6 min leitura
1

O papel da água eletrolisada na segurança dos alimentos

6 min leitura

As Doenças Transmitidas por Alimentos (DTA) ainda são consideradas um importante problema de saúde pública em nível mundial (WHO, 2015). De acordo com dados do Ministério da Saúde (BRASIL, 2016), mais de 500 surtos e casos de DTA foram registrados no ano de 2015 no Brasil, com uma taxa de letalidade de 0,08%. Desse modo, a Segurança dos Alimentos é de grande relevância, uma vez que visa garantir um alimento seguro ao consumidor pelo controle de todas as etapas da cadeia produtiva até o seu consumo. O grande desafio da Segurança dos Alimentos não é só eliminar os microrganismos patogênicos, mas garantir que o local seja seguro para o processamento, produção e manipulação dos alimentos, além de prevenir a contaminação cruzada e reduzir a carga microbiológica dos alimentos e utensílios utilizados na sua preparação. Na indústria, diversos programas de autocontrole são utilizados visando garantir a qualidade sanitária dos produtos alimentícios. Esses programas incluem a Análise de Perigos e Pontos Críticos de Controle – APPCC (BRASIL, 1998), as Boas Práticas de Fabricação – BPF e os Procedimentos Padrões de Higiene Operacional – PPHO (BRASIL, 2003), entre outros. Dentre eles, o sistema APPCC é apontado como princípio essencial de higiene e segurança dos alimentos (FAO & WHO, 2006), sendo apoiado por diversos órgãos regulatórios internacionais. Além desses programas, agentes químicos são tradicionalmente aplicados como forma de sanitização nas unidades processadoras de alimentos. Como método alternativo de limpeza e sanitização, a Água Eletrolisada (AE) vem ganhando destaque por apresentar vantagens em relação aos sanitizantes comuns, podendo ser utilizada como ferramenta para solucionar os desafios da Segurança de Alimentos.

Diversas aplicações são atribuídas a AE. Desde os anos 80, a AE tem sido utilizada na esterilização de instrumentos médico-hospitalares no Japão. Atualmente, com o desenvolvimento da tecnologia, ela tem sido popularizada na área de alimentos. Autores evidenciam o uso da água eletrolisada como desinfetante alternativo em superfícies e utensílios de aço inoxidável usados na manipulação de alimentos, sendo eficaz na limpeza e na sanitização desses locais. A AE também pode ser utilizada na redução da carga microbiológica de eletrodomésticos na área de alimentação, que são considerados fonte de contaminação cruzada. Sugere-se também um uso promissor na indústria de laticínios. Além disso, a AE pode contribuir para melhorar a qualidade microbiológica de produtos de origem animal e vegetal sem afetar a qualidade sensorial desses alimentos, atuando tanto na redução da carga microbiológica desses produtos, podendo aumentar a sua vida de prateleira, quanto na eliminação de patógenos. A AE tem se mostrado eficiente na redução e na eliminação de patógenos de alto risco como Escherichia coli, Salmonella enteritidis, Listeria monocytogenes, Staphylococcus aureus, entre outros considerados importantes causadores de surtos de DTA. Entre os alimentos envolvidos em estudos e aplicações industriais estão frutas, hortaliças, vegetais minimamente processados, ovos, peixes e carnes. A lavagem de carcaças de animais com AE antes do abate também tem se mostrado eficiente na redução de microrganismos (HUANG et al., 2008; HRICOVA et al., 2008; HATI et al., 2012).

Produção

De um modo geral, a produção da AE se dá pela passagem de uma solução clorada por um equipamento de eletrólise, que provoca a dissociação dos íons através dos eletrodos de carga positiva e negativa. Desse modo, pode ser dividida em três principais tipos de acordo com suas características de potencial de oxirredução (POR), valor de pH e espécie de cloro livre:

– Água Eletrolisada Alcalina (AEA): apresenta POR menor que -800 mV, pH maior que 11 e mais de 95% de cloro livre na forma de íon hipoclorito (OCl).

– Água Eletrolisada Ácida (AEAc): apresenta POR maior ou igual a 1000 mV, pH de 2 a 3,0 e 95% de cloro livre na forma de gás cloro (Cl2).

– Água Eletrolisada Fracamente Ácida (AEFA): apresenta POR de 500 a 900 mV, pH de 5,0 a 6,5 e mais de  95% de cloro livre na forma de ácido hipocloroso (HOCl).

Essas características são importantes, pois estão envolvidas no efeito dos diferentes tipos da AE. Por exemplo, a AEA pode ser empregada como desengordurante por apresentar alta alcalinidade (NaOH). Devido ao seu pH e ao alto valor de POR, a AEAc pode afetar o potencial redox dos microrganismos, promovendo danos nas suas membranas internas e externas, provocando alterações no seu metabolismo. Outro fator importante a ser considerado é controle do pH da AE,  pois influencia diretamente na forma de cloro livre presente em solução. Em relação a isso, o HOCL é o que apresenta maior poder sanitizante em comparação com outras frações de cloro livre devido a sua capacidade de penetração celular. O HOCL se mostra eficaz contra bactérias, fungos e vírus, necessitando de menor tempo de contato para sua ação. Sendo assim, estudos relatam que a AEFA apresenta maior eficácia de sanitização em relação à AEA e até mesmo aos sanitizantes comumente utilizados na indústria (HUANG et al., 2008; HRICOVA et al., 2008;).

