6 min leitura
0

Risco de dioxinas e furanos nos alimentos

6 min leitura

Entre os riscos de contaminantes químicos potenciais nos alimentos, um dos mais temidos são as dioxinas e os furanos. São compostos solúveis em gordura (lipofílicos) e, assim, bioacumulativos na cadeia alimentar, especialmente associados com carne, leite e seus derivados.

Dioxinas e furanos são duas classes de compostos aromáticos tricíclicos, de função éter, com estrutura quase planar e que possuem propriedades físicas e químicas semelhantes.

Nestes compostos, os átomos de cloro se ligam aos anéis benzênicos, possibilitando a formação de um grande número de congêneres: 75 para as dioxinas e 135 para os furanos, totalizando 210 compostos.

Das 210 dioxinas e furanos existentes, 17 compostos com substituições nas posições 2, 3, 7 e 8 destacam-se sob o ponto de vista toxicológico. A toxidade aguda mais elevada é para o 2,3,7,8-tetraclorodibenzo-p-dioxina (2,3,7,8-TCDD), que é ultrapassado somente por algumas outras toxinas de origem natural. Veja a tabela a seguir:

A contaminação em pequenas doses não é facilmente perceptível, porque em curto espaço de tempo não gera sintomas, mas como são cumulativas no organismos, podem causar intoxicações a médio e longo prazo.

Problemas comumente associados com estas moléculas são a cloroacne, que se apresenta como um tipo de erupção, cistos ou fissuras semelhantes à acne na pele, além de manchas escuras e mudanças nas funções do fígado.

Porém, os casos podem ser mais graves. As dioxinas e os furanos foram incluídos na lista de substância cancerígenas do programa Nacional de Toxicologia (NTP) dos EUA, com base nos estudos do Instituto Nacional da Saúde (NHIS – National Health Interview Survey) em 2001. Até então, eram classificados pela Agência de Proteção Ambiental dos EUA (USEPA – United States Environmental Protection Agency) no grupo B1 (provável carcinogênico).

As evidências disponíveis apontam fortemente que a TCDD exerce seu efeito carcinogênico primariamente por meio de sua efetividade como agente promotor de estimulação de replicação de células de maneira reversível e inibindo apoptoses.

O 2,3,7,8-TCDD tem a propriedade de se tornar um produtor de proteínas se inserido nas células do corpo. Ele penetra no núcleo da célula e combina-se com o DNA, depois direciona a função das células para a produção de proteínas, o que resulta finalmente em um enfraquecimento do sistema celular, inclusive o imunológico.

ROTAS DE EXPOSIÇÃO

As rotas de exposição identificadas incluem exposição direta pelas emissões atmosféricas e de chaminés e exposição indireta pela contaminação do solo e de produtos alimentícios, água e outros elementos.

ar > solo > vegetais > animais > seres humanos

O isômero 2,3,7,8-TCDD é extremamente estável quimicamente e é consideravelmente insolúvel em água e em muitos compostos orgânicos, mas é muito solúvel em óleos e gorduras. Assim,  suas propriedades fazem com que não seja levado pela chuva, tornando-se um resíduo cumulativo.

A sequência de reações de formação dos PCDD e PCDF não é bem entendida ou conhecida, mas existem três teorias básicas para a ocorrência desses compostos em incineradores:

  1. Ocorrem como constituintes em pequeníssimas quantidades, traços, no próprio resíduos e uma parte passa através do incinerador, sem transformação;
  2. São produzidos durante a incineração ou em caldeiras, a partir de precursores, como o PCB (bifenila policlorada), os pentaclorofenois e os benzenos clorados;
  3. São produzidas a partir de materiais não diretamente relacionados a esses compostos (ex.: produtos de petróleo em geral, hidrocarbonetos clorados, íons cloreto inorgânico e plásticos).

A 1ª hipótese tem sido descartada nos casos em que a temperatura de combustão dos fornos é alta o suficiente para destruir os PCDD e PCDF, como ocorre na incineração de resíduos em que a temperatura está próxima ou acima de 900ºC e o tempo de residência é alto (1 a 2 segundos).

A 3ª hipótese é a mais aceita, pelo mecanismo conhecido como síntese “de novo” que permite chegar a moléculas complexas a partir de moléculas simples por reações elementares entre C, H, O e Cl.

Observa-se a formação de dioxinas, furanos e compostos relacionados com o benzeno e fenóis clorados no carbono residual coletado na saída de sistemas de combustão (região de temperatura entre 300 a 400ºC), quando na presença de HCl, O2 e H2O. Essas reações são catalisadas por vários metais, óxidos metálicos e silicatos, também presentes no material particulado arrastado.

Por isso, sua geração está associada a processos de combustão que podem ocorrer em:

  1. Incineradores de lixo municipal, de resíduos industriais, de lodos residuários e hospitalares;
  2. Plantas de preparação e termelétricas de carvão;
  3. Queima ao ar livre de resíduos de madeira;
  4. Veículos automotores;
  5. Fumaça de cigarro;
  6. Lareiras que queimam madeira;
  7. Aciarias;
  8. Fundições de cobre;
  9. Outros processos similares.

Tal síntese ocorre especialmente quando na combustão há presença de subproduto da sínteses de herbicidas, desinfetantes e outros; PCB (formação de furanos somente); componentes agente laranja (2,4,5-T e 2,4-D); benzenos clorados; compostos de cloro e bromo assemelhados; diversos derivados de petróleo.

O NOTÓRIO CASO BELGA

O caso mais conhecido de alimentos contaminados com dioxinas e furanos ocorreu em 1999, quando um produtor de Roulers, norte da Bélgica, ficou intrigado com a falta de apetite de seus frangos e com a diminuição da produção de ovos.

Nesta ocasião, os veterinários levantaram a hipóteses de uma contaminação por dioxina na ração dos frangos.

Certificados da hipótese, o governo belga estimou que 80 mil toneladas de ração potencialmente contaminada foram fornecidas a 1400 fazendas, o que corresponde a metade das granjas daquele país, sendo que 40% de produção suína e 17% da pecuária foram atingidas.

O governo da Bélgica, apenas pela hipótese de algumas fazendas não terem se submetido ao controle de qualidade dos seus rebanhos, resolveu interditar 230 fazendas e proibir a comercialização de centenas de milhares de animais.

Vários países na Europa, EUA, Japão e inclusive Brasil cancelaram as exportações de produtos granjeiros provenientes da Bélgica, tais como linguiças, carne de aves, de gado, leite e derivados, o que evidentemente levou o país a ter um prejuízo de milhões de euros.

O Ministro da Agricultura da Holanda teve de renunciar após descobrirem que conscientemente havia importado ração de origem belga potencialmente contaminada com dioxina.

A Nestlé suspendeu temporariamente a produção em sua fábrica de chocolates na Bélgica. Em Paris e na França, a cadeia McDonalds recolheu do mercado toda sobremesa à base de leite, pois o fornecedor de produtos para fabricação de sorvetes era uma companhia belga.

Inicialmente as autoridades belgas não concluíram se a dioxina teve origem numa fábrica de Ghent ou se veio de material vendido à fábrica por fornecedores que reaproveitam azeite e gorduras usados em restaurantes.

Houve muitas hipóteses sobre a origem da contaminação. Por isso, foi investigada uma ampla gama de possibilidades: detergentes, pesticidas, tintas etc., mas ao final, a ração diária do rebanho foi identificada como principal responsável pela contaminação.

Vários componentes da ração foram analisados separadamente e o farelo de polpa cítrica, proveniente justamente do Brasil, foi identificado como fonte potencial mais provável de contaminação.

A rastreabilidade demonstrou que esta polpa cítrica tinha sua acidez neutralizada por cal (CaO) e este foi identificado como principal contaminante potencial: a cal é obtida pela combustão do CaCO3 em fornos, e se este processo for realizado sem os devidos cuidados e com a utilização de materiais impróprios como combustível (como plásticos, pneus, madeira fumigada, etc), pode haver formação de dioxinas e furanos que vão se impregnar na cal.

Rastreabilidade da possível rota de contaminação da polpa cítrica por dioxinas.

Milhares de toneladas de polpa cítrica foram destruídas no exterior e outras milhares de toneladas deixaram de ser exportadas pelo Brasil.

PARA CONCLUIR

Dioxinas e furanos são perigos normalmente de baixa probabilidade na cadeia produtiva de alimentos, exceto quando as rotas produtivas esbarram direta ou indiretamente com suas fontes geradoras. No entanto, quando ocorrem, são de alta gravidade, seja pelos danos à saúde humana que devem ser o elemento de consideração prioritária, como também pelos colossais prejuízos econômicos que podem ocasionar em decorrência do rompimento de contratos e consequente perda de credibilidade em relação aos produtores.

Leia também:

Bioacumulação de pesticidas e dioxinas em moluscos bivalves

Severidade de perigos químicos em alimentos

Medidas de controles de perigos químicos à segurança dos alimentos

Europa publica relatório sobre resíduos de dioxina em alimentos

Poluentes Orgânicos Persistentes: eles estão entre nós

Como interpretar laudos de dioxinas e PCBs? – Parte 1 de 2

Como interpretar laudos de dioxinas e PCBs? – Parte 2 de 2

6 min leituraEntre os riscos de contaminantes químicos potenciais nos alimentos, um dos mais temidos são as dioxinas e os furanos. São compostos solúveis em gordura (lipofílicos) e, assim, bioacumulativos na cadeia […]

5 min leitura
0

Cerveja envenenou 6000 pessoas por arsênio e matou mais de 70 na Inglaterra

5 min leitura

Nos anos 1900, mais de 6.000 pessoas na Inglaterra foram envenenadas por cerveja contaminada com arsênio, resultando na morte de mais de 70.  Estima-se que essa grande crise de segurança de alimentos foi se alastrando silenciosamente por anos, por causa de um erro sistemático de diagnóstico.

Os médicos atribuíam aos pacientes “bons de copo” a sentença de neurite periférica, vinculando os sintomas ao alcoolismo, sem enxergar algo muito mais grave que estava acontecendo. As vítimas apresentavam severa fraqueza muscular e dormência nas mãos ou nos pés.

Foi então que o inconformado médico Ernest Septimus Reynolds iniciou uma extensa pesquisa para entender a epidemia. Ele começou com o levantamento de dados de ocorrência na cidade de Manchester, que era muito maior comparado com Londres e outras mais distantes.

Outras cidades das proximidades tiveram suas estatísticas de internações aumentadas, sendo que, em comum, todos os pacientes tinham o currículo de bebedores  regulares de cerveja. Alguns deles apresentavam também alterações na pele, como vermelhidões, descamações, ou pele pálida. Outro ponto comum é que pertenciam às classes sociais mais desvaforecidas, ou então eram indigentes e ou alcoólatras. Contudo, a pesquisa mostrou que essa doença não afetava da mesma maneira os bebedores de vinho ou uísque e também que a quantidade consumida era baixa a moderada em muitos casos. Pesquisando as causas para a fraqueza muscular, amostras de cervejas foram coletadas e foi detectado arsênio. Era hora de rastrear a causa-raiz.

Foi fraude em cima de outra fraude

Uma vez identificadas as cervejarias afetadas, investigou-se a origem do contaminante. Verificou-se que o arsênio estava presente no açúcar invertido fornecido às cervejarias pela Bostock & Co., de Garston. Para reduzir os custos no mercado cervejeiro inglês, algumas cervejarias substituíram o malte de cevada de alta qualidade por malte de baixa qualidade, suplementado com açúcar invertido. Essa prática era um tanto controversa e fez parte da discussão do movimento “Pure Beer”, quando se abriu um inquérito sobre o uso de substitutos da cerveja. Este inquérito, que começou em 1896 e terminou em 1899, concluiu que os substitutos da cerveja não eram “materiais deletérios” sob a Lei de Venda de Alimentos e Medicamentos de 1875 e que não era necessário regulamentar. Bem, para alguns era uma fraude, mas para outros fazia parte de um padrão de “qualidade alternativa”, justamente a qualidade que aquele público consumidor podia comprar.

Lembrando que o açúcar invertido é obtido por hidrólise ácida do açúcar comum (sacarose), que é aquecido na presença de um ácido para formar glicose e frutose. Essa tecnologia era empregada comercialmente desde pelo menos 1814. A Bostock & Co. usou ácido sulfúrico para realizar a hidrólise ácida. Este ácido, adquirido da Nicholson & Sons e, era feito de piritas que continham arsênico, que não era eliminado no processo.

A John Nicholson & Sons, de Leeds, fornecia ácido sulfúrico para a Bostock & Co. desde 1888. Também fornecia para outras duzentas cervejarias. Durante a maior parte do relacionamento comercial, o ácido fornecido era isento de arsênico, com o que hoje em dia chamamos de “food grade”. No entanto, em março de 1900, a Nicholson começou a fornecer ácido sulfúrico não purificado contaminado com arsênio. Essa prática continuou até novembro de 1900, quando se descobriu que o ácido era a causa do surto. Nicholson alegou que não conhecia o uso intencional do ácido por Bostock e que poderia ter fornecido ácido livre de arsênio se isso tivesse sido especificado.

Bônus: o carvão da secagem do malte também estava contaminado

Os peritos da época tinham outras frentes de pesquisa e não se deram por satisfeitos com a conclusão de que o ácido sulfúrico sozinho foi a causa-raiz do problema.  Eis que uma segunda fonte de contaminação foi identificada: a cevada maltada. Para realizar a secagem do malte, utilizavam-se fornos a coque ou carvão. O coque é um tipo de combustível derivado da hulha. Quando o arsênio estava presente no combustível, ele se depositava na cevada antes da maceração, permanecendo no produto final. A investigação sobre o surto revelou que a maioria dos casos de neuropatia alcoólica endêmica em Manchester foram, na verdade, envenenamento por arsênio mal diagnosticado, sendo esta rota alternativa responsável pelo envenenamento de milhares de pessoas nos anos anteriores ao surto.

Comportamento do mercado e punição aos fabricantes

Como sempre ocorre após uma crise dessas, de largo impacto na opinião pública, medidas foram tomadas. As autoridades da época determinaram que qualquer cerveja produzida a partir do açúcar invertido da Bostock fosse imediatamente recolhida e, se fosse considerada contaminada, destruída. Além disso, nenhuma cerveja deveria ser expedida sem ter sido previamente testada, e certificados que verificassem a sua ausência de arsênio deveriam ser emitidos com a cerveja.

Após a divulgação da causa do envenenamento pela mídia, notou-se uma redução considerável no consumo de cerveja na região.

Qualquer semelhança não é mera coincidência. Escândalos sempre mexem com a opinião pública, o que pode ser conferido nas publicações de noticiário do Brasil sobre o famoso caso de uma cervejaria no Brasil que causou  mortes e sequelas em várias pessoas.

