido para o consumo, inclusive arroz, alimento tradicional da culinária japonesa, numa fazenda a 60 quilômetros da instalação nuclear.

A experiência em Fukushima mostrou existir dificuldades para rastrear a radiação espalhada pela chuva e o vento, sendo que governos locais em áreas rurais montaram centros de teste para evitar a distribuição de produtos contaminados e a própria população começou a medir radiação por conta própria, usando aparelhos simples.

Jornal Hoje, G1 de 19 de março de 2011.

Seja por origem natural ou antrópica, a água potável ou mineral pode absorver a radioatividade, e assim, contaminar peixes e frutos do mar. Por isso, estima-se que os frutos do mar são os alimentos com radiação natural mais concentrada, e, também, com grande probabilidade de exposição aos acidentes nucleares.

CNN Brasil de 26 de julho de 2023.

Por isso, na análise de perigos radiológicos em alimentos num plano de HACCP, há que se considerar a probabilidade do risco em cada região produtora e em cada alimento específico, levando em consideração a rastreabilidade de sua origem para poder avaliar o histórico de acidentes nucleares na região (lembrando que partículas radioativas podem permanecer ativas por décadas), a proximidade a locais de guarda de lixo nuclear, assim como áreas geográficas onde existam depósitos naturais de minerais radioativos como os uraníferos ou de tório.

Localição georgráfica no Brasil de jazidas de minérios radioativos. 

No entanto, apelando para a obviedade, veja que um peixe proveniente do mar do Japão próximo à região costeira de Fukushima, terá uma probabilidade de contaminação radioativa muito maior que um outro que foi pescado na costa brasileira. Analogamente, grãos provenientes da Ucrânia, onde ocorreu o acidente de Chernobyl, terão uma probabilidade maior do que aqueles cultivados no cerrado brasileiro.

Não há no Brasil uma legislação ou referências específicas para níveis máximos permitidos de contaminação radioativa em alimentos, no entanto, há para água destinada ao consumo humano.

A Portaria GM/ MS Nº 888 do Ministério da Saúde, no Art. 37 dita que “os níveis de triagem usados na avaliação da potabilidade da água, do ponto de vista radiológico, são os valores de concentração de atividade que não excedam 0,5 Bq/L para atividade alfa total e 1,0 Bq/L para beta total, portaria esta que foi analisada no artigo “Análise da nova Portaria MS 888/21 sobre controle e vigilância da água para consumo humano“.

Monitorar água, em especial proveniente de poços artesianos em regiões onde há probabilidade natural de radioisótopos, é muito relevante, e logicamente, caso os níveis radiológicos ultrapassem o que está definido na legislação, o consumo deve ser vetado.

Neste tema é relevante um esclarecimento sobre irradiação, que não deve ser confundida com contaminação radiológica

Numa contaminação radioativa, como visto, há presença de um isótopo radioativo indesejável que é capaz de emitir radiação (alfa, beta e gama) de forma espontânea a partir de seus núcleos instáveis e, assim, causar danos à saúde. Porém, em alimentos que passaram por um processo de irradiação não, pois trata-se da exposição deste alimento à radiação, porém, sem contato direto com os elementos radioativos.

A tecnologia de irradiação de alimentos foi aprovada pela Organização das Nações Unidas para a Agricultura e Alimentação (FAO) como segura e é utilizada em cerca de 50 países. Estima-se que o volume de alimentos tratados em todo o mundo por esta tecnologia exceda 500 mil toneladas anualmente, sendo um método eficaz para melhorar a qualidade de produtos alimentícios reduzindo cargas microbianas e aumentando a shelf life.

Esse processo é bastante utilizado em frutas frescas, grãos e vegetais para prevenir o brotamento, retardar a maturação e aumentar o tempo de conservação, uma vez que os alimentos são submetidos a uma quantidade minuciosamente controlada e precisa de radiação. Sugiro neste tema a leitura dos artigos:

  1. Radioatividade do bem: entenda a técnica de irradiação de alimentos
  2. Por uma cultura de segurança de alimentos baseada na ciência: mitos sobre alimentos processados e irradiação

A irradiação não faz com que o alimento se torne radioativo, não compromete a qualidade nutricional e não altera sabor, textura ou aparência do alimento. Além disso, o uso de radiação ionizante é uma opção com menor impacto ambiental, pois não deixa resíduos.

Um alimento irradiado praticamente não sofre qualquer alteração física ou organoléptica, por isso é muito difícil dizer se o alimento foi ou não irradiado.

No Brasil, a regulamentação sobre alimentos irradiados é definida pelo Decreto nº 72.718, de 29 de agosto de 1973, que estabelece normas gerais sobre irradiação de alimentos e pela Resolução ANVISARDC nº 21, de 26 de janeiro de 2001, que aprovou o Regulamento Técnico para Irradiação de Alimentos, estabelecendo os requisitos gerais para o uso da irradiação de alimentos com vistas à qualidade sanitária do produto final. Lembramos que deve sempre haver transparência ao consumidor, pois nos rótulos dos alimentos que passaram por este processo deve constar a frase “alimento tratado por processo de irradiação”, como visto no artigo “Anvisa entende que alimento que passa por raios X deve ser rotulado como irradiado“.

Logomarca utilizada para alimentos irradiados.

Espero que o artigo tenha ajudado a perceber que o tema dos riscos radiológicos não é um bicho de sete cabeças, mas que precisa ser visto com atenção, considerando a necessidade de uma boa análise de riscos em relação à probabilidade de contaminação e rastreabilidade da água e insumos utilizados na cadeia produtiva de alimentos.

Deixe sua opinião, complemente com sua experiência e seu conhecimento, isso é muito importante para nós!

Leia também:

Irradiação e perigos radiológicos em alimentos

FDA permite o uso de irradiação em crustáceos para controle de patógenos de origem alimentar

Perigos radiológicos foram levantados no seu plano HACCP?