Vantagens e desvantagens

Entre as vantagens da utilização da AE, está sua fácil utilização e aplicação, podendo ser produzida no próprio local de trabalho. Para sua produção, requer um equipamento de eletrólise e uma solução clorada (geralmente solução de cloreto de sódio), reduzindo necessidade de transporte e armazenamento de agentes químicos. Além disso, em comparação com desinfetantes clorados comuns, como o hipoclorito de sódio, a AE (em especial a AEFA) não provoca irritação na pele, conferindo segurança ao manipulador. Após seu uso, a AE volta ao seu estado original de água normal, sendo também considerada uma tecnologia segura para o meio ambiente.

O custo do equipamento é considerado uma desvantagem, já que exige alto investimento inicial. A liberação de gás cloro em alguns equipamentos pode gerar algum desconforto para o operador. Ainda, seu potencial de ação é reduzido na presença de matéria orgânica, sendo rapidamente inativada. Por isso é necessário um suprimento constante de AE dependendo da sua finalidade (HRICOVA et al., 2008; HATI et al., 2012).

Certificação

A AE é reconhecida por órgãos norte-americanos como FDA – Food and Drug Administration (agência norte-americana reguladora dos setores alimentícios e de medicamentos), USEPA – United States Environmental Protection Agency (Agência de Proteção Ambiental) e USDA -United States Department of Agriculture (Departamento da Agricultura dos Estados Unidos) para fins de descontaminação de superfícies e na produção e processamento de alimentos. 

Diante do exposto, nota-se a importância da AE na Segurança de Alimentos devido às suas diferentes propostas de utilização: desde a higienização de superfícies até o controle microbiológico e redução de patógenos de alguns alimentos. É importante ressaltar que todos os programas já estabelecidos (APPCC, BPF, PPHO) fazem parte das etapas de controle da cadeia produtiva de alimentos, e a AE pode ser utilizada para contribuir com esse sistema visando garantir a segurança do consumidor.

Referências

BRASIL. Agência Nacional de Vigilância Sanitária. Resolução RDC nº 275, de 21 de outubro de 2002. Dispõe sobre o Regulamento Técnico de Procedimentos Operacionais Padronizados aplicados aos Estabelecimentos Produtores/Industrializadores de Alimentos e a Lista de Verificação das Boas Práticas de Fabricação em Estabelecimentos produtores/Industrializadores de Alimentos. 20p. Diário Oficial da União. Brasília, DF. 23 de out. 2003.

BRASIL. Ministério da Agricultura e Abastecimento. Portaria n. 46, de 10 de fevereiro de 1998. Institui o sistema de análise de perigos e pontos críticos de controle: APPCC a ser implantado nas indústrias de produtos de origem animal. Diário Oficial da União, Brasília, DF. 10 fev. 1998.

BRASIL. Ministério da Saúde. Doenças Transmitidas por Alimentos. 2016, 11p. Disponível em: http://portalarquivos.saude.gov.br/images/pdf/2016/marco/10/Apresenta—-o-dados-gerais-DTA-2016.pdf. Acesso em maio de 2017.

FAO & WHO. Food e Agriculture Organization of the United e World Health Organization. FAO/WHO guindance to governments on the application of HACCP in small e/or less-developed fodd busines. FAO, Food e Nutrition paper. 2006. 84p. Disponível em: <http://www.who.int/foodsafety/publications/fs_management/HACCP_SLDB.pdf>. Acesso em maio de 2017.

FDA & EPA. Certifications of Electrolyzed Water. 2p. 2016 Disponível em: http://www.environize.ca/wp-content/uploads/2015/03/FDA-EPA-Approvals-s.pdf. Acesso em maio de 2017.

HATI, S. et al. Electrolyzed Oxidized Water (EOW): Non-Thermal Approach for Decontamination of Food Borne Microorganisms in Food Industry. Food and Nutrition Sciences, v. 3, p. 760-768, 2012. Doi:10.4236/fns.2012.36102.

HRICOVA, D.; STEPHAN, E.; ZWEIFEL C. Electrolyzed Water and Its Application in the Food Industry. Journal of Food Protection, v.71, n.9, p.1934–1947, 2008. Disponível em http://www.ncbi.nlm.nih.gov/pubmed/18810883. Acesso em maio de 2017.

HUANG, Y-C., HSU, S-Y.; HUANG, Y-W.; HWANG, D-F. Application of electrolyzed water in the food industry. Food Control, v. 19, n. 4, p. 329-345, 2008. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/S0956713507001697. Acesso em maio de 2017.

USDA. U.S. Department of Agriculture. National Organic Program. Policy Memorandum. PM 15-4 Electrolyzed Water. In: National Organic Program Handbook: Guidance and Instructions for Accredited Certifying Agents and Certified Operations.  2 p. 2015. Washington, DC. Sept, 11, 2015.  Disponível em: https://www.ams.usda.gov/sites/default/files/NOP-PM-15-4-ElectrolyzedWater.pdf. Acesso em maio de 2017.

WHO. World Health Organization. WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007-2015. 2015, 268p. Disponível em:  http://apps.who.int/iris/bitstream/10665/199350/1/9789241565165_eng.pdf?ua=1. Acesso em maio de 2017.

Amanda Roggia Ruviaro é farmacêutica formada pela Universidade Federal de Santa Maria e mestre em Ciência e Tecnologia de Alimentos pela mesma instituição. Atualmente, é doutoranda da Faculdade de Engenharia de Alimentos da Unicamp. Tem experiência na área de ciência e tecnologia de alimentos, no desenvolvimento de produtos e na área de microbiologia dos alimentos.