Caso Backer abala mercado que cresce cerca de 30% ao ano

Prejudicados pelo caso Backer e pandemia, cervejeiros só veem recuperação em 2023

Em defesa de seu mercado, cervejarias e pubs usaram a panfletagem e os cartazes (como o mostrado abaixo) para divulgar que seus produtos eram livres de arsênio. Outras deixavam claro que não utilizavam açúcar do fornecedor culpado e que faziam análises do produto.

Quanto ao recall, a resposta da indústria cervejeira foi variada. Houve uma reação de compromisso com a segurança de alimentos forte e imediata  liderada pela grande cervejaria de Manchester Groves e Whitnall, que chegaram a enviar telegramas a todas as tabernas e pousadas que haviam comprado sua cerveja. As cervejarias descartaram milhares de barris de cerveja jogando-os nos esgotos da cidade.

Outras cervejarias demoraram a tomar uma atitude, sendo necessário criar uma lei segundo a qual seriam multadas se a sua cerveja ainda pudesse ser comprada pelos investigadores. Além disso, pubs foram multados por vender cerveja contaminada,  mesmo tendo sido notificados pelo fabricante sobre a presença de arsênio.

A Bostock & Co. entrou em falência e processou a Nicholson & Sons por danos, por violação de uma condição implícita na Lei de Venda de Mercadorias de 1893. O caso foi julgado no Tribunal Superior: o juiz concedeu a Bostock a indenização do valor do ácido contaminado e o valor de seus produtos perdidos, mas nenhuma indenização especial pela perda de reputação ou pelos danos reclamados pelos cervejeiros, decorrentes do uso do produto contaminado na fabricação de seu açúcar. A Nicholson & Sons sobreviveu e mais tarde foi adquirida por outra empresa.

Os efeitos sobre o mercado cervejeiro foram efêmeros e o consumo de cerveja foi retomado ao longo do ano. As tentativas de reviver o movimento da cerveja pura foram anuladas pelo relatório da comissão técnica e pelo fato de que o arsênio estava presente tanto na cevada maltada quanto no açúcar. Parecia não haver efeitos diretos na legislação resultante do incidente.

O dia seguinte… danos além dos efeitos agudos

O envenenamento resultou na nomeação de uma Comissão Real liderada por Lord Kelvin, que apresentou um relatório preliminar em 1901 e um relatório final em 1903.

Em 1901, um declínio considerável na taxa de natalidade foi observado em Manchester, Salford e Liverpool. Este declínio foi maior nas áreas mais afetadas, levando a Comissão Real a concluir que a causa foi a epidemia.

Fontes: 

https://en.wikipedia.org/wiki/1900_English_beer_poisoning

Death in the beer-glass: the Manchester arsenic-in-beer epidemic of 1900-1 and the long-term poisoning of beer (inclui as imagens utilizads aqui), de TN Kelynack, W Kirkby (Life time)

5 min leituraNos anos 1900, mais de 6.000 pessoas na Inglaterra foram envenenadas por cerveja contaminada com arsênio, resultando na morte de mais de 70.  Estima-se que essa grande crise de segurança […]

3 min leitura
3

Contaminantes químicos em alimentos: como evitá-los?

3 min leitura

A contaminação de alimentos é uma preocupação constante em todos os países do mundo. De acordo com a Anvisa, contaminantes em alimentos são “agentes biológicos, físicos ou químicos que são introduzidos no alimento de forma não intencional e que podem trazer danos à saúde da população”. Entre esses contaminantes, estão os de natureza química, que podem oferecer risco aos consumidores, dependendo das concentrações presentes no alimento.

Esse tipo de contaminação pode ocorrer devido à presença de substâncias químicas em excesso, tais como metais pesados, antibióticos, resíduos de praguicidas e de agrotóxicos presentes nas matérias-primas, além de toxinas microbianas.

Diferentes reações adversas causadas por contaminantes químicos podem ser desencadeadas nos consumidores, podendo ser de natureza aguda (curto prazo) ou crônica (longo prazo). Os efeitos observados incluem distúrbios gastrointestinais, urticária, angiodema (inchaço nos olhos e lábios) e, até mesmo, toxicidade severa, como choque anafilático.

Um fator preocupante é que, muitas vezes, os contaminantes químicos não alteram o aspecto sensorial dos alimentos, como o sabor, textura, cor ou o aroma, diferentemente de alguns contaminantes biológicos que, ao promoverem alterações nas características sensoriais dos alimentos, podem levar a sua rejeição pelos consumidores, evitando-se a ocorrência de surtos alimentares.

A presença de contaminantes químicos em alimentos dificilmente pode ser totalmente evitada, mas pode ser minimizada. Dessa forma, considerando-se o potencial tóxico dessas substâncias, recomenda-se que suas concentrações sejam as menores possíveis, mediante a aplicação das melhores práticas e tecnologias de produção disponíveis, adotando-se práticas agrícolas e de produção adequadas. Ações como redução da poluição ambiental, boas práticas de produção, manuseio, armazenamento, processamento, embalagem de alimentos e medidas de descontaminação de alimentos contaminados podem ser usadas para evitar que estes contaminantes estejam presentes nos alimentos em níveis acima daqueles considerados seguros.

A adoção do sistema de Análise de Perigos e Pontos Críticos de Controle (APPCC) é de extrema importância, por se tratar de um sistema preventivo de garantia da segurança dos alimentos. Considerando que este sistema tem por objetivo principal a identificação dos perigos potenciais presentes nas matérias primas, assim como aqueles que poderão ser inseridos durante o processamento, e o estabelecimento de medidas preventivas a serem adotadas em pontos específicos, denominados Pontos Críticos de Controle (PCC), muitos contaminantes podem ser controlados, garantindo a inocuidade dos alimentos e a segurança dos consumidores.

A metodologia pode ser aplicada em qualquer etapa da cadeia produtiva de alimentos, incluindo a produção primária, contribuindo para redução da contaminação das matérias primas que serão recebidas pelas indústrias de alimentos.

Há situações em que pequenas quantidades desses agentes podem ser toleradas sem trazer prejuízos significativos à saúde. Para estes casos, existem os limites máximos aceitáveis (LMT), os quais normalmente variam com o tipo de alimento e estão disponíveis na Instrução Normativa nº 160, de 1° de julho de 2022 (Anvisa). Os limites são baseados em estudos científicos e fundamentados para proteção da saúde humana. Alimentos com teores de contaminantes superiores aos estipulados nos regulamentos não podem ser comercializados.

Autoras: Daiana Júnia de Paula Antunes, Tássia Estevão Oliveira Furtado, Wellingta Cristina Almeida do Nascimento Benevenuto, Eliane M. Furtado Martins, do Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, campus Rio Pomba.

Leia também:
Medidas de controles de perigos químicos à segurança dos alimentos [link]

Referências

INTERNATIONAL LIFE SCIENCES INSTITUTE. Contaminantes químicos em alimentos. 2022. Disponível em: https://ilsibrasil.org/3954-2/. Acesso em 11 abril 2024.

OLIVEIRA et al. Substâncias químicas presentes em sucos de frutas em pó comercializados no Brasil. Rev. Bras. Alergia Imunopatol, v. 29, p.127-132, maio-jun. 2006.

SEIXAS, P.; MUTTONI, S.M.P. Doenças transmitidas por alimentos, aspectos gerais e principais agentes bacterianos envolvidos em surtos: uma revisão. Nutrivisa, v. 7, p. 23-30, 2020.

SOUZA. R. Contaminantes Em Alimentos: Quais São e Como Evitar. Gepea, 2023. Disponível em: https://gepea.com.br/contaminantes-em-alimentos/. Acesso em 07 de abril de 2023.

3 min leituraA contaminação de alimentos é uma preocupação constante em todos os países do mundo. De acordo com a Anvisa, contaminantes em alimentos são “agentes biológicos, físicos ou químicos que são introduzidos […]

3 min leitura
2

Como interpretar laudos de dioxinas e PCBs? – Parte 2 de 2

3 min leitura

Na semana passada começamos a falar sobre este tema (laudos de dioxinas e PCBs). Leia aqui antes de prosseguir.

Neste post vamos focar a interpretação de laudos voltados ao mercado feed (produtos para alimentação de animais de criação), incluindo legislações europeias.

Segue novamente um exemplo de laudos de dioxinas e PCBs:

IN nº 1 (MAPA), de 23/01/2018 – Limites máximos de dioxinas e bifenilas policloradas sob a forma de dioxinas em produtos destinados à alimentação animal

Esta instrução (ver na íntegra aqui) traz o seguinte padrão:

Contaminantes

Produtos destinados à alimentação animal

Limite máximo em ng PCDD/F-TEQ-OMS/kg de alimento1 para um teor de umidade de 12 %

Dioxinas [soma das dibenzo-para-dioxinas policloradas (PCDD) e dos dibenzofuranos policlorados (PCDF), expressa em equivalente tóxico OMS com base nos fatores de equivalência tóxica da OMS (TEF-OMS)

Ingredientes de origem vegetal, incluindo os óleos vegetais e seus subprodutos

0,75 ng TEQ PCDD/F OMS/kg

Ingredientes para alimentação animal de origem mineral

0,75 ng TEQ PCDD/F OMS/kg

Para avaliar o laudo acima, avaliamos o OMS (2005)-PCDD/F TEQ upper-bound.

O resultado do laudo foi 0,1465 ng/kg, inferior a 0,75 ng/kg. Neste caso, o produto está dentro do padrão (seja para ingredientes de origem vegetal ou mineral).

Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed – Council statement

A legislação do European Commission (ver aqui na íntegra) é um pouco mais complexa que a do MAPA. Há diferentes padrões conforme o tipo de feed. Seguem abaixo padrões para feeds de origem vegetal e óleos:

Observação: o mesmo padrão é seguido também no GMP+ FSA em seu documento TS 1.5.

Substância indesejável

Produtos destinados à alimentação animal

Limite máximo em mg/kg (ppm) relativo a produtos para alimentação animal com teor de umidade de 12 %

Dioxinas (soma de dibezo-para-dioxinas policloradas (PCDD’s) e dibenzofuranos policlorados (PCDF’s) expressa em equivalente tóxico OMS com base nos fatores de equivalência tóxica da OMS (TEF-OMS)

Feed materials de origem vegetal, exceto óleos vegetais e seus subprodutos

0,75 ng WHO-PCDD/ F-TEQ/kg

Óleos vegetais e seus subprodutos

0,75 ng WHO-PCDD/ F-TEQ/kg

Soma de dioxinas e PCB’s semelhantes a dioxinas (soma de dibezo-para-dioxinas policloradas (PCDD’s), dibenzofuranos policlorados (PCDF’s) e bifenilas policloradas (PCB’s) expressa em equivalente tóxico OMS com base nos fatores de equivalência tóxica da OMS (TEF-OMS)

Feed materials de origem vegetal, exceto óleos vegetais e seus subprodutos

1,25 ng WHO-PCDD/ F-TEQ/kg

Óleos vegetais e seus subprodutos

1,5 ng WHO-PCDD/ F-TEQ/kg

Começando com o padrão de dioxinas, segue o mesmo do exemplo anterior. O resultado está dentro do padrão (abaixo de 0,75 ng/kg).

Sobre o parâmetro soma de dioxinas e PCBs semelhantes a dioxinas, avaliamos o OMS (2005)-PCDD/F+PCB TEQ upper-bound.

O resultado do laudo foi 0,1465 ng/kg, inferior a 1,25 ng/kg (considerando feed material de origem vegetal). Neste caso, o produto está dentro do padrão.

Quer ler mais sobre interpretação de laudos? Dê uma olhada nos seguintes posts:

– Laudos de análises microbiológicas: você sabe interpretar os resultados? [link]
– Dúvida de leitor: unidade de medida em laudos de análises microbiológicas [link]
– Tudo o que você sempre quis saber sobre laudos de migração de embalagens de alimentos [link]

3 min leituraNa semana passada começamos a falar sobre este tema (laudos de dioxinas e PCBs). Leia aqui antes de prosseguir. Neste post vamos focar a interpretação de laudos voltados ao mercado […]

3 min leitura
0

Fatores antinutricionais sob a ótica da segurança de alimentos

3 min leitura

Apesar de inúmeros benefícios, alguns alimentos possuem fatores antinutricionais (FANs), como metabólitos secundários, que nos alimentos de origem vegetal atuam como mecanismo de defesa contra fungos, bactérias, insetos e animais. Estes fatores são chamados de antinutricionais, pois interferem negativamente no processo de digestão e absorção de nutrientes presentes nos alimentos e podem, até mesmo, serem tóxicos, dependendo da quantidade ingerida. O efeito tóxico ou antinutricional pode ocorrer quando os alimentos que os possuem são consumidos crus, sem cozimento.

Grãos, raízes, leguminosas e cereais são aliados importantes da dieta, mas possuem antinutrientes incluindo saponinas, taninos, fitatos, compostos polifenólicos e inibidores de protease. Esses componentes interferem no valor nutricional dos alimentos, reduzindo a absorção de vitaminas e minerais, principalmente cálcio e ferro. Também dificultam a digestibilidade de proteínas e carboidratos, causando toxicidade e distúrbios de saúde e flatulência quando presentes e ingeridos em altas concentrações. Dessa forma, o tratamento térmico é uma das técnicas usadas para reduzir ou inativar os antinutrientes indesejáveis, sob a ótica da segurança.

Na figura abaixo, são apresentados alguns fatores antinutricionais, os alimentos que os contêm e seus principais efeitos:


Os cianetos e saponinas, encontrados em vegetais como grão de bico, ervilhas e feijões, podem ser reduzidos com o processamento a quente e cozimento, mas a inativação desses inibidores é dependente do tempo e temperatura adotados durante o tratamento térmico. Já os inibidores de proteases, como a tripsina, podem ser reduzidos de forma mais eficaz ao se utilizar o método a vapor, a 100°C.

Os oxalatos, encontrados principalmente nas leguminosas, nozes e diversas farinhas à base de grãos, podem ser eliminados com métodos úmidos, com o uso de remolho, fervura e cozimento a vapor. O elevado consumo de oxalato é preocupante, visto que o ácido oxálico pode formar sais insolúveis com cálcio e magnésio, promovendo a formação de cálculos renais.

O remolho em água, previamente ao cozimento, também é uma forma de reduzir os FANs, uma vez que muitos deles são hidrossolúveis e, dessa forma, eliminados.

Portanto, uma alimentação diária variada aliada às técnicas mencionadas, é de suma importância para obtenção de uma dieta segura, evitando o acúmulo dos antinutrientes no organismo.