7 min leituraOs perigos radiológicos em alimentos provêm de radioisótopos, também chamados de radionuclídeos. São átomos sujeitos ao processo de decaimento radioativo, liberando assim radioatividade através de partículas alfa, beta e gama. […]

4 min leitura
0

Temos que nos preocupar com o risco de nanoplásticos na alimentação?

4 min leitura

Podemos dividir a história humana em períodos, como a Idade do Cobre (de 3500 a.C. até 1200 a.C.), do Bronze (de 3000 a.C. até 700 a.C.), do Ferro (de 1200 a.C. até 1000 a.C.), baseando-se no avanço tecnológico que levou à utilização destes materiais na produção de ferramentas e utensílios, e se continuássemos usando este raciocínio, certamente, agora estaríamos na “Idade do Plástico”.

Chamamos de plásticos uma ampla gama de materiais sintéticos ou semissintéticos que usam polímeros como ingrediente principal, sendo este material muito versátil, permitindo que sejam moldados, extrudados ou prensados em objetos sólidos de várias formas e úteis a muitas finalidades.

Existem, portanto, muitos tipos de plásticos, tais como:

  • PET (Tereftalato de polietileno);
  • PEAD (Polietileno de alta densidade);
  • PVC (Policloreto de Vinila ou cloreto de vinila);
  • PEBD (Polietileno de baixa densidade);
  • PP (Polipropileno);
  • PS (Poliestireno);
  • Outros plásticos.

Não há quem ao longo do dia não utilize um ou muitos objetos de plástico, a começar pela escova de dentes logo no início da manhã, pentes, canetas, brinquedos, baldes, vasilhames, partes da TV, dos automóveis, eletrodomésticos, calçados e milhares de outros exemplos.

Trazendo para a realidade da indústria de alimentos e bebidas, os plásticos predominam como material de embalagem devido a sua versatilidade, como é o caso do polietileno (PE) que é ideal para sacos e bobinas, tem ótima resistência, excelente brilho e transparência e fixa muito bem a solda. Da mesma forma, o polipropileno biorientado (BOPP), que é uma variação do PP, porém com ótima barreira à umidade, oxigênio e gorduras, é bastante usado em embalagens flexíveis de salgadinhos, biscoitos, macarrão e mistura para bolo. Claro que não podemos esquecer o famoso polietileno tereftalato (PET), que é reconhecido pela sua leveza, transparência, resistência mecânica, química e baixo custo, e nem precisa dizer, é muito usado em bebidas como sucos e refrigerantes.

Dados indicam que são produzidas mais de 400 milhões de toneladas de plástico ao redor do mundo anualmente.

Justamente por isso, o plástico pode ser considerado uma marca de nossa atual civilização, e claro, no futuro arqueólogos que escavarem este período irão encontrar muitos objetos feitos com este material. Eles encontrarão também os resíduos que estamos deixando por aí, pois apesar da grande maioria dos polímeros plásticos poder ser reciclada, infelizmente, no pós-uso, ainda seguem para lixões ou corpos d´água, terminando em rios, mares e oceanos.

Diante do uso tão intenso do plástico, surge uma nova preocupação sobre os seus resíduos: eles podem causar danos à saúde humana?

Mas como poderiam se são um material inerte?

Uma forma que vem sendo considerada é via alimentação, por meio da água e dos alimentos.

Em uma recente edição da revista PNAS de 2024, da Universidade de Columbia, Nova York, EUA, os autores descrevem o desenvolvimento de um novo método de espectroscopia que é capaz de detectar partículas de nanoplásticos, ou seja, menores que 1 µm, bem como pode diferenciar sete tipos de polímeros.

Aplicando esta nova tecnologia de análise à água engarrafada, encontraram entre 130 mil e 240 mil fragmentos em um único litro de água, dos quais 90% eram nanoplásticos.

Já em uma outra publicação recente de 2024, pesquisadores da Academia Chinesa de Pesquisa em Ciências Ambientais analisaram microplásticos em tecidos humanos de pulmão, intestino e amígdalas. Suas conclusões foram publicadas na Science of the Total Environment. Em resumo, a pesquisa chinesa coletou amostras de 41 pessoas e com o uso de espectroscopia infravermelha direta a laser, identificaram microplásticos com tamanho superior a 20 µm em todos os tecidos analisados: pulmonar, intestino delgado, intestino grosso e amígdalas.

A identificação do polímero mostrou que as partículas eram feitas de 14 tipos diferentes de polímeros, sendo a maioria cloreto de polivinila (PVC).

Os microplásticos, além dos pulmões, intestinos, amígdalas e rins, podem também ir parar no sangue e na placenta, ao menos foi isto o que concluiu um artigo publicado também em 2024, na revista Scientific Reports, por pesquisadores da Memorial University of Newfoundland, Canadá. Neste artigo canadense os autores analisaram os efeitos que a exposição a microplásticos de PE (polietileno) têm no crescimento fetal e na função placentária em camundongos prenhes, e observaram que a exposição aos microplásticos não afetou o crescimento fetal, mas teve impacto na função placentária. O fluxo sanguíneo da artéria umbilical aumentou 43% em ratos expostos a microplásticos em comparação com os grupos de controle, levando os autores a concluir que “o polietileno tem o potencial de causar resultados adversos na gravidez através da função placentária anormal”.

Ainda há muito o que se pesquisar, mas já se sabe que micro e nanopartículas estão vastamente distribuídas no meio ambiente e são ingeridas na alimentação de humanos e animais, em maior ou menor grau dependendo da localização geográfica e dos hábitos alimentares. Contudo, os potenciais efeitos nocivos à saúde humana ainda requerem estudos mais profundos, sendo este um tema que merece a atenção dos profissionais em food safety.