Imagem: Food & Beverage Magazine

6 min leituraAs Doenças Transmitidas por Alimentos (DTA) ainda são consideradas um importante problema de saúde pública em nível mundial (WHO, 2015). De acordo com dados do Ministério da Saúde (BRASIL, 2016), […]

3 min leitura
1

A segurança de alimentos como fator chave para inovação

3 min leitura

Se você pertence a essa área recheada de inovação que é a de alimentos e também se preocupa em conhecer o que come, certamente ficou sabendo do caso da Ooho e sua famosa “água de comer” que Rodrigo García, Pierre Paslier e Guillaume Couche, estudantes de desenho industrial do Imperial College of Art de Londres, desenvolveram recentemente.

Ainda no começo, mas com o foco no impacto ambiental e com a inovação radical em embalagens de água mineral, a empresa pretende aderir a mais mercados. Pesquisadores da Skipping Rocks Lab almejam seu público alvo em bares e restaurantes, aos quais possam talvez desenvolver-se melhor no processo de inserção no mercado atual.

Premiados no Lexus Desing Award de 2014, o conceito do produto envolve claramente a sustentabilidade de uma membrana de resistência média, composta basicamente por derivado de algas, cloreto de cálcio e alginato de sódio, contudo comestível, que permite ser consumida sem deixar rastros no ambiente como garrafas PET ainda fazem. Na realidade, a empresa adota a própria falta da reciclagem de garrafas PET como o problema número um que ela poderia muito possivelmente resolver.

Se você é leitor do Food Safety Brazil, certamente aquela coceirinha atrás da orelha da segurança de alimentos está perturbando toda essa inovação da equipe inglesa nas perguntas: “E a higiene?”, “Como transportaria isso em larga escala?”, “Como poderíamos rotular esse produto?”, “Qual seria o mercado desse produto?” Logo em seguida, um grande NÃO viria em mente. De fato, o próprio time de pesquisadores confessa que não existem respostas para essas perguntas, tornando-se então o atual e grande desafio da equipe Skipping Rocks Lab.

Contudo, é possível perceber um contexto pouco popular, mas muito importante: a presença da segurança em alimentos no desenvolvimento de produtos e na inovação, relação essa que deveria, por si só, bater o martelo da aprovação de qualquer tipo de novo produto alimentício, afinal cuidar da qualidade e segurança de alimentos requer altíssimas responsabilidades.

Outro ponto a ser defendido pelos empreendedores em questão é a sustentabilidade que envolve o produto perante a grande quantidade de lixo gerado pelas garrafas PET. Neste caso, há uma ótima intenção quando o propósito é evitar a violência ao meio ambiente, porém a falta de reciclagem desse material não está ligada à sua própria existência, mas sim à atitude de quem o usa, ou seja, a responsabilidade do descarte do PET é de inteira responsabilidade de quem o consome. Há certa linha de pensamento que norteia o desenvolvimento de novas tecnologias para facilitar o ciclo de consumo, mas por outro lado, você já pensou se existe alguma tecnologia que corrige esse tipo de atitude do consumidor?

Na era das mudanças, as transformações tecnológicas são as mais presentes no nosso cotidiano. Televisões, smartphones e até alimentos ganharam muito mais conceitos do que tinham inicialmente, ficamos cercados de facilidades e deixamos o conceito de inovação à mercê da tecnologia, mas será mesmo que estamos seguros ao permitir isso? Afinal, será que a inovação termina quando a segurança começa?

Na verdade, o produto proposto pela Ooho demonstra claramente esse impasse, apesar de ainda se deparar com os pontos críticos de higiene. A instituição conduz maiores pesquisas que podem, sim, solucionar o problema ambiental de consumo de água a curto prazo. A partir disso é possível perceber que a segurança em alimentos não deve ser encarada como uma dificuldade a ser encontrada no decorrer do processo de desenvolvimento de produtos e de inovação, mas sim como uma preocupação que se alia ao conceito, a fim de justificar o porquê dessa inovação ser necessária.

A inovação inglesa trouxe divergentes sensações para a comunidade global, mas deve-se considerar sempre nesse processo que temos uma grande responsabilidade por dentro de cada inovação: a de garantir que a necessidade do consumidor será cumprida e o produto será seguro para quem o consome. Esta é uma preocupação inerente: não basta fornecer uma alimentação para o globo, é necessário entregar-lhes um alimento seguro do ponto de vista higiênico-sanitário. A segurança na inovação de alimentos é mais do que definir o que deve ou não deve, é inserir uma cultura de segurança de alimentos na inovação. Seja consumidor ou empreendedor, é necessário definir bem o perfil profissional de segurança de alimentos almejado, afinal a segurança de alimentos na inovação não deve ser uma faca de dois gumes.

Escrito por Lucas da Silva Nicoleti, este post foi o vencedor do Concurso Cultural do blog Food Safety Brazil, garantindo ao autor uma vaga de cortesia no III Workshop Food Safety Brazil e o reembolso de suas despesas.

Lucas é técnico em química e graduando em engenharia de alimentos pela USP. Atuou na indústria alimentícia de ingredientes Kerry do Brasil Ltda e tem vivência em pesquisa e desenvolvimento no segmento de sweets’n confectionery. Estagia pela Tacta Food School, participando da administração de cursos da consultoria. 