Autoras: Patrícia Cândido da Silva, Nataly Almeida Marques e Eliane M. Furtado Martins

Leia também: 

Quais são os perigos de uma alimentação à base de plantas?

Referências:

ALSALMAN, F.B.; RAMASWAMY, H. Reduction in soaking time and anti-nutritional factors by high pressure processing of chickpeas. Journal of Food Science and Technology, v. 57, n. 7, p. 2572–2585, 2020.

CHAI, W.; LIEBMAN, M. Oxalate content of legumes, nuts and grain-based flours. Journal of Food Composition and Analysis, v. 18, n. 7, p.723-729, 2005.

DEL-VECHI, G.; CORRÊA, A.D.; ABREU, C.M.P.; SANTOS, C.D.  Efeito do tratamento térmico em sementes de abóboras (Cucurbita spp.) sobre os níveis de fatores antinutricionais e/ou tóxicos. Ciências Agrotecnologicas, v. 29, n.2, p. 369-376, 2004.

GEMEDE, H. F.; RETTA, N. Antinutritional Factors in Plant Foods: Potential Health Benefits and Adverse Effects. International Journal of Nutrition and Food Sciences, v. 3, n. 4, p. 284, 2014.

HIGASHIJIMA, N. S.; LUCCA, A.; REBIZZ, L. R. H.; REBIZZI, L. M. H. Fatores antinutricionais na alimentação humana. Segurança Alimentar e Nutricional, v. 27, 2020.

SAMTIYA, M.; ALUKO, R.E.; DHEWA, T. Plant food anti-nutritional factors and their reduction strategies: an overview. Food Production Processing and Nutrition, v. 2, p. 6, 2020. 

WANG, N.; LEWIS, M.J.; BRENNAN, J.G.; WESTBY, A. Effect of processing methods on nutrients and anti-nutritional factors in cowpea. Food chemistry, v.58, n.2, p.59-68, 1997.

3 min leituraApesar de inúmeros benefícios, alguns alimentos possuem fatores antinutricionais (FANs), como metabólitos secundários, que nos alimentos de origem vegetal atuam como mecanismo de defesa contra fungos, bactérias, insetos e animais. […]

4 min leitura
1

Como interpretar laudos de dioxinas e PCBs? – Parte 1 de 2

4 min leitura

Você já leu um laudo de análise laboratorial de dioxinas? Já se perdeu naquela sopa de letrinhas e números? Pois bem… fique tranquilo que o Food Safety Brazil irá ajudá-lo a desvendar este laudo.

Uma breve introdução sobre dioxinas e PCBs:

  • Dioxinas: É o nome genérico dado a um conjunto de dibenzo-P-dioxinas policloradas (PCDDs) e dibenzo-furanos policlorados (PCDFs). Apresentam-se sob um total de 210 formas (congêneros), sendo apenas 17 tóxicos ou carcinogênicos (aqueles contendo átomo de cloro na posição 2, 3, 7 e 8). São subprodutos da combustão incompleta de matérias orgânicas contendo halogênios e fonte de cloro.
  • PCBs:  É a sigla de Bifenilas Policloradas, um grupo de compostos produzidos até a década de 1980 para uso industrial. São exemplos de usos de PCBs: fluidos dielétricos em transformadores, condensadores e óleos de corte, lubrificantes hidráulicos, lubrificantes hidráulicos, tintas e adesivos.

Dioxinas e PCBs são substâncias químicas diferentes com propriedades e características distintas. Em suma, temos:

Falando especificamente dos PCBs, eles compreendem diferentes tipos de moléculas semelhantes, ao todo 209 congêneres, mas que variam a depender da quantidade de átomos de cloro ligados às cadeias aromáticas e da posição destes átomos. Alguns deles estão abaixo:

Quem estudou química orgânica já deve saber que pequenas mudanças em uma cadeia geram grandes diferenças. E é exatamente o que ocorre aqui. Alguns PCBs induzem respostas bioquímicas e tóxicas semelhantes às das dioxinas. A estas moléculas convencionou-se denominar: dioxin-like PCBs (em bom português: PCBs semelhantes a dioxinas). São eles:  PCB 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169 e 189.

Os PCBs que não induzem respostas bioquímicas e tóxicas semelhantes às das dioxinas são denominados non-dioxin-like PCBs (PCBs não semelhantes a dioxinas). São todos os congêneros, exceto os citados acima.

E feita esta introdução, segue abaixo um exemplo de laudo de análise:

Observe o primeiro item: 1, 2, 3, 4, 6, 7, 8-HeptaCDD. Trata-se de uma dibenzo-P-dioxina policlorada (PCDD) — ou seja, um composto pertencente ao grupo das dioxinas — contendo 7 átomos de cloro, distribuídos nas posições 1, 2, 3, 4, 6, 7 e 8.

Outro exemplo, o quinto item: 1, 2, 3, 4, 7, 8-HexaCDF. Trata-se de um dibenzo-furano policlorado — ou seja, um composto pertencente ao grupo das dioxinas — contendo 6 átomos de cloro, distribuídos nas posições 1, 2, 3, 4, 7 e 8.

Vamos avançar.
Há uma legislação brasileira prevendo padrões de dioxinas e PCBs em alimentos. Trata-se da IN nº 160/2022 (Anvisa).
Segue o trecho dela que trata deste tema:

 

Por exemplo, para carne bovina, a legislação prevê limite máximo tolerável (nível aceitável):

  • soma de PCDD, PCDF e PCB: 4,0 pg/g
  • soma de PCDD e PCDF: 2,5 pg/g

 

Para avaliar o laudo, vamos primeiro converter a unidade de medida do padrão, de pg/g (que é o padrão da legislação) para ng/kg (que é o padrão do laudo). Assim, fica… a mesma coisa!

  • soma de PCDD, PCDF e PCB: 4,0 ng/kg
  • soma de PCDD e PCDF: 2,5 ng/kg

 

Agora sim, onde encontrar os parâmetros abaixo no laudo? Veja abaixo:

  • soma de PCDD, PCDF e PCB = OMS (2005)-PCDD/F+PCB TEQ upper-bound
  • soma de PCDD e PCDF =OMS (2005)-PCDD/F TEQ upper-bound

 

Ou seja, se fôssemos considerar o laudo acima*, o produto analisado estaria dentro do padrão:

  • soma de PCDD, PCDF e PCB: 0,02121 ng/kg (< 4,0 ng/kg)
  • soma de PCDD e PCDF: 0,1465 ng/kg (< 2,5 ng/kg)

Nota: O laudo, em particular, trata de uma análise de produto de origem vegetal. O MC12% na frente dos resultados indica isso. O padrão para produtos de origem animal é em função do teor de gordura do produto. Então, considere o explicado acima como uma aplicação teórica.

 

E aí? Ajudei a entender melhor?

Em breve, escreverei outro post voltado a produtos para alimentação animal.

4 min leituraVocê já leu um laudo de análise laboratorial de dioxinas? Já se perdeu naquela sopa de letrinhas e números? Pois bem… fique tranquilo que o Food Safety Brazil irá ajudá-lo […]

7 min leitura
5

Perigos radiológicos em alimentos

7 min leitura

Os perigos radiológicos em alimentos provêm de radioisótopos, também chamados de radionuclídeos. São átomos sujeitos ao processo de decaimento radioativo, liberando assim radioatividade através de partículas alfa, beta e gama. Eventualmente, podem chegar à cadeia produtiva de alimentos, expondo as pessoas à contaminação e gerando efeitos adversos à saúde, cuja gravidade dependerá especificamente do radioisótopo e do grau de radiação ao qual um indivíduo foi exposto.

No entanto, segundo a Organização Mundial da Saúde (OMS), os perigos radiológicos são incomuns na cadeia produtiva de alimentos. A grande questão é que quando ocorrem, podem representar um risco de elevada significância, principalmente se a exposição ao risco for prolongada ao longo do tempo.

A ingestão de alimentos ou água com radioisótopos leva a uma contaminação interna na qual o material radioativo irá se depositar no organismo, podendo ser transportado para vários locais, tais como a medula óssea, onde continua a emitir radiação, aumentando a exposição da pessoa à radiação, até ser removido ou emitir toda sua energia (desintegração).

A contaminação interna com radioisótopos é mais difícil de remover do que a contaminação externa.

O consumo de alimentos contaminados com radioisótopos aumenta a quantidade de radioatividade a qual a pessoa é exposta, o que pode provocar efeitos agudos como vermelhidão da pele (eritemas), queda de cabelo e síndrome de radiação aguda, que inclui sintomas iniciais como náuseas, vômitos, dor de cabeça e diarreia. Com o tempo, pode chegar a uma perda de apetite, fadiga e possivelmente convulsões e coma. Em alguns casos, pode provocar doenças graves, inclusive alguns tipos de câncer, como na tireoide e leucemia.

A maioria dos elementos radioativos naturais tem sua origem na crosta terrestre como o Potássio-40 (K-40), Urânio-238 (U-238) e Tório-232 (Th-232), que são elementos radioativos primitivos, ou seja, estão presentes desde a formação da Terra há cerca de 4,6 bilhões de anos.

A população mundial está exposta diariamente à radiação natural, que vem do espaço através dos raios cósmicos e de materiais radioativos que ocorrem no solo, na água e no ar, quase sempre, em quantidades ínfimas e inócuas à saúde.

Porém, a radiação pode ocorrer também devido aos efeitos antrópicos, tendo como exemplos os acidentes nucleares ocorridos em Chernobyl, na Ucrânia, em 1986, quando esta pertencia à URSS (União das Repúblicas Socialistas Soviéticas) e em Fukushima no Japão em 2011. Em consequência, a superfície de alimentos como cereais, frutas e legumes ou destinados para alimentação de animais para leite ou corte, pode se tornar radioativa devido à deposição de poeira com radioisótopos ou da água da chuva contaminada.

Além do efeito imediato, os locais onde houve exposição aos elementos radioativos se tornarão áreas de risco, uma vez que o solo ficará contaminado. Com o tempo, a radioatividade também poderá ser detectada nos alimentos porque os radioisótopos do solo serão absorvidos pelas plantas, e em seguida, pelos animais que se alimentam delas, chegando à carne, ao leite e derivados, portanto, à cadeia alimentar humana.

O Césio-137 tem um período de semidesintegração de 30 anos, e por isso afeta áreas agricultáveis durante décadas.

Como exemplo, ainda citando o fatídico acidente de Chernobyl, a nuvem de poeira radioativa cujos principais radioisótopos produzidos na reação de fissão (divisão) nuclear do Urânio-235 (combustível nuclear do reator) foram o Iodo-131, Césio-137, Césio-134 e o Estrôncio-90, varreu a Europa e causou a precipitação destes radioisótopos em diversos países da Europa e da Ásia. Isto é mostrado no mapa a seguir, com graves perturbações na produção e no comércio de produtos alimentícios.

Mapa com a nuvem de radiação que envolveu a Europa durante o desastre de Chernobyl em 1986.

Na ocasião do acidente em Chernobyl, o Brasil havia importado carne bovina e leite de países que estavam dentro do raio atingido pela poeira radioativa, como a Alemanha, Holanda e França. Descobriu-se mais tarde que estes alimentos  estavam contaminados com os radioisótopos Césio-137 e Césio-134, potencialmente cancerígenos.

Jornal Correio do Povo de 21 de janeiro de 1988.

Já no acidente mais recente em Fukushima não houve impactos no Brasil, uma vez que não somos um importador habitual de alimentos do Japão. No entanto, naquele país diversos alimentos como carne, chá, cogumelos e verduras cultivados nas proximidades da região de Fukushima, foram identificados com níveis de radioatividade acima do permitido para o consumo, inclusive arroz, alimento tradicional da culinária japonesa, numa fazenda a 60 quilômetros da instalação nuclear.

A experiência em Fukushima mostrou existir dificuldades para rastrear a radiação espalhada pela chuva e o vento, sendo que governos locais em áreas rurais montaram centros de teste para evitar a distribuição de produtos contaminados e a própria população começou a medir radiação por conta própria, usando aparelhos simples.

Jornal Hoje, G1 de 19 de março de 2011.

Seja por origem natural ou antrópica, a água potável ou mineral pode absorver a radioatividade, e assim, contaminar peixes e frutos do mar. Por isso, estima-se que os frutos do mar são os alimentos com radiação natural mais concentrada, e, também, com grande probabilidade de exposição aos acidentes nucleares.

CNN Brasil de 26 de julho de 2023.

Por isso, na análise de perigos radiológicos em alimentos num plano de HACCP, há que se considerar a probabilidade do risco em cada região produtora e em cada alimento específico, levando em consideração a rastreabilidade de sua origem para poder avaliar o histórico de acidentes nucleares na região (lembrando que partículas radioativas podem permanecer ativas por décadas), a proximidade a locais de guarda de lixo nuclear, assim como áreas geográficas onde existam depósitos naturais de minerais radioativos como os uraníferos ou de tório.

Localição georgráfica no Brasil de jazidas de minérios radioativos. 

No entanto, apelando para a obviedade, veja que um peixe proveniente do mar do Japão próximo à região costeira de Fukushima, terá uma probabilidade de contaminação radioativa muito maior que um outro que foi pescado na costa brasileira. Analogamente, grãos provenientes da Ucrânia, onde ocorreu o acidente de Chernobyl, terão uma probabilidade maior do que aqueles cultivados no cerrado brasileiro.

Não há no Brasil uma legislação ou referências específicas para níveis máximos permitidos de contaminação radioativa em alimentos, no entanto, há para água destinada ao consumo humano.

A Portaria GM/ MS Nº 888 do Ministério da Saúde, no Art. 37 dita que “os níveis de triagem usados na avaliação da potabilidade da água, do ponto de vista radiológico, são os valores de concentração de atividade que não excedam 0,5 Bq/L para atividade alfa total e 1,0 Bq/L para beta total, portaria esta que foi analisada no artigo “Análise da nova Portaria MS 888/21 sobre controle e vigilância da água para consumo humano“.

Monitorar água, em especial proveniente de poços artesianos em regiões onde há probabilidade natural de radioisótopos, é muito relevante, e logicamente, caso os níveis radiológicos ultrapassem o que está definido na legislação, o consumo deve ser vetado.

Neste tema é relevante um esclarecimento sobre irradiação, que não deve ser confundida com contaminação radiológica

Numa contaminação radioativa, como visto, há presença de um isótopo radioativo indesejável que é capaz de emitir radiação (alfa, beta e gama) de forma espontânea a partir de seus núcleos instáveis e, assim, causar danos à saúde. Porém, em alimentos que passaram por um processo de irradiação não, pois trata-se da exposição deste alimento à radiação, porém, sem contato direto com os elementos radioativos.