Leia os artigos originais que foram citados neste post:

Leia também outros posts já publicados aqui no blog:

4 min leituraPodemos dividir a história humana em períodos, como a Idade do Cobre (de 3500 a.C. até 1200 a.C.), do Bronze (de 3000 a.C. até 700 a.C.), do Ferro (de 1200 […]

5 min leitura
0

Análise de lubrificantes – Manutenção preditiva na indústria de alimentos (3)

5 min leitura

No post de hoje, dando continuidade aos anteriores, abordarei a análise de lubrificantes do ponto de vista da manutenção preditiva e como ela pode atuar a favor da segurança dos alimentos.

É importante entender que entre engrenagens, motores, peças e demais componentes que estão interligados, consequentemente existirá atrito.

Os lubrificantes têm o papel de manter a integridade dos equipamentos, reduzindo os impactos do atrito, e com isso aumentando a vida útil dos componentes. O lubrificante industrial forma uma película entre cada componente do equipamento proporcionando o deslizamento fácil entre as partes.

Na imagem abaixo, imagine duas chapas metálicas vistas por meio de uma lente de aumento, onde cada uma das superfícies, quando ampliada, apresenta naturalmente uma superfície irregular. Entre cada chapa há um fluido para atenuar esse atrito.lubrificante - manutenção preditiva

Veja uma animação ilustrando o desenho acima

lubrificante entre chapas

Além da redução do atrito, os lubrificantes também contribuem para:

  • a dissipação do calor gerado durante o atrito;
  • a “vedação” dos maquinários contra poeira ou umidade;
  • a prevenção contra a corrosão dos componentes.

Sabemos que em uma indústria de alimentos o cuidado no uso de lubrificantes deve ser redobrado. É preciso seguir uma série de recomendações, como informações de rastreabilidade, tipo de lubrificante, ponto de aplicação, pois durante a produção, se existir a possibilidade de ocorrer contato incidental entre lubrificante e alimento, isto pode ocasionar consequências graves à saúde do consumidor. Portanto, estes lubrificantes devem ser de grau alimentício (food grade) e certificados de acordo com as normas de higiene exigidas pelos órgãos reguladores (mais informações sobre os lubrificantes de grau alimentício e suas categorias podem ser encontrados nos textos citados no final desse post).

Mesmo com lubrificantes certificados, aprovados e adequados, ainda é preciso fazer monitoramento pela manutenção?

Simplesmente ter um lubrificante adequado não é suficiente. Ele pode ser utilizado incorretamente, em condições impróprias de operação ou com armazenamento inadequado. O foco desse post é justamente abordar os cuidados com os lubrificantes, pois mesmo sendo os corretos, ainda podem ser um problemão se não forem bem monitorados. Além disso, eles podem ser sinalizadores de futuros potenciais problemas quando incluídos nos planos de manutenção preditiva, ou seja, quando se analisa um lubrificante, pode-se predizer as condições do processo.

Análise de lubrificantes na Manutenção Preditiva

A análise de lubrificantes é uma das técnicas preditivas mais utilizadas e comuns, realizada por meio de avaliações em laboratórios de forma rápida e precisa. Ela ajuda a monitorar a condição dos equipamentos.

Com essa análise, é possível detectar a qualidade dos óleos e fluidos utilizados, a saúde dos equipamentos e também a presença de contaminantes. Com isso obtém-se informações de onde atuar para evitar quebras, danos, paradas desnecessárias e consequente impactos no produto acabado.

Se existe atrito, há desgaste!

A análise de lubrificantes também permite que seja possível identificar os primeiros sintomas de desgaste em um equipamento. Essa identificação pode ser realizada por meio de um estudo das partículas sólidas presentes e que ficam misturadas no lubrificante.

O equipamento “respira” o ambiente onde está instalado, ou seja, o lubrificante pode atuar como um termômetro para contaminações. Os contaminantes aproveitam-se de microfissuras, respiros inadequados e abertos de equipamentos, frestas, falhas em vedações, imperfeições nas superfícies dos equipamentos. As fontes de contaminantes mais comuns para um lubrificante são: calor, lodo, ventilação, partículas do ambiente e um dos mais comuns e destrutivos é a água, que pode reduzir a vida útil de um componente em 50 a 70%.

Uma amostra de óleo lubrificante é retirada do equipamento e enviada para análise. Cada amostra estará associada a um relatório que apontará sua qualidade. Vários fatores são avaliados em uma análise de óleo, como por exemplo, cor, aparência, viscosidade, ponto de ebulição, presença de água, contagem de partículas e outros. Os resultados são interpretados considerando as condições de operação do equipamento e as condições ambientais ao seu redor.

O óleo é o “sangue” do sistema e a máquina é o “homem”

Analisar um lubrificante consiste em uma série de interpretações, mas não significa que você deva realizar a mesma ou todas as análises para todos os equipamentos e lubrificantes. Fazendo uma analogia com um exame de sangue, o médico, baseado no relato do paciente, determina quais testes serão realizados. Portanto, com base nas condições de operação do equipamento e no que se deseja verificar, são determinados os testes no lubrificante. Com os resultados verificam-se as tendências e os caminhos para as ações seguintes.

Na manutenção preditiva, a análise de lubrificantes ainda pode ser combinada com a termografia e a análise de vibração, fornecendo ainda mais indícios do estado dos equipamentos e das condições ambientais do processo.