A comissão organizadora agradece a todos que participaram do concurso e parabeniza o ganhador. Em breve, publicaremos outros posts selecionados. 

Imagem:  Skipping Rocks Lab

3 min leituraSe você pertence a essa área recheada de inovação que é a de alimentos e também se preocupa em conhecer o que come, certamente ficou sabendo do caso da Ooho e […]

2 min leitura
0

Desinfecção de embalagem utilizando radiação ultravioleta – Parte 2

2 min leitura

No post Desinfecção de embalagem utilizando radiação ultravioleta  – parte 1, falamos do princípio de funcionamento da lâmpada UV e seus tipos. 

É importante relembrar que a exposição à radiação UV não destrói explicitamente os microrganismos, mas inibe sua capacidade de reprodução; por esta razão, não podemos achar que esta tecnologia tem o princípio de esterilizar a embalagem, mas apenas o de desinfectar e descontaminar. Por isso, deve existir um trabalho de controle para minimizar o risco de contaminação da embalagem nas fontes, como fornecedores, na estocagem e também para protegê-la dos riscos do meio ambiente.

Quando se fala em eficiência na redução de microbiota na embalagem, é preciso entender alguns parâmetros :

  • A luz UV emitida por uma fonte é expressa em watts (W)
  • A densidade de irradiação (intensidade da radiação UV) é expressa em fluxo em watts por metro quadrado (W/ m2).
  • A dose (intensidade por tempo de exposição) é a densidade de irradiação multiplicada pelo tempo (t) em segundos e expressa em joules por metro quadrado (J/m2), sendo que 1 joule é 1 W.second

A resistência de um microrganismo à luz UV varia consideravelmente. Além disso, o ambiente do microrganismo particular influencia grandemente a dose de radiação necessária para a sua destruição. A dose é severamente limitada pela sua capacidade de penetrar num meio. A penetração é controlada pelo coeficiente (k) da absorção (m²/s).

A radiação UV pode ser aplicada como um tratamento primário, como por exemplo, em potes plásticos, tampas plásticas e metalizadas para redução da multiplicação microbiana.

A tecnologia é simples, mas é importante fazer o projeto com uma empresa especializada que fará todo o trabalho customizado, pois o tamanho dos sistemas é projetado baseado em vários parâmetros, que incluem:
– Tamanho do material
– Configuração da máquina
– Velocidade da linha
– Largura da linha
– Necessidades de redução dos microrganismos
– Configuração da embalagem.

Fontes:

  1. http://www.foodsafetynews.com/2014/01/pasteurization-does-ultraviolet-mean-ultrasafe/#.WA06oMNrjDc
  2. http://www.revistatae.com.br/noticiaInt.asp?id=6102
  3. National Center for Food Safety and Technology, Illinois Institute of Technology, 6502 S. Archer Road, Summit-Argo, IL 60501
  4. http://acquaticos.blogspot.com.br/2010/07/esterilizador-ultravioleta-uv.html

Imagem: Revista TAE 

2 min leituraNo post Desinfecção de embalagem utilizando radiação ultravioleta  – parte 1, falamos do princípio de funcionamento da lâmpada UV e seus tipos.  É importante relembrar que a exposição à radiação […]

3 min leitura
0

Avançam as pesquisas brasileiras para realizar análise microbiológica em minutos

3 min leitura

Um dispositivo capaz de fazer uma análise microbiológica em minutos é o sonho dos profissionais de alimentos.

O blog Food Safety Brazil está acompanhando o empenho dos pesquisadores da Universidade de Caxias do Sul, RS, que realizam um trabalho promissor nesta área. Eles estão desenvolvendo um biossensor para detecção de patógenos, acoplando sensores magnetoelásticos a um método imunológico de atração de bactérias.

Apesar do nome estranho, sensores magnetoelásticos são aquelas tiras antifurto usadas no comércio em geral. A imagem que ilustra o título deste post mostra este tipo de material, da maneira como chega para os pesquisadores. Os biossensores consistem em pequenas tiras destes sensores, revestidas com camadas finíssimas de ouro, sobre as quais se adsorvem diferentes compostos químicos, chamados tióis. Sobre os tióis, são acoplados anticorpos específicos que farão a ligação com a bactéria-alvo presente no alimento analisado. A ligação das bactérias na superfície do biossensor promove alterações de massa e a frequência de ressonância diminui proporcionalmente, sendo medida com um analisador de redes. Por fim, os dados de variação de frequência são convertidos em unidades de colônias de bactérias. A figura abaixo mostra o funcionamento clássico de um biossensor: 


Figura_funcionamentobiosensorc
Num post anterior, destacamos o trabalho do engenheiro químico André Luis Possan. Ele desenvolveu um biossensor com capacidade de analisar amostras contaminadas com E. coli, em 40 minutos, com limite de detecção de 50.000 UFC/mL. Ao final de sua pesquisa, André constatou que ainda era preciso melhorar a superfície da liga magnetoelástica, diminuindo sua rugosidade, para facilitar a ligação das bactérias e alcançar maior eficiência.