A tecnologia de irradiação de alimentos foi aprovada pela Organização das Nações Unidas para a Agricultura e Alimentação (FAO) como segura e é utilizada em cerca de 50 países. Estima-se que o volume de alimentos tratados em todo o mundo por esta tecnologia exceda 500 mil toneladas anualmente, sendo um método eficaz para melhorar a qualidade de produtos alimentícios reduzindo cargas microbianas e aumentando a shelf life.

Esse processo é bastante utilizado em frutas frescas, grãos e vegetais para prevenir o brotamento, retardar a maturação e aumentar o tempo de conservação, uma vez que os alimentos são submetidos a uma quantidade minuciosamente controlada e precisa de radiação. Sugiro neste tema a leitura dos artigos:

  1. Radioatividade do bem: entenda a técnica de irradiação de alimentos
  2. Por uma cultura de segurança de alimentos baseada na ciência: mitos sobre alimentos processados e irradiação

A irradiação não faz com que o alimento se torne radioativo, não compromete a qualidade nutricional e não altera sabor, textura ou aparência do alimento. Além disso, o uso de radiação ionizante é uma opção com menor impacto ambiental, pois não deixa resíduos.

Um alimento irradiado praticamente não sofre qualquer alteração física ou organoléptica, por isso é muito difícil dizer se o alimento foi ou não irradiado.

No Brasil, a regulamentação sobre alimentos irradiados é definida pelo Decreto nº 72.718, de 29 de agosto de 1973, que estabelece normas gerais sobre irradiação de alimentos e pela Resolução ANVISARDC nº 21, de 26 de janeiro de 2001, que aprovou o Regulamento Técnico para Irradiação de Alimentos, estabelecendo os requisitos gerais para o uso da irradiação de alimentos com vistas à qualidade sanitária do produto final. Lembramos que deve sempre haver transparência ao consumidor, pois nos rótulos dos alimentos que passaram por este processo deve constar a frase “alimento tratado por processo de irradiação”, como visto no artigo “Anvisa entende que alimento que passa por raios X deve ser rotulado como irradiado“.

Logomarca utilizada para alimentos irradiados.

Espero que o artigo tenha ajudado a perceber que o tema dos riscos radiológicos não é um bicho de sete cabeças, mas que precisa ser visto com atenção, considerando a necessidade de uma boa análise de riscos em relação à probabilidade de contaminação e rastreabilidade da água e insumos utilizados na cadeia produtiva de alimentos.

Deixe sua opinião, complemente com sua experiência e seu conhecimento, isso é muito importante para nós!

Leia também:

Irradiação e perigos radiológicos em alimentos

FDA permite o uso de irradiação em crustáceos para controle de patógenos de origem alimentar

Perigos radiológicos foram levantados no seu plano HACCP?

7 min leituraOs perigos radiológicos em alimentos provêm de radioisótopos, também chamados de radionuclídeos. São átomos sujeitos ao processo de decaimento radioativo, liberando assim radioatividade através de partículas alfa, beta e gama. […]

4 min leitura
0

Temos que nos preocupar com o risco de nanoplásticos na alimentação?

4 min leitura

Podemos dividir a história humana em períodos, como a Idade do Cobre (de 3500 a.C. até 1200 a.C.), do Bronze (de 3000 a.C. até 700 a.C.), do Ferro (de 1200 a.C. até 1000 a.C.), baseando-se no avanço tecnológico que levou à utilização destes materiais na produção de ferramentas e utensílios, e se continuássemos usando este raciocínio, certamente, agora estaríamos na “Idade do Plástico”.

Chamamos de plásticos uma ampla gama de materiais sintéticos ou semissintéticos que usam polímeros como ingrediente principal, sendo este material muito versátil, permitindo que sejam moldados, extrudados ou prensados em objetos sólidos de várias formas e úteis a muitas finalidades.

Existem, portanto, muitos tipos de plásticos, tais como:

  • PET (Tereftalato de polietileno);
  • PEAD (Polietileno de alta densidade);
  • PVC (Policloreto de Vinila ou cloreto de vinila);
  • PEBD (Polietileno de baixa densidade);
  • PP (Polipropileno);
  • PS (Poliestireno);
  • Outros plásticos.

Não há quem ao longo do dia não utilize um ou muitos objetos de plástico, a começar pela escova de dentes logo no início da manhã, pentes, canetas, brinquedos, baldes, vasilhames, partes da TV, dos automóveis, eletrodomésticos, calçados e milhares de outros exemplos.

Trazendo para a realidade da indústria de alimentos e bebidas, os plásticos predominam como material de embalagem devido a sua versatilidade, como é o caso do polietileno (PE) que é ideal para sacos e bobinas, tem ótima resistência, excelente brilho e transparência e fixa muito bem a solda. Da mesma forma, o polipropileno biorientado (BOPP), que é uma variação do PP, porém com ótima barreira à umidade, oxigênio e gorduras, é bastante usado em embalagens flexíveis de salgadinhos, biscoitos, macarrão e mistura para bolo. Claro que não podemos esquecer o famoso polietileno tereftalato (PET), que é reconhecido pela sua leveza, transparência, resistência mecânica, química e baixo custo, e nem precisa dizer, é muito usado em bebidas como sucos e refrigerantes.

Dados indicam que são produzidas mais de 400 milhões de toneladas de plástico ao redor do mundo anualmente.

Justamente por isso, o plástico pode ser considerado uma marca de nossa atual civilização, e claro, no futuro arqueólogos que escavarem este período irão encontrar muitos objetos feitos com este material. Eles encontrarão também os resíduos que estamos deixando por aí, pois apesar da grande maioria dos polímeros plásticos poder ser reciclada, infelizmente, no pós-uso, ainda seguem para lixões ou corpos d´água, terminando em rios, mares e oceanos.

Diante do uso tão intenso do plástico, surge uma nova preocupação sobre os seus resíduos: eles podem causar danos à saúde humana?

Mas como poderiam se são um material inerte?

Uma forma que vem sendo considerada é via alimentação, por meio da água e dos alimentos.

Em uma recente edição da revista PNAS de 2024, da Universidade de Columbia, Nova York, EUA, os autores descrevem o desenvolvimento de um novo método de espectroscopia que é capaz de detectar partículas de nanoplásticos, ou seja, menores que 1 µm, bem como pode diferenciar sete tipos de polímeros.

Aplicando esta nova tecnologia de análise à água engarrafada, encontraram entre 130 mil e 240 mil fragmentos em um único litro de água, dos quais 90% eram nanoplásticos.

Já em uma outra publicação recente de 2024, pesquisadores da Academia Chinesa de Pesquisa em Ciências Ambientais analisaram microplásticos em tecidos humanos de pulmão, intestino e amígdalas. Suas conclusões foram publicadas na Science of the Total Environment. Em resumo, a pesquisa chinesa coletou amostras de 41 pessoas e com o uso de espectroscopia infravermelha direta a laser, identificaram microplásticos com tamanho superior a 20 µm em todos os tecidos analisados: pulmonar, intestino delgado, intestino grosso e amígdalas.

A identificação do polímero mostrou que as partículas eram feitas de 14 tipos diferentes de polímeros, sendo a maioria cloreto de polivinila (PVC).

Os microplásticos, além dos pulmões, intestinos, amígdalas e rins, podem também ir parar no sangue e na placenta, ao menos foi isto o que concluiu um artigo publicado também em 2024, na revista Scientific Reports, por pesquisadores da Memorial University of Newfoundland, Canadá. Neste artigo canadense os autores analisaram os efeitos que a exposição a microplásticos de PE (polietileno) têm no crescimento fetal e na função placentária em camundongos prenhes, e observaram que a exposição aos microplásticos não afetou o crescimento fetal, mas teve impacto na função placentária. O fluxo sanguíneo da artéria umbilical aumentou 43% em ratos expostos a microplásticos em comparação com os grupos de controle, levando os autores a concluir que “o polietileno tem o potencial de causar resultados adversos na gravidez através da função placentária anormal”.

Ainda há muito o que se pesquisar, mas já se sabe que micro e nanopartículas estão vastamente distribuídas no meio ambiente e são ingeridas na alimentação de humanos e animais, em maior ou menor grau dependendo da localização geográfica e dos hábitos alimentares. Contudo, os potenciais efeitos nocivos à saúde humana ainda requerem estudos mais profundos, sendo este um tema que merece a atenção dos profissionais em food safety.

Leia os artigos originais que foram citados neste post:

Leia também outros posts já publicados aqui no blog:

4 min leituraPodemos dividir a história humana em períodos, como a Idade do Cobre (de 3500 a.C. até 1200 a.C.), do Bronze (de 3000 a.C. até 700 a.C.), do Ferro (de 1200 […]

5 min leitura
0

Análise de lubrificantes – Manutenção preditiva na indústria de alimentos (3)

5 min leitura

No post de hoje, dando continuidade aos anteriores, abordarei a análise de lubrificantes do ponto de vista da manutenção preditiva e como ela pode atuar a favor da segurança dos alimentos.

É importante entender que entre engrenagens, motores, peças e demais componentes que estão interligados, consequentemente existirá atrito.

Os lubrificantes têm o papel de manter a integridade dos equipamentos, reduzindo os impactos do atrito, e com isso aumentando a vida útil dos componentes. O lubrificante industrial forma uma película entre cada componente do equipamento proporcionando o deslizamento fácil entre as partes.

Na imagem abaixo, imagine duas chapas metálicas vistas por meio de uma lente de aumento, onde cada uma das superfícies, quando ampliada, apresenta naturalmente uma superfície irregular. Entre cada chapa há um fluido para atenuar esse atrito.lubrificante - manutenção preditiva

Veja uma animação ilustrando o desenho acima

lubrificante entre chapas

Além da redução do atrito, os lubrificantes também contribuem para:

  • a dissipação do calor gerado durante o atrito;
  • a “vedação” dos maquinários contra poeira ou umidade;
  • a prevenção contra a corrosão dos componentes.

Sabemos que em uma indústria de alimentos o cuidado no uso de lubrificantes deve ser redobrado. É preciso seguir uma série de recomendações, como informações de rastreabilidade, tipo de lubrificante, ponto de aplicação, pois durante a produção, se existir a possibilidade de ocorrer contato incidental entre lubrificante e alimento, isto pode ocasionar consequências graves à saúde do consumidor. Portanto, estes lubrificantes devem ser de grau alimentício (food grade) e certificados de acordo com as normas de higiene exigidas pelos órgãos reguladores (mais informações sobre os lubrificantes de grau alimentício e suas categorias podem ser encontrados nos textos citados no final desse post).

Mesmo com lubrificantes certificados, aprovados e adequados, ainda é preciso fazer monitoramento pela manutenção?

Simplesmente ter um lubrificante adequado não é suficiente. Ele pode ser utilizado incorretamente, em condições impróprias de operação ou com armazenamento inadequado. O foco desse post é justamente abordar os cuidados com os lubrificantes, pois mesmo sendo os corretos, ainda podem ser um problemão se não forem bem monitorados. Além disso, eles podem ser sinalizadores de futuros potenciais problemas quando incluídos nos planos de manutenção preditiva, ou seja, quando se analisa um lubrificante, pode-se predizer as condições do processo.

Análise de lubrificantes na Manutenção Preditiva

A análise de lubrificantes é uma das técnicas preditivas mais utilizadas e comuns, realizada por meio de avaliações em laboratórios de forma rápida e precisa. Ela ajuda a monitorar a condição dos equipamentos.

Com essa análise, é possível detectar a qualidade dos óleos e fluidos utilizados, a saúde dos equipamentos e também a presença de contaminantes. Com isso obtém-se informações de onde atuar para evitar quebras, danos, paradas desnecessárias e consequente impactos no produto acabado.

Se existe atrito, há desgaste!

A análise de lubrificantes também permite que seja possível identificar os primeiros sintomas de desgaste em um equipamento. Essa identificação pode ser realizada por meio de um estudo das partículas sólidas presentes e que ficam misturadas no lubrificante.

O equipamento “respira” o ambiente onde está instalado, ou seja, o lubrificante pode atuar como um termômetro para contaminações. Os contaminantes aproveitam-se de microfissuras, respiros inadequados e abertos de equipamentos, frestas, falhas em vedações, imperfeições nas superfícies dos equipamentos. As fontes de contaminantes mais comuns para um lubrificante são: calor, lodo, ventilação, partículas do ambiente e um dos mais comuns e destrutivos é a água, que pode reduzir a vida útil de um componente em 50 a 70%.

Uma amostra de óleo lubrificante é retirada do equipamento e enviada para análise. Cada amostra estará associada a um relatório que apontará sua qualidade. Vários fatores são avaliados em uma análise de óleo, como por exemplo, cor, aparência, viscosidade, ponto de ebulição, presença de água, contagem de partículas e outros. Os resultados são interpretados considerando as condições de operação do equipamento e as condições ambientais ao seu redor.

O óleo é o “sangue” do sistema e a máquina é o “homem”

Analisar um lubrificante consiste em uma série de interpretações, mas não significa que você deva realizar a mesma ou todas as análises para todos os equipamentos e lubrificantes. Fazendo uma analogia com um exame de sangue, o médico, baseado no relato do paciente, determina quais testes serão realizados. Portanto, com base nas condições de operação do equipamento e no que se deseja verificar, são determinados os testes no lubrificante. Com os resultados verificam-se as tendências e os caminhos para as ações seguintes.

Na manutenção preditiva, a análise de lubrificantes ainda pode ser combinada com a termografia e a análise de vibração, fornecendo ainda mais indícios do estado dos equipamentos e das condições ambientais do processo.

Manutenção preditiva – Análise de lubrificantes e segurança dos alimentos

A relação direta entre a análise de lubrificantes e a segurança dos alimentos pode não ser evidente à primeira vista. Listo abaixo como ambas podem atuar em conjunto:

  • Equipamentos industriais nas instalações em indústrias de alimentos frequentemente utilizam lubrificantes. Se os lubrificantes não forem devidamente monitorados, não há controle de consumo ou monitoramento sobre vazamentos, ou seja, onde foram parar aqueles X litros de lubrificante que deveriam durar X meses?
  • A análise de lubrificantes ajuda a identificar sinais precoces de desgaste ou falhas nos componentes mecânicos. Isso é estratégico para identificar deterioração forçada de equipamentos. Se um equipamento está deteriorando, há um potencial risco de partículas de contaminantes se desprendendo no processo. É hora de realizar uma preventiva no seu equipamento evitando potenciais contaminações no alimento.
  • Presença de contaminantes nos lubrificantes indica sinais ambientais que precisam ser observados sobre o tipo de contaminantes que aparece nos testes. É um forte indício de que as condições ao redor do equipamento precisam ser reconsideradas quanto aos procedimento de limpeza adotados ou até mesmo a falta de limpeza não mapeada, sobre as condições de isolamento e geração de partículas, sobre as condições de temperatura etc.
  • Mesmo um lubrificante certificado e apropriado pode ser comprometido quando exposto a condições inadequadas de uso ou armazenamento. Tambores de lubrificantes mesmo quando fechados devem ser devidamente armazenados. Qualquer água parada na superfície pode ser succionada para dentro do recipiente se houver pressão e calor/frio e falha na devida vedação e respiro. Veja na imagem abaixo:

tambor de lubrificante com água

 

Uma análise de óleo pode ser um bom indicador do seu processo e quando manutenção e qualidade trabalham em conjunto, esses dados são ricos para a segurança dos alimentos.