Manutenção preditiva – Análise de lubrificantes e segurança dos alimentos

A relação direta entre a análise de lubrificantes e a segurança dos alimentos pode não ser evidente à primeira vista. Listo abaixo como ambas podem atuar em conjunto:

  • Equipamentos industriais nas instalações em indústrias de alimentos frequentemente utilizam lubrificantes. Se os lubrificantes não forem devidamente monitorados, não há controle de consumo ou monitoramento sobre vazamentos, ou seja, onde foram parar aqueles X litros de lubrificante que deveriam durar X meses?
  • A análise de lubrificantes ajuda a identificar sinais precoces de desgaste ou falhas nos componentes mecânicos. Isso é estratégico para identificar deterioração forçada de equipamentos. Se um equipamento está deteriorando, há um potencial risco de partículas de contaminantes se desprendendo no processo. É hora de realizar uma preventiva no seu equipamento evitando potenciais contaminações no alimento.
  • Presença de contaminantes nos lubrificantes indica sinais ambientais que precisam ser observados sobre o tipo de contaminantes que aparece nos testes. É um forte indício de que as condições ao redor do equipamento precisam ser reconsideradas quanto aos procedimento de limpeza adotados ou até mesmo a falta de limpeza não mapeada, sobre as condições de isolamento e geração de partículas, sobre as condições de temperatura etc.
  • Mesmo um lubrificante certificado e apropriado pode ser comprometido quando exposto a condições inadequadas de uso ou armazenamento. Tambores de lubrificantes mesmo quando fechados devem ser devidamente armazenados. Qualquer água parada na superfície pode ser succionada para dentro do recipiente se houver pressão e calor/frio e falha na devida vedação e respiro. Veja na imagem abaixo:

tambor de lubrificante com água

 

Uma análise de óleo pode ser um bom indicador do seu processo e quando manutenção e qualidade trabalham em conjunto, esses dados são ricos para a segurança dos alimentos.

Gostou do conteúdo? Leia também:

5 min leituraNo post de hoje, dando continuidade aos anteriores, abordarei a análise de lubrificantes do ponto de vista da manutenção preditiva e como ela pode atuar a favor da segurança dos […]

3 min leitura
0

Pesticidas em alimentos: 1 em cada 4 vegetais tem substância proibida ou acima do permitido

3 min leitura

Foi publicado em 06/12/2023 o relatório do PARA – Programa de Análise de Resíduos de Pesticidas em Alimentos, da ANVISA, referente aos anos de 2018, 2019 e 2022.

Os resultados do PARA do período anterior, de 2013 a 2015, foram publicados aqui no blog Food Safety Brazil (veja aqui).

O ciclo 2022 é o terceiro e último ciclo do Plano Plurianual de 5 anos do PARA, que prevê o monitoramento de 36 alimentos, que representam 80% do consumo total de alimentos de origem vegetal no país.

Os principais resultados do PARA foram:

  • 1 em cada 4 (ou 25%) dos alimentos pesquisados apresentam resíduos de pesticidas proibidos ou acima do máximo permitido.

NPC = Não Permitido para a Cultura

LMR = Limite Máximo do Resíduo

  • Com relação ao risco ao consumidor

A Anvisa realizou a avaliação da exposição aguda e crônica a partir de critérios científicos recomendados pela Organização Mundial da Saúde (OMS) e adotados no âmbito do Codex Alimentarius.

 

2.1 Avaliação do risco AGUDO ao consumidor

O risco agudo de 2022 foi menor do que no monitoramento de 2018 a 2019. Além da laranja, ao longo desse ciclo de 5 anos foram encontradas amostras contendo resíduos de agrotóxicos que extrapolaram a DRfA – Dose de Referência Aceitável nos seguintes vegetais:

1 – Uva

2 – Mamão

3 – Maracujá

4 – Pimentão

5 – Couve

2.2 Avaliação do Risco Crônico ao consumidor

A ANVISA entende que simulações sobre o consumo ao longo da vida não apontam para um risco de longo prazo, mesmo se considerarmos um consumidor hipotético que come todos esses alimentos todos os dias. A tabela abaixo mostra a quantidade de pesticidas que vêm sendo expostos ao brasileiro em relação à IDA – Ingestão Diária Aceitável.

Principais recomendações

Em seu relatório resumo do PARA, a ANVISA menciona as seguintes recomendações:

Analisando os resultados do relatório completo do PARA, selecionamos mais algumas informações que consideramos relevantes.

1) Com relação aos pesticidas utilizados:

Dentre os 10 princípios ativos mais detectados no Brasil, 6 deles são PROIBIDOS na Europa. São eles:

  1. Acefato
  2. Bifentrina
  3. Carbendazim
  4. Ditiocarbamatos
  5. Imidacloprido
  6. Procimidona

Veja a tabela abaixo:

  • Segue a lista dos pesticidas mais encontrados nos vegetais pesquisados:

NOTA: O gráfico mostra em amarelo o percentual de amostras com aquele pesticida acima do limite e em verde o percentual dentro do limite.

Incluí neste artigo as 2 figuras acima pois tenho visto nas auditorias que venho fazendo que muitas indústrias fazem análises de pesticidas, mas algumas vezes não sabem quais são proibidos no Brasil e nos países de venda de seus produtos e nem aqueles que foram encontrados em níveis acima do permitido para aquela cultura (aquele alimento).

É importante que os técnicos que atuam em toda a cadeia produtiva do segmento de alimentos, do campo à mesa, orientem e assegurem que as análises dos pesticidas encontrados no alimento que ele atua seja realizada.

As não conformidades identificadas são consideradas infrações sanitárias e devem ser combatidas.

Este blog publicou muitos outros artigos relacionados a pesticidas em alimentos. Dentre eles destacam-se o artigo sobre regulatórios de pesticidas (aqui)  e o artigo sobre como consultar os limites de pesticidas nos alimentos (aqui).

O Relatório do PARA de 2018 a 2022 na íntegra está disponível aqui.

3 min leituraFoi publicado em 06/12/2023 o relatório do PARA – Programa de Análise de Resíduos de Pesticidas em Alimentos, da ANVISA, referente aos anos de 2018, 2019 e 2022. Os resultados […]

3 min leitura
1

Degradação da Ocratoxina (OTA) no café por emprego de temperatura

3 min leitura

Não é de hoje que se fala da presença das micotoxinas nos alimentos advindos do campo (leia aqui). Um reflexo disso é a regulação da ANVISA sobre o tema, por meio da Instrução Normativa (IN) nº 160, publicada em 1º de julho de 2022, que estabelece os limites máximos toleráveis (LMT) destes contaminantes.