servletrecuperafotoPois bem, agora foi a vez de outra pesquisadora, Márcia Dalla Pozza (foto), dar sequência a estas pesquisas. Márcia é engenheira química, tem 26 anos e concluiu Mestrado em Engenharia de Processos e Tecnologias pela Universidade de Caxias do Sul, sob orientação do Dr. Frank P. Missel. Seu trabalho foi melhorar a sensibilidade de detecção do dispositivo que faz a análise microbiológica, avaliando a influência de diferentes tióis no desempenho dos biossensores. Em conversa com o blog, Márcia explica que “os tióis são compostos orgânicos que se adsorvem sobre a superfície da camada áurea por meio da ligação Au-S (ouro-enxofre) presente em uma das extremidades. A outra extremidade da cadeia liga-se com anticorpos para detecção de patógenos específicos”. Márcia informa que os resultados foram favoráveis para a detecção da bactéria E. coli. Utilizando a técnica de microscopia de força atômica, ela constatou que os biossensores com o composto ácido mercaptopropiônico (MPA) mostraram um aumento na captação de bactérias em relação aos outros compostos estudados, porém também foram observados altos valores de desvio padrão, dificultando a reprodutibilidade e confiabilidade do biossensor. “Conseguimos um limite de detecção de aproximadamente 2×10^4 bactérias/mL, com uma eficiência em torno de 70% do biossensor”, comemora a pesquisadora. “Muito trabalho ainda pode e precisa ser feito. Atualmente, no grupo de pesquisa, estuda-se a adsorção dos compostos tióis sobre a superfície do sensor, uma vez que a área de cobertura está diretamente relacionada à sensibilidade e consequentemente à eficiência do dispositivo.  Ainda sobre os compostos tióis, é importante avaliar a hidrofobicidade e a presença de defeitos durante a formação, procurando minimizá-los ao máximo. Para fins comerciais, também é relevante avaliar a estabilidade do biossensor.” 

A pesquisa de Márcia já foi aprovada para publicação em revista científica classificada no Qualis A1 da base Capes e em breve estará disponível ao mundo acadêmico. A engenheira pretende seguir pesquisando. Ainda este ano, ela deve iniciar o Doutorado, na linha de pesquisa de detecção de herbicidas e pesticidas, utilizando microscopias de força atômica. 

Nós, do blog Food Safety Brazil, ficamos na torcida pelo sucesso de Márcia e de todo o grupo de pesquisadores da Universidade de Caxias do Sul, aguardando a tão sonhada análise microbiológica em minutos. 

Leia também:

Pesquisador brasileiro desenvolve biossensor para análise rápida de E. coli

O futuro chegou: dispositivo portátil para detecção de bactérias em alimentos

“Nariz eletrônico” soa alarme para carne deteriorada

3 min leituraUm dispositivo capaz de fazer uma análise microbiológica em minutos é o sonho dos profissionais de alimentos. O blog Food Safety Brazil está acompanhando o empenho dos pesquisadores da Universidade […]

4 min leitura
2

Tendências em alimentos e a segurança de alimentos

4 min leitura

Todos os anos, agências, consultorias, revistas especializadas, sites e outros interessados consultam seus respectivos oráculos para prever o que será o ano seguinte em matéria de tendências. É claro: se os produtores de alimentos souberem para que lado a balança se inclinará na mente do consumidor, poderão estar mais preparados para isso.

Eu, particularmente, considero tais listas de tendências de alimentos um tanto quanto anedóticas. Olho para todas elas com certa desconfiança, pensando a que interesses elas atendem – afinal, me parece improvável que GMO-free esteja entre as tendências, caso um dos patrocinadores da lista seja a principal indústria envolvida em trans-genia de plantas.

Contudo, todavia, no entanto, as listas de tendência de alimentos são uma diversão do período de férias e, quando analisadas no conjunto, podem sim oferecer certa visão geral sobre o mercado de alimentos (desde que não tomadas ao pé da letra).

Pegando a onda, o Instituto de Segurança de Alimentos Australiano (AIFS, na sigla em inglês) publicou um artigo avaliando a segurança por trás de algumas das tendências (já listei 129 delas, então foi um belo recorte que o AIFS fez). Vamos ao que foi avaliado:

  • COMIDA COLORIDA

A questão aqui é se os ingredientes usados para colorir os alimentos são naturais ou não. O Instituto não demoniza os corantes artificiais, apenas prega que tais corantes sejam ingeridos com parcimônia.

Por outro lado, vemos um crescimento do uso de corantes de fontes naturais, e também do próprio alimento (como suco concentrado de beterraba ou cenoura) sendo empregados como corante.

O Food Safety Brazil já falou sobre a segurança no consumo de corantes aqui, aqui e aqui.

  • INSETOS

Se você torce o nariz quando pensa em comer insetos, saiba que este hábito não está tão longe. Aqui no Brasil, na região Sudeste, é (ou era, pois as tradições alimentares estão cada vez mais pasteurizadas) comum comer formiga içá – aquela da bunda grande – frita. Se duvida de mim, veja que existe até receita gourmet com a dita-cuja.

O AIFS considera que os insetos são até mais seguros do que as fontes tradicionais de proteína animal: devido ao seu tamanho, alcançariam as temperaturas de letalidade durante o cozimento mais facilmente.

E a indústria de alimentos já sabe disso – já surgiram start-ups vendendo justamente alimentos à base de insetos:

O Food Safety Brazi já fez uma revisão sobre a segurança neste consumo aqui.

  • NOVOS MÉTODOS DE ENTREGA

A AIFS faz menção aos drones, e como eles impactarão a segurança de alimentos. Bem, é o mesmo impacto de um motoboy ou qualquer outro agente de entrega, não é? A embalagem deve garantir a integridade do produto e a sua manutenção à temperatura adequada.