Gostou do conteúdo? Leia também:

5 min leituraNo post de hoje, dando continuidade aos anteriores, abordarei a análise de lubrificantes do ponto de vista da manutenção preditiva e como ela pode atuar a favor da segurança dos […]

3 min leitura
0

Pesticidas em alimentos: 1 em cada 4 vegetais tem substância proibida ou acima do permitido

3 min leitura

Foi publicado em 06/12/2023 o relatório do PARA – Programa de Análise de Resíduos de Pesticidas em Alimentos, da ANVISA, referente aos anos de 2018, 2019 e 2022.

Os resultados do PARA do período anterior, de 2013 a 2015, foram publicados aqui no blog Food Safety Brazil (veja aqui).

O ciclo 2022 é o terceiro e último ciclo do Plano Plurianual de 5 anos do PARA, que prevê o monitoramento de 36 alimentos, que representam 80% do consumo total de alimentos de origem vegetal no país.

Os principais resultados do PARA foram:

  • 1 em cada 4 (ou 25%) dos alimentos pesquisados apresentam resíduos de pesticidas proibidos ou acima do máximo permitido.

NPC = Não Permitido para a Cultura

LMR = Limite Máximo do Resíduo

  • Com relação ao risco ao consumidor

A Anvisa realizou a avaliação da exposição aguda e crônica a partir de critérios científicos recomendados pela Organização Mundial da Saúde (OMS) e adotados no âmbito do Codex Alimentarius.

 

2.1 Avaliação do risco AGUDO ao consumidor

O risco agudo de 2022 foi menor do que no monitoramento de 2018 a 2019. Além da laranja, ao longo desse ciclo de 5 anos foram encontradas amostras contendo resíduos de agrotóxicos que extrapolaram a DRfA – Dose de Referência Aceitável nos seguintes vegetais:

1 – Uva

2 – Mamão

3 – Maracujá

4 – Pimentão

5 – Couve

2.2 Avaliação do Risco Crônico ao consumidor

A ANVISA entende que simulações sobre o consumo ao longo da vida não apontam para um risco de longo prazo, mesmo se considerarmos um consumidor hipotético que come todos esses alimentos todos os dias. A tabela abaixo mostra a quantidade de pesticidas que vêm sendo expostos ao brasileiro em relação à IDA – Ingestão Diária Aceitável.

Principais recomendações

Em seu relatório resumo do PARA, a ANVISA menciona as seguintes recomendações:

Analisando os resultados do relatório completo do PARA, selecionamos mais algumas informações que consideramos relevantes.

1) Com relação aos pesticidas utilizados:

Dentre os 10 princípios ativos mais detectados no Brasil, 6 deles são PROIBIDOS na Europa. São eles:

  1. Acefato
  2. Bifentrina
  3. Carbendazim
  4. Ditiocarbamatos
  5. Imidacloprido
  6. Procimidona

Veja a tabela abaixo:

  • Segue a lista dos pesticidas mais encontrados nos vegetais pesquisados:

NOTA: O gráfico mostra em amarelo o percentual de amostras com aquele pesticida acima do limite e em verde o percentual dentro do limite.

Incluí neste artigo as 2 figuras acima pois tenho visto nas auditorias que venho fazendo que muitas indústrias fazem análises de pesticidas, mas algumas vezes não sabem quais são proibidos no Brasil e nos países de venda de seus produtos e nem aqueles que foram encontrados em níveis acima do permitido para aquela cultura (aquele alimento).

É importante que os técnicos que atuam em toda a cadeia produtiva do segmento de alimentos, do campo à mesa, orientem e assegurem que as análises dos pesticidas encontrados no alimento que ele atua seja realizada.

As não conformidades identificadas são consideradas infrações sanitárias e devem ser combatidas.

Este blog publicou muitos outros artigos relacionados a pesticidas em alimentos. Dentre eles destacam-se o artigo sobre regulatórios de pesticidas (aqui)  e o artigo sobre como consultar os limites de pesticidas nos alimentos (aqui).

O Relatório do PARA de 2018 a 2022 na íntegra está disponível aqui.

3 min leituraFoi publicado em 06/12/2023 o relatório do PARA – Programa de Análise de Resíduos de Pesticidas em Alimentos, da ANVISA, referente aos anos de 2018, 2019 e 2022. Os resultados […]

3 min leitura
1

Degradação da Ocratoxina (OTA) no café por emprego de temperatura

3 min leitura

Não é de hoje que se fala da presença das micotoxinas nos alimentos advindos do campo (leia aqui). Um reflexo disso é a regulação da ANVISA sobre o tema, por meio da Instrução Normativa (IN) nº 160, publicada em 1º de julho de 2022, que estabelece os limites máximos toleráveis (LMT) destes contaminantes.

As micotoxinas caracterizam-se por serem substâncias tóxicas, produzidas por algumas espécies de fungos, com potencial de contaminar alimentos e, pela ingestão destes alimentos, causar doenças que levam até o óbito de pessoas ou animais.

Hoje falaremos especificamente da micotoxina Ocratoxina A (OTA) e a sua presença no café, precisamente no café cru.

A ocratoxina A (OTA) é originária principalmente de fungos dos gêneros Aspergillus da seção Circundati e Penicillium verrucossum, podendo ter sua origem no cultivo, colheita, transporte e armazenamento dos grãos, que podem criar condições propícias para a produção da micotoxina. Discute-se muito acerca deste contaminante por ser um potencial carcinogênico para o ser humano.

A indústria cafeeira vem sentindo grande impacto com o aumento da presença da OTA na matéria-prima, que é o café cru. Conforme já mencionado, a ANVISA estabeleceu o LMT (Limite máximo tolerável) de várias micotoxinas em alimentos, incluindo a OTA. Para o café torrado e moído, o LMT da OTA é 10 µg/kg (ppb).

Como a indústria cafeeira lida com o desafio de mitigar o risco da presença deste contaminante no produto final? Pois bem, compartilho os resultados de um estudo sobre a degradação da Ocratoxina OTA presente no grão de café cru, pelo uso de temperatura no processo de torra dos grãos.

Para o estudo foram separadas 3 amostras de grãos de café cru, sendo uma amostra de café conilon (Coffea canephora) e duas amostras de café arábica (Coffea arabica) e todas foram submetidas a ensaio laboratorial. Como resultado, foi constatada contaminação de OTA nas duas amostras de arábica, sendo que o conilon estava abaixo do limite de quantificação do método (0,5 µg/kg).


Tabela 1: Resultados de contaminação de OTA no café cru

De posse dos resultado de contaminação da matéria-prima, a próxima etapa foi submeter o material ao processo normal de torra, estipulando como temperatura mínima a faixa de 200ºC a 205ºC.


Tabela 2: Tempo e temperatura aos quais as amostras foram submetidas no processo de torra (tratamento térmico)

Após a torra, foram colhidas amostras do café torrado e encaminhadas para o laboratório para realização das análises.

Os resultados foram extremamente satisfatórios, conforme pode-se verificar abaixo:


Tabela 3: Resultados de OTA após processo de torra (tratamento térmico)

A amostra de conilon permaneceu abaixo do LQ. Já para a amostra do café arábica 1, cuja contaminação inicial era de 8,78 µg/kg, constatou-se que após a submissão ao tratamento térmico de 200ºC, o valor ficou abaixo do LQ (<0,5 µg/kg). Já para o arábica 2, o resultado foi extremamente expressivo, passando de 44 µg/kg para 3,67 µg/kg, representando uma redução de 91,66% no conteúdo de OTA da amostra.

Pode-se concluir, frente ao estudo realizado, que o próprio processo de torra do café é um grande aliado das torrefações para mitigar a crescente presença das ocratoxinas no café, além das Boas Práticas Agrícolas (BPA) e Boas Práticas de Fabricação (BPF), sendo estes últimos tópicos, assunto para outro post.

Leia também:
– Controvérsia sobre acrilamida em café e rotulagem sobre câncer [link]
– Uma xícara de café na ótica dos profissionais de Food Safety [link]
– Proteste detecta quase o triplo do limite da ocratoxina A e seis vezes mais fragmentos de insetos em uma marca testada [link]

3 min leituraNão é de hoje que se fala da presença das micotoxinas nos alimentos advindos do campo (leia aqui). Um reflexo disso é a regulação da ANVISA sobre o tema, por […]

2 min leitura
0

Intoxicação alimentar por atum contaminado: o que aconteceu?

2 min leitura

No final de agosto foi noticiado um surto de origem alimentar em nove creches da região de Campinas, envolvendo 60 pessoas, entre alunos e funcionários das instituições. Os sintomas aconteceram em julho e após as análises concluiu-se que a causa foi o consumo de atum contendo altos níveis de histamina.

A ANVISA, através da Resolução 3124/2023, solicitou o recolhimento do lote do produto, pela seguinte motivação: “Considerando a ocorrência de surto compatível com intoxicação alimentar por histamina após o consumo do alimento, em Centros de Educação Infantil de Campinas, São Paulo, e a confirmação de contaminação do produto com histamina acima dos limites tolerados pela legislação sanitária, evidenciada pelo RELATÓRIO DE ENSAIO Nº RE-TC 03.105/23, do Instituto de Tecnologia de Alimentos – ITAL.”

Trata-se de um lote fabricado em 8 de maio deste ano, com validade até 8 de maio de 2025.

Segundo informações da Secretaria de Saúde de Campinas, as crianças com sintomas de intoxicação apresentaram manchas vermelhas pelo corpo, coceira e sete delas tiveram diarreia.

O que é a intoxicação por histamina?

Intoxicação por histamina também é chamada de intoxicação pela toxina escombróide.

Atuns e outros peixes da família Scombridae, peixes conhecidos como “escuros”, são susceptíveis à formação de histamina por conterem grandes quantidades de histidina livre no tecido muscular. A transformação da histidina em histamina costuma acontecer pela ação de bactérias contaminantes quando os peixes mortos não são conservados e manuseados de forma adequada. É importante que os peixes sejam refrigerados em curto período após sua morte, para evitar esse aumento na concentração de histamina.

Um fator importante é que a histamina não é eliminada durante os processos de cocção durante a fabricação do atum enlatado.

O Brasil e outros países têm um nível máximo permitido de histamina, que é de 100 ppm no tecido muscular.

A intoxicação assemelha-se clinicamente a uma reação alérgica aguda, com a presença de um ou alguns dos sintomas abaixo elencados:

  • Dormência
  • Formigamento
  • Sensação de queimação na boca
  • Erupções cutâneas no tronco superior
  • Queda de pressão
  • Dor de cabeça
  • Coceira na pele
  • Náusea
  • Vômito
  • Diarreia

O quadro costuma ser leve, desaparecendo em poucas horas, mas há relatos de complicações em crianças, idosos ou pessoas com deficiências imunológicas.

Os cuidados com a matéria-prima adquirida, sempre que possível analisando a presença de possíveis contaminantes que possam causar intoxicação alimentar, e a rápida detecção de alterações no produto, com recolhimento de lotes no mercado, podem evitar esse tipo de ocorrência.

Imagino que a questão da histamina seja um desafio para a indústria de pescado, pois pelo levantamento que fiz, as técnicas empregadas para detecção de histamina em peixes podem ser as de cromatografia, que não estão disponíveis para a grande maioria das indústrias de alimentos, pelo seu alto custo e pela necessidade de qualificação de mão de obra. Existem, porém, testes ELISA que podem ser adquiridos pela indústria. Não tenho a informação de seu custo, mas vale o exercício sobre o custo da análise versus o custo da falha interna. Nesse caso, a detecção da falha internamente poderia evitar o adoecimento daqueles que consumiram esse lote e também a exposição da marca na mídia.

2 min leituraNo final de agosto foi noticiado um surto de origem alimentar em nove creches da região de Campinas, envolvendo 60 pessoas, entre alunos e funcionários das instituições. Os sintomas aconteceram […]

3 min leitura
1

ATUALIZAÇÃO: Raios X para detecção de corpos estranhos não são considerados irradiadores de alimentos

3 min leitura

O recente post  “Anvisa entende que alimento que passa por raios X deve ser rotulado como irradiado” causou muita polêmica e comentários nas redes sociais, uma vez que esta não era a interpretação de todo o mercado. De acordo com a resposta de um atendente do Anvisa Atende, havia uma associação direta entre um alimento que passou por raio X e um alimento irradiado, implicando em necessidade de rotulagem deste alimento para informar o consumidor.

Entenda a polêmica

Uma empresa, apenas com a finalidade de ter documentado que não precisaria rotular seu produtos que passam por raio X como irradiados, realizou uma consulta formal à Anvisa, pelo canal ANVISA atende, na expectativa de confirmar o entendimento. Eis que a resposta foi contrária ao senso comum, sendo orientada a rotulagem conforme a RDC Nº 21, DE 26 DE JANEIRO DE 2001.

O ponto que deixou brecha ao entendimento é que:

2.1.2. Alimento irradiado
É todo alimento que tenha sido intencionalmente submetido ao processo de irradiação com radiação ionizante

4.2.Fontes de radiação
As fontes de radiação são aquelas autorizadas pela Comissão Nacional de Energia Nuclear, na
conformidade das normas pertinentes, a saber:
a) Isótopos radioativos emissores de radiação gama: Cobalto – 60 e Césio – 137;
b) Raios X gerados por máquinas que trabalham com energias de até 5 MeV; (cinco milhões de eletrovolts)
c) Elétrons gerados por máquinas que trabalham com energias de até 10 MeV.

Não demorou para as manifestações no LinkedIn serem de questionamento. Até marquei a Anvisa para participar do debate. Vejam algumas interações:

A empresa que fez o questionamento recebeu uma semana depois, espontaneamente, uma atualização, conforme abaixo:

Prezado(a) Senhor(a),

Em atenção à sua solicitação, retificamos a resposta do protocolo 2023193394, tendo em vista que a resposta inicialmente informada foi atualizada.