As micotoxinas caracterizam-se por serem substâncias tóxicas, produzidas por algumas espécies de fungos, com potencial de contaminar alimentos e, pela ingestão destes alimentos, causar doenças que levam até o óbito de pessoas ou animais.

Hoje falaremos especificamente da micotoxina Ocratoxina A (OTA) e a sua presença no café, precisamente no café cru.

A ocratoxina A (OTA) é originária principalmente de fungos dos gêneros Aspergillus da seção Circundati e Penicillium verrucossum, podendo ter sua origem no cultivo, colheita, transporte e armazenamento dos grãos, que podem criar condições propícias para a produção da micotoxina. Discute-se muito acerca deste contaminante por ser um potencial carcinogênico para o ser humano.

A indústria cafeeira vem sentindo grande impacto com o aumento da presença da OTA na matéria-prima, que é o café cru. Conforme já mencionado, a ANVISA estabeleceu o LMT (Limite máximo tolerável) de várias micotoxinas em alimentos, incluindo a OTA. Para o café torrado e moído, o LMT da OTA é 10 µg/kg (ppb).

Como a indústria cafeeira lida com o desafio de mitigar o risco da presença deste contaminante no produto final? Pois bem, compartilho os resultados de um estudo sobre a degradação da Ocratoxina OTA presente no grão de café cru, pelo uso de temperatura no processo de torra dos grãos.

Para o estudo foram separadas 3 amostras de grãos de café cru, sendo uma amostra de café conilon (Coffea canephora) e duas amostras de café arábica (Coffea arabica) e todas foram submetidas a ensaio laboratorial. Como resultado, foi constatada contaminação de OTA nas duas amostras de arábica, sendo que o conilon estava abaixo do limite de quantificação do método (0,5 µg/kg).


Tabela 1: Resultados de contaminação de OTA no café cru

De posse dos resultado de contaminação da matéria-prima, a próxima etapa foi submeter o material ao processo normal de torra, estipulando como temperatura mínima a faixa de 200ºC a 205ºC.


Tabela 2: Tempo e temperatura aos quais as amostras foram submetidas no processo de torra (tratamento térmico)

Após a torra, foram colhidas amostras do café torrado e encaminhadas para o laboratório para realização das análises.

Os resultados foram extremamente satisfatórios, conforme pode-se verificar abaixo:


Tabela 3: Resultados de OTA após processo de torra (tratamento térmico)

A amostra de conilon permaneceu abaixo do LQ. Já para a amostra do café arábica 1, cuja contaminação inicial era de 8,78 µg/kg, constatou-se que após a submissão ao tratamento térmico de 200ºC, o valor ficou abaixo do LQ (<0,5 µg/kg). Já para o arábica 2, o resultado foi extremamente expressivo, passando de 44 µg/kg para 3,67 µg/kg, representando uma redução de 91,66% no conteúdo de OTA da amostra.

Pode-se concluir, frente ao estudo realizado, que o próprio processo de torra do café é um grande aliado das torrefações para mitigar a crescente presença das ocratoxinas no café, além das Boas Práticas Agrícolas (BPA) e Boas Práticas de Fabricação (BPF), sendo estes últimos tópicos, assunto para outro post.

Leia também:
– Controvérsia sobre acrilamida em café e rotulagem sobre câncer [link]
– Uma xícara de café na ótica dos profissionais de Food Safety [link]
– Proteste detecta quase o triplo do limite da ocratoxina A e seis vezes mais fragmentos de insetos em uma marca testada [link]

3 min leituraNão é de hoje que se fala da presença das micotoxinas nos alimentos advindos do campo (leia aqui). Um reflexo disso é a regulação da ANVISA sobre o tema, por […]

2 min leitura
0

Intoxicação alimentar por atum contaminado: o que aconteceu?

2 min leitura

No final de agosto foi noticiado um surto de origem alimentar em nove creches da região de Campinas, envolvendo 60 pessoas, entre alunos e funcionários das instituições. Os sintomas aconteceram em julho e após as análises concluiu-se que a causa foi o consumo de atum contendo altos níveis de histamina.

A ANVISA, através da Resolução 3124/2023, solicitou o recolhimento do lote do produto, pela seguinte motivação: “Considerando a ocorrência de surto compatível com intoxicação alimentar por histamina após o consumo do alimento, em Centros de Educação Infantil de Campinas, São Paulo, e a confirmação de contaminação do produto com histamina acima dos limites tolerados pela legislação sanitária, evidenciada pelo RELATÓRIO DE ENSAIO Nº RE-TC 03.105/23, do Instituto de Tecnologia de Alimentos – ITAL.”

Trata-se de um lote fabricado em 8 de maio deste ano, com validade até 8 de maio de 2025.

Segundo informações da Secretaria de Saúde de Campinas, as crianças com sintomas de intoxicação apresentaram manchas vermelhas pelo corpo, coceira e sete delas tiveram diarreia.

O que é a intoxicação por histamina?

Intoxicação por histamina também é chamada de intoxicação pela toxina escombróide.

Atuns e outros peixes da família Scombridae, peixes conhecidos como “escuros”, são susceptíveis à formação de histamina por conterem grandes quantidades de histidina livre no tecido muscular. A transformação da histidina em histamina costuma acontecer pela ação de bactérias contaminantes quando os peixes mortos não são conservados e manuseados de forma adequada. É importante que os peixes sejam refrigerados em curto período após sua morte, para evitar esse aumento na concentração de histamina.

Um fator importante é que a histamina não é eliminada durante os processos de cocção durante a fabricação do atum enlatado.