Drone, bicicleta, motocicleta ou caminhão, a questão é a mesma. E o blog já se pronunciou a respeito: regras do FDA para transporte, transporte de alimentos junto a cargas perigosas (!) e formas de controle de temperatura no transporte.

Informação não falta para quem quer aderir a esta nova tecnologia.

  • VEGETAIS E CARNE ANÁLOGA

Quase todas as listas trazem a tendências vegetais – é, queridos carnívoros, o mundo está migrando para o vegetarianismo, e a tendência não tem volta.

Isso quer dizer que ninguém mais vai comer carne no futuro? Provavelmente não. O futuro pertence ao reino do “cada um faz o que quer”, ao invés do “todo mundo faz o que eu mando” que vivemos ainda hoje (principalmente em países conservadores como o Brasil).

Pois o AIFS faz a ressalva de que esta é uma tendência que tende (redundância, eu sei) à maior segurança de alimentos. Por quê? As nossas queridas bactérias tendem a se desenvolver melhor em alimentos neutros e ricos em proteína.

Contudo, os leitores do Food Safety Brazil sabem que todo o cuidado é pouco com vegetais crus. Já vimos Salmonella em abacate, pepino, e nos “supergrãos” como chia, macadâmica, gergelim, girassol, entre outros.

Sem falar que nos vegetais nos preocupamos com OUTROS perigos: agrotóxicos abundam.

Ou seja: não tem escapatória – tem que conhecer a origem dos alimentos para ter confiança e comer sem medo.

  • SUBPRODUTOS E DESPERDÍCIO DE ALIMENTOS

Finalizando a lista, a tendência que mais apareceu na lista das 129 compiladas também está na avaliação do AIFS: redução do desperdício de alimentos. Não tem como discutir que esta é uma das tendências mais preciosas dentro da lista, e fico muito satisfeita de ver que o mundo finalmente acorda para o absurdo de termos tanto desperdício frente à fome.

O AIFS faz apenas a ressalva de que o uso dos subprodutos – que até então viravam resíduo ou eram utilizados para finalidades menos nobres – deve atender à todas as Boas Práticas de Fabricação.

O Food Safety Brazil já falou sobre iniciativas para reduzir o desperdício de alimentos.

Eu, sinceramente, vejo que é um grande desafio da indústria, a considerar a forma como o material em reprocesso é tratado dentro das fábricas.

Quem já andou um pouco por aí viu que o reprocesso dificilmente está devidamente embalado, que as embalagens e condições de shelf-life para este item dificilmente estão determinadas nas Fichas Técnicas de Produção, e que a taxa de utilização fica ao sabor do vento.

Pode ser também eu que tenha o dedo podre, vai saber? 😉

Para mim, ficou faltando a análise da segurança da impressão 3D de alimentos (podem encontrar uma revisão sobre o assunto aqui). Já temos exemplos em massas, confeitos de açúcar e gomas – e o que mais não vem pela frente?

A criatividade e a imaginação dos nossos técnicos de alimentos é que vão dizer.

4 min leituraTodos os anos, agências, consultorias, revistas especializadas, sites e outros interessados consultam seus respectivos oráculos para prever o que será o ano seguinte em matéria de tendências. É claro: se […]

5 min leitura
1

Pesquisador brasileiro desenvolve biossensor para análise rápida de E. coli

5 min leitura

Desenvolver métodos rápidos para a detecção de microrganismos patogênicos em alimentos é uma prioridade para a saúde pública. Pesquisas científicas recentes têm demonstrado que o sonho de conseguir um aparelho portátil capaz de analisar diretamente um alimento e gerar um resultado rápido e confiável está cada vez mais próximo. Agora é a vez de um pesquisador brasileiro apresentar um estudo inovador e extremamente promissor em relação a isso.

O engenheiro químico André Luís Possan (foto), gaúcho de 36 anos, desenvolveu um biossensor magnetoelástico para detecção rápida da bactéria Escherichia coli em água e alimentos. O trabalho foi apresentado como Dissertação de Mestrado em Engenharia de Processos e Tecnologias da Universidade de Caxias do Sul, RS.

Sensores magnetoelásticos são comumente utilizados como marcadores antifurtos no comércio em geral. No estudo de André, para criar o biossensor com capacidade de detectar e quantificar bactérias, o sensor magnetoelástico foi somado a um método imunológico de atração de bactérias. No processo de montagem, o biossensor foi coberto com sucessivas camadas de diferentes materiais para permitir, ao final, a atração de bactérias em sua superfície. Inicialmente, foram aplicadas camadas de espessuras nanométricas de cromo e ouro, que possibilitam a adsorção de um composto orgânico chamado cistamina (CYS) e a formação de camadas auto-organizáveis na superfície do sensor. Em seguida, foi introduzido um anticorpo relacionado com o patógeno alvo para fazer especificamente a ligação com a bactéria presente no meio contaminante. Veja abaixo uma ilustração das camadas do biossensor:

fig1

Figura 1. Processos de construção do biossensor magnetoelástico para a detecção e quantificação da E. coli

A figura 1 evidencia que, após a ligação com a bactéria, foi inserido novamente o anticorpo primário e depois um anticorpo secundário que se liga especificamente no primário. Esse anticorpo secundário foi marcado com fluoresceína, composto que emite fluorescência quando visto com filtro apropriado no microscópio. Assim, foi possível visualizar as bactérias que foram ligadas no processo imunológico e causaram a mudança de massa na superfície da liga.