Deste modo, segue abaixo a resposta atualizada do protocolo supracitado:

Equipamentos de raios-x utilizados na indústria de alimentos para detecção de metais (perigos físicos) não são considerados irradiadores de alimentos.

Alimentos irradiados são aqueles processados em equipamentos (raios-x, raios gama, aceleradores de elétrons) com a finalidade de inibir a germinação, reduzir a carga de microrganismos, controlar patógenos ou infestação e/ou estender o prazo de validade de alimentos perecíveis.

Portanto, para àqueles alimentos que passam por raios-x, com a finalidade exclusiva de detectar perigos físicos, não se aplicam as disposições da Resolução – RDC n. 21/2001.

O que podemos aprender com o caso?

Pelo menos eu aprendi que:

Legislação é elaborada por comitês de profissionais que tem expertise e entendimento em um tema. Por melhor que os textos sejam redigidos, sempre poderão trazer ambiguidades e “zonas cinzentas” de entendimento, pois o que é claro para os experts, pode não ser para a maioria.

Os atendentes de plantão do canal de dúvidas podem fazer intepretações simplistas no seu dia a dia, retornando para a sociedade interpretações equivocadas.

A inteligência, o bom senso e a colaboração são a fortaleza dos novos tempos.

Nem sempre é preciso braço de ferro ou tratamentos indelicados para se obter um retorno.

A Anvisa emite atualização para se retratar.

3 min leituraO recente post  “Anvisa entende que alimento que passa por raios X deve ser rotulado como irradiado” causou muita polêmica e comentários nas redes sociais, uma vez que esta não […]

2 min leitura
0

Microplásticos são encontrados no coração humano, e agora?

2 min leitura

Recentemente, algumas matérias em jornais de grande circulação noticiaram a primeira detecção de microplásticos no coração humano. Coincidência ou não, também aconteceu a publicação de uma matéria que descreve a presença de partículas de microplástico após o aquecimento no micro-ondas de embalagens plásticas utilizadas para a alimentação infantil.

Quando pesquisamos sobre os microplásticos, encontramos informações recentes, dos últimos 15 anos. Os pedacinhos de plástico com tamanho inferior a 5 milímetros são chamados de microplásticos. Eles são formados a partir da decomposição de peças plásticas maiores, na sua maioria provenientes de embalagens plásticas descartáveis.

As partículas de plástico são eliminadas no ar, na água e no solo e já foram encontradas em diferentes regiões do planeta Terra, como na Amazônia, Everest, em aves, peixes.

Essas partículas podem interferir na vida dos animais, por ficarem acumuladas no estômago, dando a sensação de saciedade a eles, entre outras alterações metabólicas ainda em estudo.

Se associarmos essa questão à segurança de alimentos, concluímos que estamos ingerindo microplásticos com comida. Eles estão na água que bebemos, nas frutas, nos frutos do mar e até na maquiagem do dia a dia. Apesar disso, as pesquisas sobre os impactos do produto na nossa saúde ainda são limitadas.

O que sabemos sobre o efeito dos microplásticos na saúde humana?

Como os estudos epidemiológicos tendem a ser longos, as informações ainda são escassas, mas há estudos que demonstram processos inflamatórios relacionados à presença de plástico no intestino humano, inclusive demonstrando que pessoas com doença inflamatória intestinal têm uma concentração maior de microplásticos nas fezes do que indivíduos considerados saudáveis.

Há relatos de microplásticos nos pulmões, glóbulos vermelhos, inclusive impactando a capacidade de transportar moléculas de oxigênio.

Ainda não se sabe qual a quantidade de plástico ou a concentração considerada tóxica, nem se há alguma substância pior do que outra.

É possível evitar os microplásticos?

Grande parte dos microplásticos são provenientes dos materiais descartáveis que são utilizados em grande escala na indústria de alimentos. Buscando diminuir a quantidade desses microplásticos no meio ambiente, tanto para melhorar a condição da fauna quando para evitar possíveis efeitos indesejados aos humanos, precisaríamos de um trabalho conjunto, entre setor industrial, órgãos públicos, população e pesquisas sobre o assunto.

Conseguimos substituir esse plástico em grande escala? Conseguimos fazer um trabalho de reciclagem desse material de forma massiva? A população, inclusive a infantil, precisa ser apresentada e engajada na questão de separação do material reciclável. Os órgãos públicos podem ser envolvidos no processo destinando áreas adequadas para que esse lixo seja separado e encaminhado à reciclagem, junto com iniciativas privadas, de forma que todo o lixo reciclado possa ser separado e não destinado a aterros.

2 min leituraRecentemente, algumas matérias em jornais de grande circulação noticiaram a primeira detecção de microplásticos no coração humano. Coincidência ou não, também aconteceu a publicação de uma matéria que descreve a […]

2 min leitura
0

Produtos químicos: mudanças de FISPQ para FDS

2 min leitura

Quando o tema é segurança no manuseio de produtos químicos, precisamos estar atentos. Escolher bons fornecedores também é entender que eles devem passar as informações mais claras e detalhadas.

Nesse sentido, a 7ª revisão da NBR 14725 acaba de ser publicada. Saiu no dia 3 de julho, sob o título ABNT NBR 14725:2023 – Produtos químicos – Informações sobre segurança, saúde e meio ambiente — Aspectos gerais do Sistema Globalmente Harmonizado (GHS), classificação, FDS e rotulagem de produtos químicos.

As alterações na Ficha de Informações de Segurança de Produtos Químicos são:

1 – Nova denominação da FISPQ

A atual FISPQ passará a se chamar FDS – Ficha com Dados de Segurança.

2 – A FDS não terá NBR exclusiva

As instruções para elaboração da FISPQ atualmente estão na NBR 14725. A nova versão da NBR 14725 agrupa tudo num só documento com 7 seções e 17 anexos.

3 – Telefone de Emergência

Na Seção 1 – Identificação da FISPQ, deverá constar um telefone de emergência, disponível 24 horas por dia.

4 – Adição de novas Classes de Perigo e subcategorias

A nova versão da NBR 14725 traz uma nova classe de perigo: explosivos dessensibilizados. Também inclui nova subcategoria para a classe de perigo Gases inflamáveis, que é: “Perigoso para a camada de ozônio”.

5 – Critérios para elaboração da FDS

A seção 7 – Comunicação de Perigos – traz um item adicional, o qual estabelece critérios para elaboração da FDS, prescrevendo que a FDS deve ser elaborada para todas as substâncias e misturas que satisfaçam os critérios de classificação harmonizados da Seção 5 da Norma, relativos a qualquer classe de perigo físico, à saúde humana ou ao meio ambiente.

6 – Regras para preenchimento para as misturas

Na Seção 3, para as misturas, as informações exigidas são:

“Para as misturas, devem ser informados a identidade química, o número de registro CAS e a concentração ou faixa de concentração de todos os ingredientes perigosos para a saúde ou para o meio ambiente, e que estejam presentes em concentrações superiores aos seus valores de corte/limites de concentração, conforme critérios de 5.3 e 5.4.”

Assim, a nova versão cita os limites de exposição ocupacional.

7 – Prazo para adequação

As empresas terão 24 meses após a publicação da norma para adequação.

Fique atento para estar atualizado!

Referência

ABNT

Imagem: foto de Andrea Piacquadio 

2 min leituraQuando o tema é segurança no manuseio de produtos químicos, precisamos estar atentos. Escolher bons fornecedores também é entender que eles devem passar as informações mais claras e detalhadas. Nesse sentido, […]

3 min leitura
0

FDA alerta sobre uso do Delta-8 tetraidrocanabinol em alimentos

3 min leitura

Em julho de 2023, o Food Safety News divulgou um alerta do FDA para as empresas que utilizam o aditivo Delta-8 tetraidrocanabinol em alimentos.

A FDA determinou que estas empresas estão comercializando produtos adulterados devido à presença ou inclusão do canabinóide Delta-8 (THC), considerado um aditivo alimentar inseguro.

Além disso, esses alimentos estão sendo vendidos em formatos atraentes para crianças, o que pode causar confusão por parte dos consumidores. Dessa forma, a FDA expressa preocupação com essa situação e busca garantir a segurança e a clareza na comercialização de produtos alimentares.

No mês de junho de 2022, a FDA emitiu um alerta aos consumidores sobre o risco de ingestão acidental de produtos alimentícios contendo o aditivo por parte de crianças. Entre 1º de janeiro de 2021 e 31 de maio de 2022, a agência recebeu mais de 125 relatórios de eventos adversos relacionados a crianças e adultos que consumiram produtos comestíveis contendo este aditivo. Em dez deles mencionava-se especificamente que o produto comestível era uma imitação de alimentos populares, por meio de nomes de marcas, logotipos ou imagens semelhantes. Essa semelhança poderia causar confusão com alimentos convencionais.

Devido ao potencial risco de consumo não intencional do ingrediente Delta-8 pelos consumidores, foram emitidos alertas na forma de cartas de advertência, com base na análise e revisão dos sites das empresas envolvidas.

Nas cartas de advertência, a FDA destaca os seguintes pontos de preocupação:

  • Os produtos que contém Delta-8 na sua composição não foram avaliados ou aprovados pela FDA para uso seguro e sua comercialização pode colocar a saúde pública em risco;
  • A FDA recebeu relatórios de eventos adversos envolvendo produtos com Delta-8;
  • Delta-8 tem efeitos psicoativos e intoxicantes;
  • A FDA expressa preocupações acerca dos métodos empregados na produção das concentrações de Delta-8 anunciadas no mercado.
  • A FDA está preocupada com a presença de alimentos que contêm Delta-8, os quais podem ser facilmente consumidos por crianças, devido à atratividade de suas embalagens e rótulos.

Entre as empresas notificadas estão a Delta Munchies LLC (Los Angeles, CA); North Carolina Hemp Exchange, LLC dba NC Hemp Shoppe (Raleigh, NC); Exclusive Hemp Farms/Oshipt.com (Gilroy, CA); The Haunted Vapor Room (Franklin, NJ); Dr. Smoke, LLC aka Dr. S, LLC (Kansas City, MO); Nikte’s Wholesale, LLC (Albuquerque, NM).

Afinal, o que é o Delta-8 tetraidrocanabinol?

O Delta-8 é um canabinóide emergente que tem ganhado popularidade desde a aprovação da Lei de Melhoria Agrícola dos EUA de 2018 (o cânhamo – cannabis – contendo menos de 0,3% de delta-9 foi removido do status de droga).

No entanto, ao contrário do delta-9, que é mais prevalente na Cannabis spp., o delta-8 é naturalmente produzido em quantidades mínimas. Portanto, os produtos delta-8 disponíveis no varejo são, em sua maioria, derivados sinteticamente a partir do canabidiol (CBD), por meio de conversão química.

Um aspecto problemático das moléculas análogas, que são convertidas em laboratório, é que elas podem se transformar em substâncias desconhecidas que interagem com o sistema endocanabinoide. Esse fator é preocupante considerando que os efeitos do delta-8 no corpo humano permanecem amplamente inexplorados, assim como as diferenças farmacocinéticas entre delta-8 e delta-9.

Uma recente análise de produtos delta-8 revelou que a maioria deles apresentava contaminação por metais pesados. Além disso, foram encontradas disparidades entre as composições relatadas e as composições reais desses produtos no mercado.

Cabe ressaltar que existem razões pelas quais a segurança dos alimentos com delta-8 atuais não é clara:

  • Esses produtos são frequentemente comercializados como naturais, embora a planta de maconha produza uma quantidade muito pequena de delta-8, insuficiente para obter extratos de alta concentração de forma lucrativa a partir do material vegetal. Portanto, o delta-8 presente nesses produtos é produzido sinteticamente a partir do CBD.
  • Esses produtos não são regulamentados nem testados rotineiramente por fontes independentes, o que significa que podem conter subprodutos e outros compostos indesejáveis resultantes do processo de síntese.
  • Por fim, o delta-8 não foi extensivamente estudado em relação à sua atividade em seres humanos, o que também contribui para a falta de clareza sobre sua segurança.

É válido mencionar que preocupações semelhantes surgiram em outros momentos em que houve um aumento do mercado da cannabis sem regulamentação adequada. Nessas situações, as indústrias muitas vezes se viram obrigadas a estabelecer suas próprias normas e diretrizes devido à falta de regulamentação governamental.

A notícia do alerta emitido pela FDA em relação ao aditivo Delta-8 tetraidrocanabinol destaca a preocupação da agência com a produção e comercialização de produtos que são atrativos para o consumo infantil.

A presença desse aditivo em produtos alimentares levanta preocupações quanto à segurança e à clareza na sua comercialização. A falta de regulação, testes independentes e a produção sintética do delta-8 a partir do CBD são aspectos problemáticos que contribuem para a falta de clareza sobre a segurança desses produtos. Além disso, a presença de contaminação por metais pesados e a inconsistência entre as composições relatadas e reais desses produtos são questões adicionais que destacam a necessidade de precaução ao consumi-los.

Em vista dessas preocupações, é essencial acompanhar de perto a regulamentação e as pesquisas em relação ao delta-8 tetraidrocanabinol para garantir a segurança dos consumidores.

3 min leituraEm julho de 2023, o Food Safety News divulgou um alerta do FDA para as empresas que utilizam o aditivo Delta-8 tetraidrocanabinol em alimentos. A FDA determinou que estas empresas […]

3 min leitura
1

Fraudes em embalagens de alimentos: como avaliar a vulnerabilidade?

3 min leitura

Temos muitos posts publicados sobre fraude, mas hoje gostaria de trazer um olhar sobre fraudes em embalagens de alimentos e nos insumos para sua fabricação.

A fraude em alimentos no âmbito mundial custa US$ 49 bilhões anualmente e, embora os números exatos sobre fraude em embalagens não estejam disponíveis, ela ocorre no mercado de alimentos embalados.

Segundo a própria definição da GFSI para fraude em alimentos, a embalagem também deve ser considerada. Veja:

 Food fraud é o termo coletivo abrangendo a substituição, adição, adulteração ou falsificação intencional de alimento, ingredientes, embalagem de alimento, rotulagem, informações sobre o produto ou declarações falsas ou enganosas feitas sobre um produto para ganho econômico que pode afetar a saúde do consumidor.

A embalagem com contato direto conhecida como “embalagem primária” deve ser incluída nas análises de perigo à segurança de alimentos (APPCC) e nas avaliações de vulnerabilidade à fraude de alimentos (food fraud).

Além disso, confirmando o compromisso com segurança de alimentos, as próprias empresas fabricantes de embalagem devem avaliar potenciais vulnerabilidades de fraudes e implementar controles para mitigá-los.