O Brasil e outros países têm um nível máximo permitido de histamina, que é de 100 ppm no tecido muscular.

A intoxicação assemelha-se clinicamente a uma reação alérgica aguda, com a presença de um ou alguns dos sintomas abaixo elencados:

  • Dormência
  • Formigamento
  • Sensação de queimação na boca
  • Erupções cutâneas no tronco superior
  • Queda de pressão
  • Dor de cabeça
  • Coceira na pele
  • Náusea
  • Vômito
  • Diarreia

O quadro costuma ser leve, desaparecendo em poucas horas, mas há relatos de complicações em crianças, idosos ou pessoas com deficiências imunológicas.

Os cuidados com a matéria-prima adquirida, sempre que possível analisando a presença de possíveis contaminantes que possam causar intoxicação alimentar, e a rápida detecção de alterações no produto, com recolhimento de lotes no mercado, podem evitar esse tipo de ocorrência.

Imagino que a questão da histamina seja um desafio para a indústria de pescado, pois pelo levantamento que fiz, as técnicas empregadas para detecção de histamina em peixes podem ser as de cromatografia, que não estão disponíveis para a grande maioria das indústrias de alimentos, pelo seu alto custo e pela necessidade de qualificação de mão de obra. Existem, porém, testes ELISA que podem ser adquiridos pela indústria. Não tenho a informação de seu custo, mas vale o exercício sobre o custo da análise versus o custo da falha interna. Nesse caso, a detecção da falha internamente poderia evitar o adoecimento daqueles que consumiram esse lote e também a exposição da marca na mídia.

2 min leituraNo final de agosto foi noticiado um surto de origem alimentar em nove creches da região de Campinas, envolvendo 60 pessoas, entre alunos e funcionários das instituições. Os sintomas aconteceram […]

3 min leitura
1

ATUALIZAÇÃO: Raios X para detecção de corpos estranhos não são considerados irradiadores de alimentos

3 min leitura

O recente post  “Anvisa entende que alimento que passa por raios X deve ser rotulado como irradiado” causou muita polêmica e comentários nas redes sociais, uma vez que esta não era a interpretação de todo o mercado. De acordo com a resposta de um atendente do Anvisa Atende, havia uma associação direta entre um alimento que passou por raio X e um alimento irradiado, implicando em necessidade de rotulagem deste alimento para informar o consumidor.

Entenda a polêmica

Uma empresa, apenas com a finalidade de ter documentado que não precisaria rotular seu produtos que passam por raio X como irradiados, realizou uma consulta formal à Anvisa, pelo canal ANVISA atende, na expectativa de confirmar o entendimento. Eis que a resposta foi contrária ao senso comum, sendo orientada a rotulagem conforme a RDC Nº 21, DE 26 DE JANEIRO DE 2001.

O ponto que deixou brecha ao entendimento é que:

2.1.2. Alimento irradiado
É todo alimento que tenha sido intencionalmente submetido ao processo de irradiação com radiação ionizante

4.2.Fontes de radiação
As fontes de radiação são aquelas autorizadas pela Comissão Nacional de Energia Nuclear, na
conformidade das normas pertinentes, a saber:
a) Isótopos radioativos emissores de radiação gama: Cobalto – 60 e Césio – 137;
b) Raios X gerados por máquinas que trabalham com energias de até 5 MeV; (cinco milhões de eletrovolts)
c) Elétrons gerados por máquinas que trabalham com energias de até 10 MeV.

Não demorou para as manifestações no LinkedIn serem de questionamento. Até marquei a Anvisa para participar do debate. Vejam algumas interações:

A empresa que fez o questionamento recebeu uma semana depois, espontaneamente, uma atualização, conforme abaixo:

Prezado(a) Senhor(a),

Em atenção à sua solicitação, retificamos a resposta do protocolo 2023193394, tendo em vista que a resposta inicialmente informada foi atualizada.

Deste modo, segue abaixo a resposta atualizada do protocolo supracitado:

Equipamentos de raios-x utilizados na indústria de alimentos para detecção de metais (perigos físicos) não são considerados irradiadores de alimentos.

Alimentos irradiados são aqueles processados em equipamentos (raios-x, raios gama, aceleradores de elétrons) com a finalidade de inibir a germinação, reduzir a carga de microrganismos, controlar patógenos ou infestação e/ou estender o prazo de validade de alimentos perecíveis.

Portanto, para àqueles alimentos que passam por raios-x, com a finalidade exclusiva de detectar perigos físicos, não se aplicam as disposições da Resolução – RDC n. 21/2001.

O que podemos aprender com o caso?

Pelo menos eu aprendi que:

Legislação é elaborada por comitês de profissionais que tem expertise e entendimento em um tema. Por melhor que os textos sejam redigidos, sempre poderão trazer ambiguidades e “zonas cinzentas” de entendimento, pois o que é claro para os experts, pode não ser para a maioria.

Os atendentes de plantão do canal de dúvidas podem fazer intepretações simplistas no seu dia a dia, retornando para a sociedade interpretações equivocadas.

A inteligência, o bom senso e a colaboração são a fortaleza dos novos tempos.

Nem sempre é preciso braço de ferro ou tratamentos indelicados para se obter um retorno.

A Anvisa emite atualização para se retratar.

3 min leituraO recente post  “Anvisa entende que alimento que passa por raios X deve ser rotulado como irradiado” causou muita polêmica e comentários nas redes sociais, uma vez que esta não […]

2 min leitura
0

Microplásticos são encontrados no coração humano, e agora?

2 min leitura

Recentemente, algumas matérias em jornais de grande circulação noticiaram a primeira detecção de microplásticos no coração humano. Coincidência ou não, também aconteceu a publicação de uma matéria que descreve a presença de partículas de microplástico após o aquecimento no micro-ondas de embalagens plásticas utilizadas para a alimentação infantil.