A partir da mudança de massa causada pela ligação das bactérias na superfície do biossensor, ocorrem alterações nas frequências de ressonância magnética. Para medir estas alterações, foi criado um sistema de leitura composto por analisador de redes e solenoide, demonstrado na figura 2.  

fig2

Figura 2. Sistema de leitura de frequências de ressonância de biossensor magnetoelástico (adaptado de referência)

Na pesquisa, a detecção e contagem do microrganismo ocorreu em soluções contendo uma diluição seriada de E. coli. O tempo para a leitura das amostras com o biossensor foi de cerca de 40 minutos, quando ocorre a saturação das ligações disponíveis na superfície do biossensor.

Em entrevista concedida ao blog Food Safety Brazil, o pesquisador forneceu mais detalhes sobre o dispositivo e também falou sobre seus objetivos e os trabalhos recentes para melhorar a sensibilidade da técnica. Confira:

FSB– Você acredita que será possível realizar análises microbiológicas rotineiras por biossensores em curto prazo? Quais seriam as principais dificuldades para isto?

ALP – Sim, o objetivo é desenvolver um sistema portátil de baixo custo e que use os biossensores magnetoelásticos como transdutor. Em termos de dificuldade, estamos melhorando a superfície da liga magnetoelástica com diminuição da rugosidade, para que as camadas que são colocadas na superfície sejam planas e dispersas, facilitando a ligação das bactérias e melhorando a eficiência do método.

FSB– A técnica desenvolvida em seu trabalho já foi ou poderá ser patenteada?

ALP – Atualmente, não há patentes para um dispositivo completo com o uso de biossensores magnetoelásticos. Pensaremos em patentear quando possuirmos um sistema com melhoria na eficiência.

FSB – Em sua Dissertação, o foco das análises foi a E. coli. Para cada tipo de bactéria será preciso desenvolver um biossensor específico? 

ALP – A especificidade é relacionada com o tipo de anticorpo que é acoplado no conjunto de bioconjugado, sobre a liga magnetoelástica. Desta forma, podemos montar um sensor individual para uma bactéria específica ou um conjunto de biossensores para detectar e quantificar diferentes bactérias.

FSB – Foi feita alguma estimativa do custo analítico usando este biossensor? 

ALP – Os custos comerciais não foram contabilizados no estudo, mas especulamos um valor em torno de 15 reais por sensor, em nível de pesquisa, sendo que o valor maior vem do anticorpo, item mais caro de todos.

FSB – Durante sua pesquisa, você testou vários tipos de superfícies para os biossensores e o limite de detecção para a E. coli no melhor tipo esteve na ordem de 50.000 UFC/mL, o que pode ser considerado alto para este micro-organismo em alimentos. É possível aprimorar o método para níveis de detecção inferiores, como 10 UFC/mL, por exemplo?

ALP – Sim, é possível. A eficiência do sensor esteve em torno de 60%, entre os valores teóricos e os encontrados experimentalmente. Ficou evidenciado através da microscopia eletrônica de varredura (link da dissertação) que uma camada de cistamina (CYS) revestiu de forma dispersa sobre a superfície da liga, formando um desenho que chamamos de “Nazca Lines”. Também é evidenciado que nem toda a liga foi coberta com a CYS, e isso repercute diretamente na eficiência, pois a CYS adsorve na liga magnetoelástica, o anticorpo liga na CYS através de um intermediário (crosslinker) e o anticorpo liga com a bactéria. Se não tem CYS em toda a superfície, a sequência de bioconjugado não se completa. Estamos trabalhando nessa parte, avaliando porque a CYS não cobre toda a superfície da liga, utilizando derivações de concentração, tempo de aplicação, temperatura e agitação. Com a melhoria da eficiência, é possível reduzir o limite de detecção e também detectar menores concentrações de bactérias.

FSB – Será possível testar diretamente um alimento líquido, por exemplo?

ALP – Sim, é possível e esse é o objetivo final: aplicar biossensores magnetoelásticos em soluções contendo bactérias provenientes de leite, carne, urina, sangue, entre outros.

FSB – Atualmente, em seu trabalho de Doutorado, você permanece numa linha de pesquisa semelhante. O que exatamente, você está pesquisando agora? 

ALP – Atualmente, trabalhamos na resolução de problemas provenientes dos biossensores magnetoelásticos, mas com outro método. Como a sensibilidade do biossensor magnetoelástico ainda deve ser melhorada, estamos analisando o processo de adsorção de compostos tíós (cistamina, cisteamina, ácido mercaptopropiônico) sobre a superfície de bioeletrodos, através de métodos eletroquímicos. Conhecendo os parâmetros ideais de adsorção como temperatura, concentração, tempo e agitação, teremos os parâmetros ideais para aplicar no método dos biossensores magnetoelásticos. O método eletroquímico opera com energia, a qual permite verificar a adsorção da CYS. No outro método somente aplicávamos a CYS sem verificar a adsorção por mudança de massa e usando valores conhecidos nas referências bibliográficas. A mudança de massa era somente das bactérias, por causa da sensibilidade. Para melhorias no sistema e na busca de maior sensibilidade de detecção e quantificação, estamos em parceria com a universidade Ca’ Foscari de Veneza na busca de conhecimento sobre a tecnologia de fabricação de nanoeletrodos, através do processo seletivo da Capes PDSE 2016/2017.

FSB – Você já publicou artigos em revistas científicas internacionais, sendo que alguns foram estudos realizados durante o desenvolvimento do biossensor. Um artigo final, com a conclusão do estudo, já foi publicado?