Consequências e impactos da fraude em embalagens para alimentos

A fraude de embalagem tem um grande impacto em muitas funções da embalagem, incluindo “usinabilidade”, prazo de validade, sustentabilidade e proteção do produto. Por isso, pode diminuir a vida útil do alimento e aumentar o risco de problemas de segurança de alimentos. 

A migração dos componentes da embalagem para os alimentos varia com base na estrutura final da embalagem, na quantidade de migrantes em potencial e no próprio alimento. Quando a composição da embalagem não é a especificada, pode ocorrer migração acima do esperado, quando por exemplo, substâncias e materiais alternativos são utilizados no lugar das matérias-primas permitidas e aprovadas. 

Desta forma, a fraude em embalagens deixa de ser simplesmente um desvio de qualidade e passa a ser encarada como uma enorme preocupação para a saúde pública, devendo ser gerenciada pelos programas de segurança dos alimentos.

 Alguns exemplos confirmados de fraudes em embalagens de alimentos para ajudar na avaliação de vulnerabilidade:

Ø Resinas, aditivos e revestimentos não aprovados para contato com alimentos sendo apresentados como sendo de grau alimentício

Ø Uso de insumo não declarado na composição da embalagem

Ø Uso de corantes não aprovados para contato com alimentos usados no lugar de corantes aprovados (masterbatch)

Ø Roubo de embalagem para acondicionar alimentos falsificados

Ø Relatórios de laboratório forjados (laudos de ensaio de migração)

Ø Alegações falsas sobre a origem ou pureza de resinas recicladas

Ø Alegações falsas sobre a concentração de componentes reciclados em itens de embalagem acabados

Ø Conteúdo de material reciclado não declarado

Um problema emergente com embalagens primárias está relacionado à ênfase crescente colocada no conteúdo reciclado em embalagens plásticas. Nos últimos anos, várias empresas e jurisdições se comprometeram com metas ambiciosas de conteúdo reciclado e isso levou a um aumento na demanda por matérias-primas recicladas para embalagens plásticas.

Com mais empresas comprometendo-se com plásticos reciclados para suas embalagens de alimentos e com possíveis problemas de abastecimento, as resinas recicladas pós-consumo “falsas” são um risco.

Essas falsificações seriam resinas feitas de materiais virgens, mas comercializadas como contendo conteúdo reciclado pós-consumo

Avaliação de vulnerabilidade às fraudes em embalagens

As avaliações de vulnerabilidade em embalagens podem ajudar a focar os controles, como fazem na indústria de alimentos. 

O requisito adicional 2.5.4 da FSSC22000 determina que:

“A organização deve ter um procedimento documentado em vigor para:

a) Conduzir uma avaliação de vulnerabilidade para identificar e avaliar vulnerabilidades potenciais;

b) Desenvolver e implementar medidas de mitigação para vulnerabilidades significantes.

A organização deve ter um plano de mitigação à fraude em alimentos documentado, especificando as medidas de mitigação que cobrem o processo e os produtos dentro do escopo do SGSA da organização. O plano deve ser apoiado pelo SGSA da organização, cumprir a legislação aplicável e ser mantido atualizado.

Existem disponíveis no mercado algumas ferramentas recomendadas para avaliação de vulnerabilidade e a empresa pode construir a sua própria, desde que atenda os requisitos mínimos necessários para isto.

O importante é ter uma base de dados confiáveis para realizar a pesquisa de ocorrências de fraudes no insumo e produto que está sendo avaliado, nas motivações da cadeia produtiva em cometer fraude e nos controles de detecção existentes. Com base nesta avaliação e na metodologia escolhida pela empresa, as vulnerabilidades significativas indicarão a necessidade da implementação de ações adicionais para mitigá-las e garantir a autenticidade e segurança dos produtos.

Referências:

IFT

Global Food Safety Resource

Packaging World

3 min leituraTemos muitos posts publicados sobre fraude, mas hoje gostaria de trazer um olhar sobre fraudes em embalagens de alimentos e nos insumos para sua fabricação. A fraude em alimentos no […]

2 min leitura
2

MOSH e MOAH: o que já sabemos sobre os perigos do óleo mineral em alimentos

2 min leitura

Nos últimos anos os compostos MOSH e MOAH estrearam na lista de contaminantes de alimentos. Como qualquer outro perigo, a falta de informação e definição de métodos de análise anuviaram as estratégias dos profissionais do setor. Mas quais atualizações temos hoje a respeito desses resíduos de óleo mineral?

Histórico

Sabemos que MOSH e MOAH são compostos derivados de óleo mineral, sendo muito diversificadas as possíveis fontes de contaminação. A evolução dos estudos foi avançando aos poucos ao longo dos anos e contribuindo com com o grau de conhecimento.

Na década de 90, alguns estudos publicaram que MOSH poderia migrar para alimentos a partir de materiais de contato. Mas foi somente no ano de 2009 que um novo método de análise identificou e quantificou também os compostos MOAH.

Neste mesmo ano, o Ministério Federal de Alimentação e Agricultura da Alemanha conduziu um estudo de coleta de dados de migração, que representou o pontapé na regulamentação destes contaminantes na Europa.

Em seguida, a EFSA (European Food Safety Authority) apresentou em 2012 sua preocupação com a saúde, embora a falta de conhecimento trouxesse uma incerteza relevante. Foi quando em 2017 uma coleta de dados motivada pela Commission Recommendation EU 2017/84 levantou informações suficientes para algumas definições provisórias.

Entre elas, concluiu-se que os compostos MOSH não representam risco à saúde humana. Já os hidrocarbonetos aromáticos de óleos minerais (MOAH) podem trazer problemas, de acordo com os especialistas da EFSA.

Há indícios de que um dos dois tipos de compostos MOAH avaliados pela EFSA contêm substâncias genotóxicas que podem causar câncer.

Pesquisas e métodos de análise

Em 2021, um estudo da Foodwatch demonstrou a presença dessa substância em uma gama de alimentos. A instituição compartilhou os resultados cobrando posicionamento da Comissão Europeia e seus membros. Com isso, a EU restringiu os resíduos de óleo mineral em alimentos, mas ainda não os proibiu.

Métodos de análise tornaram-se mais acessíveis com o passar dos anos, estando disponíveis comercialmente em diversos laboratórios.

Assim, o monitoramento também se intensificou, tornando possíveis estudos como o 60 Millions de Consommateurs realizado por um grupo de consumidores de óleo de oliva na França. Nele, foi constatada a presença de hidrocarbonetos saturados e aromáticos em 23 das 24 marcas avaliadas.

Apesar da disponibilidade analítica, nem tudo são flores. Segundo Giorgia Purcaro, Ph.D. em Química de Alimentos:

Os métodos analíticos para análise de MOSH/MOAH em alimentos são particularmente desafiadores porque esses contaminantes estão intimamente relacionados à fração lipídica com a qual compartilham muitas estruturas químicas semelhantes.

Além desses hidrocarbonetos de óleo mineral, figuram também os POSH (hidrocarbonetos saturados oligoméricos poliolefínicos) e PAO (poli alfa olefinas), com origens de migração de embalagens de PE (poliestireno) e PP (polipropileno), e lubrificantes, respectivamente.

Estes compostos análogos a MOSH podem eluir junto ao MOSH e MOAH na análise via cromatografia, dificultando ainda mais a interpretação dos resultados.

Como controlar esses perigos na indústria?

Apesar dos regulamentos ainda não tratarem de forma definitiva dos limites críticos para os compostos MOH, a indústria de alimentos deve considerar este perigo em seu HACCP.

Indo mais adiante, frente a qualquer detecção destes compostos em alimentos, a sugestão existente na Recomendação 2017/84 da União Europeia é investigar as possíveis fontes de contaminação.

Além disso, substituir os lubrificantes de óleo mineral por lubrificantes sintéticos nos locais com risco de contato acidental é uma das alternativas praticadas e incentivadas na indústria.

2 min leituraNos últimos anos os compostos MOSH e MOAH estrearam na lista de contaminantes de alimentos. Como qualquer outro perigo, a falta de informação e definição de métodos de análise anuviaram […]

10 min leitura
2

Cachaça boa é a cachaça segura

10 min leitura

Entre os produtos tipicamente brasileiros, a cachaça se destaca. Sua cadeia produtiva movimenta cerca de R$ 15,5 bilhões anualmente, sendo que 98% dos produtores são de pequeno e médio porte, produzindo em alambiques, especialmente os de cobre. Em volume, porém, 70% da produção ocorre em escala industrial, em colunas de destilação.

O consumo per capita de cachaça no Brasil gira em torno de 6,9 L/ habitante/ ano. A bebida ocupa a 3ª posição como o destilado mais consumido no mundo, perdendo apenas para a vodka em 2°, e o soju, um destilado coreano, que é o 1°.

A cachaça começou num espectro mercadológico bastante popular, mas nos últimos anos vem alcançando um elevado status gastronômico, pois sua fabricação tem chegado ao estado da arte por parte de alguns produtores, e claro, isso vem agregando valor ao produto, e com isso, conquistando novos paladares e mercados.

Por enquanto, apenas aproximadamente 1% da cachaça produzida é exportada. Ainda assim, as exportações em 2022 alcançaram a cifra de 18,47 milhões de dólares, o maior valor dos últimos 12 anos e 54,74% maior que as exportações de 2021.

A cachaça tem recebido diversos prêmios em competições internacionais, fazendo com que entrasse na lista dos destilados mais apreciados do mundo, e somado ao papel de marketing da caipirinha, o mais famoso drink brasileiro, o nosso destilado tem se disseminado mundo afora e atualmente é exportado para mais de 60 países. Entre os principais importadores descatam-se os EUA, com cerca de 18% do total exportado, seguido pela Alemanha com 17%, Paraguai com 12%, França com 7,2%, Portugal com 6,7%, a Bolívia com 5,2%, a Espanha com 5,1%, a Itália com 4,9% e o Reino Unido com 4,1%.

Muito se fala, mas pouco efetivamente se escreveu sobre a história da cachaça, apelidada de pinga, birita, água-que-passarinho-não-bebe, caninha, mé, goró e mais uma centena de outros nomes dependendo da região.

Porém,  há algum consenso de que tenha surgido em algum local do litoral brasileiro entre 1516 e 1532, sendo que o início de sua popularização está intrinsecamente ligado ao ciclo do açúcar no Brasil, compreendido entre a metade do século XVI e a metade do século XVIII. No entanto, a única certeza é que a primeira cachaça produzida em escala comercial ocorreu em 1756 em Pernambuco: a Monjopina.

O nome cachaça provavalmente deriva do espanhol “cachaza”, que significava bagaceira, um destilado obtido a partir da casca da uva. Por analogia, por ser uma bebida ligada inicialmente ao subproduto da produção de açúcar, a mesma palavra virou uma referência para o destilado produzido na colônia brasileira. Logo, cachaza virou cachaça, pelo “abrasileiramento” do português falado por aqui.

Atualmente, segundo o IBRAC (Instituto Brasileiro da Cachaça), a capacidade produtiva do Brasil é de 1,2 bilhões de litros anuais de cachaça, mas a produção efetiva atual é de cerca de 800 milhões de litros.

O Brasil conta com aproximadamente 1.000 produtores que produzem mais de 5.500 marcas de cachaças e aguardentes registradas no MAPA (Ministério da Agricultura e Pecuária). Elas estão disponíveis para comercialização, coleção e degustação pelos apreciadores e colecionadores, considerando também diferentes terroirs, pois a cachaça é produzida em todas as regiões do Brasil, sendo que 68% da produção concentra-se na região Sudeste, 16% no Nordeste, 12% no Sul, 3,5% no Centro-oeste, e menos de 0,5% nos estados do Norte. Confira o mapa a seguir:

Pontos onde há produção de cachaça, com Minas Gerais liderando, seguido em ordem decrescente por São Paulo, Espírito Santo e Rio de Janeiro.

Tecnicamente, a cachaça é uma aguardente com graduação alcoólica de 38 a 48% (v/ v), a 20°C, obtida pela destilação do  mosto fermentado e destilado da cana-de-açúcar (um grupo de espécies de gramíneas perenes altas do gênero Saccharum, tribo Andropogoneae), com características sensoriais peculiares, podendo ser adicionada de açúcares até 6 g/L, conforme artigo 53 do decreto nº 6.871 de 2009 e IN 13 de 29 de junho de 2005.

Toda cachaça é uma aguardente, contudo, nem toda aguardente é uma cachaça.

Veja que para receber o nome “cachaça” o destilado deve prover exclusivamente da cana-de-açúcar, sem adição de extratos e sabores, devendo ser obtido exclusivamente da destilação do mosto fermentado da cana; já o termo aguardente é genérico e pode ser usado para outras bebidas obtidas a partir da fermentação e destilação de diversos insumos. Por exemplo: o uísque e a vodca são aguardentes de cereais, bourbon deve ter pelo menos 51% de milho, steinhäger de trigo (com zimbro), aquavit de batatas ou grãos (com sementes de alcarávia). A tequila é uma aguardente de agave, o soju e o saquê do arroz, o shoochu de batata-doce, o sliovitz de ameixa, o kirschwasser de cereja, o poire de pêra, o conhaque, a grapa, o pisco e o arac (com anis) semelhantemente são aguardentes destiladas da uva, mas pode-se fazer aguardentes de outros insumos, por exemplo, de banana, beterraba, laranja, mandioca como a tiquira, produzida especialmente na região Norte do Brasil, etc.

Diferentes sociedades utilizaram da criatividade e desenvolveram diferentes bebidas destiladas, mas seja de uma origem ou outra, as aguardentes fazem parte da história da humanidade, sendo fundamentais em suas festas e comemorações.

Para complicar um pouquinho mais, pela lei, pode haver também o aguardente de cana. Neste caso, a bebida pode ter graduação alcoólica entre 38% a 54% (v/ v), a uma temperatura de 20ºC, podendo ser feita a partir do destilado alcoólico simples de cana-de-açúcar, ou também, pela destilação do mosto fermentado do caldo de cana-de-açúcar.

A cachaça é uma bebida genuinamente brasileira e integra a identidade nacional, sendo inegável sua grande importância cultural, social e econômica para o povo brasileiro, estando presente em nossas músicas, folclore, lendas, histórias e acompanhando nossa culinária. Por isso, em 2001,  por meio do Decreto 4062, o Governo Federal reconheceu a “Indicação Geográfica Cachaça do Brasil“.

 

“Eu bebo da pinga porque gosto dela,

Bebo da branquinha, bebo da amarela,

Eu bebo no copo, bebo na tigela,

Pura ou temperada com cravo e canela,

Se é pinga, vou pingar no goela, oi lá.”