Quando pesquisamos sobre os microplásticos, encontramos informações recentes, dos últimos 15 anos. Os pedacinhos de plástico com tamanho inferior a 5 milímetros são chamados de microplásticos. Eles são formados a partir da decomposição de peças plásticas maiores, na sua maioria provenientes de embalagens plásticas descartáveis.

As partículas de plástico são eliminadas no ar, na água e no solo e já foram encontradas em diferentes regiões do planeta Terra, como na Amazônia, Everest, em aves, peixes.

Essas partículas podem interferir na vida dos animais, por ficarem acumuladas no estômago, dando a sensação de saciedade a eles, entre outras alterações metabólicas ainda em estudo.

Se associarmos essa questão à segurança de alimentos, concluímos que estamos ingerindo microplásticos com comida. Eles estão na água que bebemos, nas frutas, nos frutos do mar e até na maquiagem do dia a dia. Apesar disso, as pesquisas sobre os impactos do produto na nossa saúde ainda são limitadas.

O que sabemos sobre o efeito dos microplásticos na saúde humana?

Como os estudos epidemiológicos tendem a ser longos, as informações ainda são escassas, mas há estudos que demonstram processos inflamatórios relacionados à presença de plástico no intestino humano, inclusive demonstrando que pessoas com doença inflamatória intestinal têm uma concentração maior de microplásticos nas fezes do que indivíduos considerados saudáveis.

Há relatos de microplásticos nos pulmões, glóbulos vermelhos, inclusive impactando a capacidade de transportar moléculas de oxigênio.

Ainda não se sabe qual a quantidade de plástico ou a concentração considerada tóxica, nem se há alguma substância pior do que outra.

É possível evitar os microplásticos?

Grande parte dos microplásticos são provenientes dos materiais descartáveis que são utilizados em grande escala na indústria de alimentos. Buscando diminuir a quantidade desses microplásticos no meio ambiente, tanto para melhorar a condição da fauna quando para evitar possíveis efeitos indesejados aos humanos, precisaríamos de um trabalho conjunto, entre setor industrial, órgãos públicos, população e pesquisas sobre o assunto.

Conseguimos substituir esse plástico em grande escala? Conseguimos fazer um trabalho de reciclagem desse material de forma massiva? A população, inclusive a infantil, precisa ser apresentada e engajada na questão de separação do material reciclável. Os órgãos públicos podem ser envolvidos no processo destinando áreas adequadas para que esse lixo seja separado e encaminhado à reciclagem, junto com iniciativas privadas, de forma que todo o lixo reciclado possa ser separado e não destinado a aterros.

2 min leituraRecentemente, algumas matérias em jornais de grande circulação noticiaram a primeira detecção de microplásticos no coração humano. Coincidência ou não, também aconteceu a publicação de uma matéria que descreve a […]

2 min leitura
0

Produtos químicos: mudanças de FISPQ para FDS

2 min leitura

Quando o tema é segurança no manuseio de produtos químicos, precisamos estar atentos. Escolher bons fornecedores também é entender que eles devem passar as informações mais claras e detalhadas.

Nesse sentido, a 7ª revisão da NBR 14725 acaba de ser publicada. Saiu no dia 3 de julho, sob o título ABNT NBR 14725:2023 – Produtos químicos – Informações sobre segurança, saúde e meio ambiente — Aspectos gerais do Sistema Globalmente Harmonizado (GHS), classificação, FDS e rotulagem de produtos químicos.

As alterações na Ficha de Informações de Segurança de Produtos Químicos são:

1 – Nova denominação da FISPQ

A atual FISPQ passará a se chamar FDS – Ficha com Dados de Segurança.

2 – A FDS não terá NBR exclusiva

As instruções para elaboração da FISPQ atualmente estão na NBR 14725. A nova versão da NBR 14725 agrupa tudo num só documento com 7 seções e 17 anexos.

3 – Telefone de Emergência

Na Seção 1 – Identificação da FISPQ, deverá constar um telefone de emergência, disponível 24 horas por dia.

4 – Adição de novas Classes de Perigo e subcategorias

A nova versão da NBR 14725 traz uma nova classe de perigo: explosivos dessensibilizados. Também inclui nova subcategoria para a classe de perigo Gases inflamáveis, que é: “Perigoso para a camada de ozônio”.

5 – Critérios para elaboração da FDS

A seção 7 – Comunicação de Perigos – traz um item adicional, o qual estabelece critérios para elaboração da FDS, prescrevendo que a FDS deve ser elaborada para todas as substâncias e misturas que satisfaçam os critérios de classificação harmonizados da Seção 5 da Norma, relativos a qualquer classe de perigo físico, à saúde humana ou ao meio ambiente.

6 – Regras para preenchimento para as misturas

Na Seção 3, para as misturas, as informações exigidas são:

“Para as misturas, devem ser informados a identidade química, o número de registro CAS e a concentração ou faixa de concentração de todos os ingredientes perigosos para a saúde ou para o meio ambiente, e que estejam presentes em concentrações superiores aos seus valores de corte/limites de concentração, conforme critérios de 5.3 e 5.4.”

Assim, a nova versão cita os limites de exposição ocupacional.

7 – Prazo para adequação

As empresas terão 24 meses após a publicação da norma para adequação.

Fique atento para estar atualizado!

Referência

ABNT

Imagem: foto de Andrea Piacquadio 

2 min leituraQuando o tema é segurança no manuseio de produtos químicos, precisamos estar atentos. Escolher bons fornecedores também é entender que eles devem passar as informações mais claras e detalhadas. Nesse sentido, […]

3 min leitura
0

FDA alerta sobre uso do Delta-8 tetraidrocanabinol em alimentos

3 min leitura

Em julho de 2023, o Food Safety News divulgou um alerta do FDA para as empresas que utilizam o aditivo Delta-8 tetraidrocanabinol em alimentos.

A FDA determinou que estas empresas estão comercializando produtos adulterados devido à presença ou inclusão do canabinóide Delta-8 (THC), considerado um aditivo alimentar inseguro.

Além disso, esses alimentos estão sendo vendidos em formatos atraentes para crianças, o que pode causar confusão por parte dos consumidores. Dessa forma, a FDA expressa preocupação com essa situação e busca garantir a segurança e a clareza na comercialização de produtos alimentares.

No mês de junho de 2022, a FDA emitiu um alerta aos consumidores sobre o risco de ingestão acidental de produtos alimentícios contendo o aditivo por parte de crianças. Entre 1º de janeiro de 2021 e 31 de maio de 2022, a agência recebeu mais de 125 relatórios de eventos adversos relacionados a crianças e adultos que consumiram produtos comestíveis contendo este aditivo. Em dez deles mencionava-se especificamente que o produto comestível era uma imitação de alimentos populares, por meio de nomes de marcas, logotipos ou imagens semelhantes. Essa semelhança poderia causar confusão com alimentos convencionais.

Devido ao potencial risco de consumo não intencional do ingrediente Delta-8 pelos consumidores, foram emitidos alertas na forma de cartas de advertência, com base na análise e revisão dos sites das empresas envolvidas.

Nas cartas de advertência, a FDA destaca os seguintes pontos de preocupação:

  • Os produtos que contém Delta-8 na sua composição não foram avaliados ou aprovados pela FDA para uso seguro e sua comercialização pode colocar a saúde pública em risco;
  • A FDA recebeu relatórios de eventos adversos envolvendo produtos com Delta-8;
  • Delta-8 tem efeitos psicoativos e intoxicantes;
  • A FDA expressa preocupações acerca dos métodos empregados na produção das concentrações de Delta-8 anunciadas no mercado.
  • A FDA está preocupada com a presença de alimentos que contêm Delta-8, os quais podem ser facilmente consumidos por crianças, devido à atratividade de suas embalagens e rótulos.

Entre as empresas notificadas estão a Delta Munchies LLC (Los Angeles, CA); North Carolina Hemp Exchange, LLC dba NC Hemp Shoppe (Raleigh, NC); Exclusive Hemp Farms/Oshipt.com (Gilroy, CA); The Haunted Vapor Room (Franklin, NJ); Dr. Smoke, LLC aka Dr. S, LLC (Kansas City, MO); Nikte’s Wholesale, LLC (Albuquerque, NM).

Afinal, o que é o Delta-8 tetraidrocanabinol?

O Delta-8 é um canabinóide emergente que tem ganhado popularidade desde a aprovação da Lei de Melhoria Agrícola dos EUA de 2018 (o cânhamo – cannabis – contendo menos de 0,3% de delta-9 foi removido do status de droga).

No entanto, ao contrário do delta-9, que é mais prevalente na Cannabis spp., o delta-8 é naturalmente produzido em quantidades mínimas. Portanto, os produtos delta-8 disponíveis no varejo são, em sua maioria, derivados sinteticamente a partir do canabidiol (CBD), por meio de conversão química.

Um aspecto problemático das moléculas análogas, que são convertidas em laboratório, é que elas podem se transformar em substâncias desconhecidas que interagem com o sistema endocanabinoide. Esse fator é preocupante considerando que os efeitos do delta-8 no corpo humano permanecem amplamente inexplorados, assim como as diferenças farmacocinéticas entre delta-8 e delta-9.

Uma recente análise de produtos delta-8 revelou que a maioria deles apresentava contaminação por metais pesados. Além disso, foram encontradas disparidades entre as composições relatadas e as composições reais desses produtos no mercado.

Cabe ressaltar que existem razões pelas quais a segurança dos alimentos com delta-8 atuais não é clara:

  • Esses produtos são frequentemente comercializados como naturais, embora a planta de maconha produza uma quantidade muito pequena de delta-8, insuficiente para obter extratos de alta concentração de forma lucrativa a partir do material vegetal. Portanto, o delta-8 presente nesses produtos é produzido sinteticamente a partir do CBD.
  • Esses produtos não são regulamentados nem testados rotineiramente por fontes independentes, o que significa que podem conter subprodutos e outros compostos indesejáveis resultantes do processo de síntese.
  • Por fim, o delta-8 não foi extensivamente estudado em relação à sua atividade em seres humanos, o que também contribui para a falta de clareza sobre sua segurança.

É válido mencionar que preocupações semelhantes surgiram em outros momentos em que houve um aumento do mercado da cannabis sem regulamentação adequada. Nessas situações, as indústrias muitas vezes se viram obrigadas a estabelecer suas próprias normas e diretrizes devido à falta de regulamentação governamental.

A notícia do alerta emitido pela FDA em relação ao aditivo Delta-8 tetraidrocanabinol destaca a preocupação da agência com a produção e comercialização de produtos que são atrativos para o consumo infantil.

A presença desse aditivo em produtos alimentares levanta preocupações quanto à segurança e à clareza na sua comercialização. A falta de regulação, testes independentes e a produção sintética do delta-8 a partir do CBD são aspectos problemáticos que contribuem para a falta de clareza sobre a segurança desses produtos. Além disso, a presença de contaminação por metais pesados e a inconsistência entre as composições relatadas e reais desses produtos são questões adicionais que destacam a necessidade de precaução ao consumi-los.

Em vista dessas preocupações, é essencial acompanhar de perto a regulamentação e as pesquisas em relação ao delta-8 tetraidrocanabinol para garantir a segurança dos consumidores.

3 min leituraEm julho de 2023, o Food Safety News divulgou um alerta do FDA para as empresas que utilizam o aditivo Delta-8 tetraidrocanabinol em alimentos. A FDA determinou que estas empresas […]

Compartilhar
Pular para a barra de ferramentas