Trecho de “A Marvada Pinga”, música imortalizado na voz de Inezita Barroso, de autoria desconhecida.

Atualmente sua produção é realizada por grandes destilarias, mas também por pequenos alambiques, e há uma crescente produção artesanal, inclusive de ótimas e premiadas cachaças. Infelizmente, porém, entre os produtores artesanais, existem muitos alambiques que atuam de forma clandestina. Estima-se que sejam a maioria, mais de 85%, portanto, sem registro no MAPA, o que exige do consumidor uma atenção especial quanto à origem do produto.

Visita ao alambique da premiada cachaça Princesa Isabel, na cidade de Linhares, ES.

O processo de fermentação é a etapa mais importante para a qualidade da cachaça, ocorrendo pela ação de leveduras, principalmente a Saccharomyces cerevisae, por apresentar uma melhor resistência a altos teores alcoólicos. Nesta etapa, ocorre a conversão dos açúcares em etanol e outros compostos secundários, alguns com benefícios ao sabor como álcoois superiores e outros que causam malefícios como ácido acético, propanol e acetaldeído.

O controle apurado das variáveis operacionais da fermentação com o caldo de cana com brix entre 14 – 15º, temperatura mantida entre 32 a 34º C, o pH entre 4,5 – 5,0, a contagem de leveduras, o tempo de fermentação e a verificação da formação de bolhas são fundamentais para a eficiência do processo, que dura em média de 24 horas, sendo o teor de sólidos solúveis o indicativo do final do processo.

É imprescindível a assepsia dos equipamentos antes de se iniciar a fermentação, já que a contaminação bacteriana durante este processo pode prejudicar a ação das leveduras, além de resultar em compostos indesejáveis no produto final.

Na destilação da cachaça artesanal há 3 frações distintas do destilado: cabeça, coração e cauda, e para a garantia da qualidade e segurança da cachaça, a separação de cada uma dessas frações é de fundamental importância.

A cabeça é recolhida nos primeiros minutos e corresponde aos primeiros vapores condensados contendo altas concentrações de álcool, geralmente acima de 60% v/v, sendo a que requer maior atenção, pois arrasta elevados teores de metanol, acetaldeído e acetato de etila, indesejáveis e potencialmente perigosos, dependendo da concentração. A fração a seguir é o coração ou a cachaça propriamente dita, sendo seu teor alcoólico entre 38 – 48% (v/ v). Abaixo de uma graduação alcoólica de 38% (v/ v), a cachaça começa a ficar turva e, portanto, indesejável, constituindo a cauda ou “água fraca”. O ponto final da destilação ocorre quando o teor alcoólico do destilado atinge o limite de 14% (v/ v).

Como fica evidente, os perigos microbiológicos não são um problema para a cachaça, afinal, o teor alcoólico da bebida é capaz de inibir este risco. Perigos físicos também não são algo a se preocupar, uma vez que corpos estranhos tornam-se visíveis na bebida, que é translúcida. O problema ocorre com os perigos químicos, que no caso da cachaça podem ser congêneres ou contaminantes.

Muitos contaminantes e congêneres são formados ou introduzidos durante a fermentação e depois podem ser arrastados na etapa de destilação, podendo afetar de forma adversa o produto, trazendo os chamados off flavors ou componentes nocivos para a saúde, entre eles:

  1. Metanol – Também chamado carbinol ou álcool metílico, é um álcool indesejável na cachaça e sua origem se dá pela hidrólise da pectina, um polissacarídeo presente na parede celular da cana-de-açúcar, catalisada pela enzima pectinase durante o processo de fermentação. Por isso, pode aparecer naturalmente no início da destilação, sendo por este motivo, no caso da produção artesanal, considerada uma má prática a comercialização ou reutilização da fração de cabeça. Uma vez ingerido, o metanol diminui o pH sanguíneo afetando o sistema respiratório, podendo levar ao coma, a cegueira e até à morte. Uma destilação modulada e controlada diminui a formação de metanol e seu limite deve ser mantido em no máximo 20 mg/100 ml de álcool anidro;
    1. Para citar um caso, em 1999, no Sudoeste da Bahia, principalmente nos municípios Dário Meira, Ibicuí e Nova Canaã, foi comercializada uma cachaça proveniente de alambique clandestino contaminada com níveis acima de dez vezes o limite permitido de metanol, causando sintomas de intoxicação em mais de 400 pessoas. Destas, 105 foram hospitalizadas e 35 vieram a óbito.  
  2. Carbamato de etila – É um composto potencialmente cancerígeno e representa uma barreira recente à exportação de cachaça. Por isso, não deve constar em quantidade superior a 150 µg/ L. Várias fontes são responsáveis por sua formação, como o tipo de leveduras e os subprodutos do metabolismo delas, contaminação bacteriana, falta de controle de temperatura, do teor alcoólico, da acidez ou do pH. Uma destilação lenta, um ambiente limpo e higienizado, com leveduras e equipamentos adequados, são formas de diminuir a incidência de carbamato de etila;
  3. Álcoois superiores – São desejados por serem os responsáveis diretos pelo odor peculiar da bebida. Contudo, em excesso, diminuem o valor comercial e a qualidade da cachaça. Formam-se em maior quantidade quando a fermentação ocorre de forma desequilibrada. Por isso, o uso de fermentos não selecionados ou reaproveitados da indústria não é indicado. Outros fatores que influenciam são temperatura alta e aumento de acidez, assim como o armazenamento inadequado da cana. A soma dos álcoois isobutílico (2-metil propanol), isoamílicos (2-metil-1-butanol + 3-metil-1-butanol) e n-propílico (1-propanol) não deve ser superior a 360 mg/ 100 ml de álcool anidro;
  4. Acidez volátil – Uma alta acidez pode ser atribuída à contaminação da cana ou do próprio mosto fermentado por bactérias, o que pode ocorrer desde a plantação com ataque de pragas que abrem os canais de contaminação, na forma e tempo de estocagem da cana, ou com uso de fermentos inadequados que fazem com que parte do substrato sofra fermentação acética. Isso também diminui o rendimento da produção. Acidez volátil, expressa em ácido acético, não deve ultrapassar 150 mg/100 ml de álcool anidro;
  5. Cobre – As principais contaminações por cobre, um metal pesado que não deve ultrapassar o limite máximo de 5 mg/L, acontecem por falta de cuidados no alambique ou no sistema de resfriamento, cujos equipamentos são total ou parcialmente feitos de cobre. A primeira destilação deve ser feita com água, de modo a eliminar todos os resíduos, inclusive da limpeza. Ao final, a boa prática dita manter o alambique e as serpentinas cheios com água para evitar oxidação;
  6. Arsênio e Chumbo – São metais pesados que podem estar presentes em soldas inapropriadas feitas nos equipamentos, cujos limites máximos permitidos são de até 100 µg/L e 200 µg/L respectivamente. O chumbo causa danos ao cérebro, sistema nervoso e rins, enquanto o arsênio é classificado como potencial agente cancerígeno. Para evitar contaminação, deve-se sempre realizar reparos no alambique com solda apropriada à base de cobre e nunca usar misturas sem procedência;
  7. Aldeídos – São compostos muito voláteis, de odor marcante, que afetam o aroma das bebidas alcóolicas e são responsáveis pela famosa “ressaca”. Os aldeídos podem estar presentes no caldo, quando a cana é queimada. As cachaças ricas em aldeídos também são provenientes de alambiques que não separam apropriadamente os produtos da cabeça durante a destilação. A intoxicação por aldeídos pode levar a sérios problemas de saúde. Aldeídos totais, em acetaldeído, não devem ultrapassar 30 mg/100 ml de álcool anidro;
  8. Acroleína – Também conhecida como 2-propenal, é uma substância extremamente tóxica e cancerígena formada pela desidratação do glicerol, composto contido na célula das leveduras que foram arrastadas para o alambique, ou por contaminação bacteriana. Descansar o fermentado, também chamado de mosto ou vinho, por algumas horas em dorna volante, para sedimentação da biomassa, reduz o arraste. Quanto mais limpo, menores as chances de contaminações. Sua presença deve ser inferior a 5 mg/100 mL de álcool anidro.

Como visto, a clandestinidade é um problema grave no setor de cachaças. Há um fundo econômico, mas também cultural, com consumidores que valorizam a cachaça de alambique “sem nenhum rótulo”, como se isto fosse um sinônimo de qualidade e “rusticidade”. Contudo, a clandestinidade significa falta de fiscalização e aumenta a probabilidade de produção sem técnica, e, portanto, aumentam os riscos de contaminantes e congêneres off flavors, e logicamente, não há rastreabilidade de origem caso ocorram problemas.

Uma boa cachacinha é um excelente aperitivo, ou um ingrediente fundamental em nossa deliciosa caipirinha, que diga-se, deve ser feita sempre com cachaça branca e nunca com a envelhecida. Porém, escolha produtos de alambiques sérios e registrados, comprometidos com a qualidade e a segurança, para que sua cachaça tenha apenas o melhor desta iguaria alcoólica nacional, e lembre-se, aprecie com moderação.

NOTA DE AGRADECIMENTO: Deixo um agradecimento ao amigo Robson Valle, engenheiro químico, pós-graduado em qualidade da cachaça, que contribuiu com este artigo fornecendo valiosas informações.

Gostou do artigo? Tem alguma curiosidade sobre cachaça para nos contar? Quer me convidar para tomar uma pinga? Deixe seu comentário, ficarei feliz em ler e responder.

Leia também:

Produção de cachaça de qualidade – Esalq/ USP

Fermentação da cachaça – Embrapa

Carbamato de etila em bebidas destiladas – Unesp

Acroleína na cachaça – SBQ

Potencial econômico do setor de cachaça – Sebrae

20 letras de musicas que homenageiam a cachaça – Uol

Fraudes históricas no vinho

Elaboração de vinhos: tradição x BPF

10 min leituraEntre os produtos tipicamente brasileiros, a cachaça se destaca. Sua cadeia produtiva movimenta cerca de R$ 15,5 bilhões anualmente, sendo que 98% dos produtores são de pequeno e médio porte, […]

3 min leitura
0

Embalagem com matéria-prima reciclada – novo requisito na versão 6 da FSSC 22000

3 min leitura

O tema do último encontro do GFSI (abril de 2023) teve como foco a sustentabilidade. Entre as estratégias mais utilizadas pela indústria de embalagens para colaborar com o desenvolvimento sustentável está a utilização de embalagens recicláveis. Não é coincidência que, na versão 6 da FSSC 22000, um novo requisito aplicável somente à categoria de embalagens foi incluído no item 2.5.1, relacionado à gestão de aquisição. Trata-se do seguinte:

“2.5.1 e) A organização deve estabelecer critérios relacionados ao uso de embalagens recicladas como entrada de matéria-prima na produção de material de embalagem acabado e garantir que os requisitos legais e do cliente relevantes sejam atendidos.”

Para início de conversa, este requisito não tem aplicabilidade aos materiais do processo de fabricação que serão reincorporados no produto (ex. aparas), uma vez que o requisito 2.5.1 tem como tema a gestão de serviços e compras de materiais. Neste caso, então, as aparas e subprodutos  são classificados como retrabalho ou reprocesso, que segundo conceito da ISOTS22002-4 é a “reutilização interna de refugo de certos processos de produção em material com a mesma composição” e não deve ser confundido com a denominação e conceito de reciclagem. Mas vale ressaltar que, ainda assim, as aparas e retrabalhos devem cumprir os requisitos de rastreabilidade previstos na ISO22000 (8.3) e de retrabalho previstos na ISOTS22002-4 (4.11), o que vai garantir todos os controles necessários para atendimento legal, de cliente e de segurança de alimentos.

O requisito 2.5.1 e) deixou claro que quando é realizada a aquisição de matéria-prima reciclada para ser incorporada na composição de um material de embalagem de alimentos, critérios devem estar estabelecidos para garantir atendimento legal e de cliente. Isso pode ser feito na própria especificação técnica do material.

O principal e mais importante critério para a segurança de alimentos é que a matéria-prima tenha permissão da Anvisa para o uso em embalagem de alimentos. Todos os materiais de embalagem reciclados podem ser utilizados para embalagem em contato com alimento, exceto elastomérico e plástico que não seja o PET-PCR!

Atualmente, no Brasil, são permitidos:

1-    Plástico PET-PCR

Para embalagem plástica em contato com alimento somente há autorização para uso de PET-PCR conforme Item 9 da Resolução 105/99, Portaria SVS/MS 987/1998 e Resolução RDC 20/08.

Os outros tipos de plásticos reciclados não são autorizados. A partir de estudo de processos tecnológicos específicos de obtenção de resinas a partir de materiais recicláveis, somente foi aprovado pela Anvisa até o momento o PET reciclado regulamentado pela RDC n. 20/08 e pela Portaria SVS/MS 987/1998. Um dos motivos, além do estudo realizado, é que o PET é um polímero pouco aditivado e é formado por monômeros aprovados para o contato direto com alimentos.

2-    Celulósico

Na lista positiva da RDC 88/16, está permitido o uso de fibra celulósica reciclada, porém não podem ser utilizadas fibras recicladas provenientes da coleta indiscriminada de rejeitos que possam comprometer a inocuidade ou afetar as características organolépticas dos alimentos.

3-     Metálico

No item 3.1.11 da RDC 20/07 está autorizado uso de material metálico reciclado desde que sejam submetidos a processos que permita o atendimento das especificações previstas na legislação aplicável.

4-     Vidro e cerâmica

O item 4.8 da Portaria 27/96 determina que todo caco de embalagem de vidro para alimentos poderá ser reciclado sem nenhuma restrição

Para atendimento a este requisito, listo a seguir algumas ações minimamente necessárias:

Ø  –  Realizar levantamento de MP recicladas que são utilizadas na composição da embalagem  e avaliar se são permitidas pela Anvisa;

Ø  –  Elaborar ou revisar especificações de MP reciclada garantindo que os requisitos legais aplicáveis estejam contemplados (ex: resina reciclada precisa de registro na Anvisa);

Ø –   Elaborar ou revisar especificações de produto acabado (embalagem) e Declaração de Conformidade garantindo que os requisitos legais aplicáveis e de cliente estejam contemplados;

Ø  –  Realizar ensaio de migração na embalagem final, em casos aplicáveis, conforme legislação do material;

Ø  –  Assegurar registro na Anvisa para as embalagens que utilizam PET-PCR.

3 min leituraO tema do último encontro do GFSI (abril de 2023) teve como foco a sustentabilidade. Entre as estratégias mais utilizadas pela indústria de embalagens para colaborar com o desenvolvimento sustentável […]

Compartilhar
Pular para a barra de ferramentas