ALP – Sim, temos um artigo publicado em janeiro deste ano na revista internacional Materials Science and Engineering, de classificação Qualis A1 em Engenharias II base Capes, com fator de impacto de 3,338. O nome do artigo é:  Effect of surface roughness on performance of magnetoelastic biosensors for the detection of Escherichia coli.

Em alguns dias teremos um novo artigo com estudos mais completos sobre o assunto, com microscopias de força atômica das superfícies e eficiência para três tipos de tióis, em trabalho desenvolvido pela mestranda Marcia Dalla Pozza, de Bento Gonçalves, RS.

O blog Food Safety Brazil parabeniza o pesquisador André Luís Possan e lhe agradece pela especial participação em nosso artigo de hoje. Esperamos publicar mais informações sobre estas pesquisas assim que as novidades forem surgindo.

Leia também:

Avançam as pesquisas brasileiras para realizar análise microbiológica em minutos

Batata geneticamente modificada, que não escurece e produz menos acrilamida, é liberada nos EUA

“Nariz eletrônico” soa alarme para carne deteriorada

5 min leituraDesenvolver métodos rápidos para a detecção de microrganismos patogênicos em alimentos é uma prioridade para a saúde pública. Pesquisas científicas recentes têm demonstrado que o sonho de conseguir um aparelho […]

4 min leitura
0

Nanotecnologia e a Segurança dos Alimentos: preciso entender esta relação?

4 min leitura

Você deve estar se perguntando por que deveria entender a relação entre nanotecnologia e a segurança de alimentos. Esta é uma dúvida pertinente, já que tão pouco ouvimos falar sobre nanotecnologia.  

Talvez você não saiba, mas na comunidade científica é consenso que a nanociência e suas aplicações tecnológicas têm potencial para inovar a ciência e indústria de alimentos. Assim como talvez desconheça o fato de que, no mundo real, este potencial é explorado e a nanotecnologia tem sido incorporada em diferentes etapas da cadeia de produção de alimentos. Aliás, acho que você não se atentou aos números, pois a prospecção é de que o financiamento federal de países líderes em pesquisa e desenvolvimento em nanotecnologia, que já é elevado, aumente.  

Não conseguiu imaginar os impactos na economia global, ambiental, na produção industrial, na regulamentação e na saúde e vida das pessoas? Então, prezado leitor, SIM. Conhecer a relação nanotecnologia e alimentos é fundamental e você precisa saber como isso afeta (ou afetará) a segurança dos alimentos produzidos com esta tecnologia. Você, enquanto profissional envolvido com a Segurança de Alimentos, precisa entender essa relação para se aprimorar, se preparar para os futuros desafios que a popularização desta tecnologia trará. Enquanto consumidor, precisa entender esta relação para que o seu consumo seja consciente. Aos meros curiosos, esse é um prato cheio!

Certamente, entender a relação entre nanotecnologia e alimentos e as implicações para a Segurança dos Alimentos é uma tarefa complexa. Principalmente porque ambas as áreas da ciência são multidisciplinares. O primeiro passo, então, é entender o princípio fundamental da nanociência e nanotecnologia. Partindo de uma explicação muito simples, podemos entender que nanociência e nanotecnologia são o estudo e a aplicação de coisas extremamente pequenas e pode ser usado em todos os outros campos da ciência, tais como química, biologia, física, ciência dos materiais e engenharia.

O prefixo “nano”, presente nos dois termos, é derivado de uma palavra grega que significa “anão”.  Em uma definição mais técnica, indica a bilionésima parte de uma unidade, no caso o metro. Colocando de maneira lúdica, podemos comparar os tamanhos de um nanômetro e de um metro como sendo uma bolinha de gude para o tamanho da terra respectivamente, ou podemos dizer que um nanômetro é a quantidade de barba humana que cresce no tempo que se leva para levantar a navalha à face.  É justamente a dimensão nanométrica das partículas que é o grande diferencial, pois há uma distinção no comportamento de partículas nano em relação às partículas macro do mesmo elemento químico.

Esta distinção no comportamento acontece, pois conforme há a redução do tamanho à nanoescala, há um significante aumento na razão área superficial e volume. Consequentemente, mais átomos ficam disponíveis para reagir e isso acaba mudando a natureza das forças de interação entre as moléculas do material. Esta mudança pode resultar em diferentes propriedades físico-químicas, que podem oferecer aplicações funcionais de interesse industrial. Essas aplicações tecnológicas em dispositivos, objetos e alimentos é o que conhecemos como nanotecnologia e a nanociência é o estudo dos princípios fundamentais das partículas e estruturas nanométricas.

Este comportamento distinto proporciona avanços incrementais na elaboração de produtos já conhecidos e na introdução de novos produtos. Na produção industrial, sua aplicabilidade, de um modo extremante singular, alcança a produção de cosméticos, fármacos, equipamentos médicos, energia, segurança, tecidos, produtos biotecnológicos e do setor agroalimentar.

Como exemplo de produtos que atualmente estão no mercado, temos os têxteis antibacterianos, protetores solares transparentes, tecidos que repelem água e odor, tinta livre de arranhões para automóveis, revestimentos repelentes de sujeiras, janelas autolimpantes, bolas de tênis elásticas, raquetes de tênis mais rígidas e, o grande alvo do nosso interesse, os nanoalimentos, ou seja, alimentos que possuem aplicação de nanotecnologia em alguma etapa de sua produção.

Bem, meu caro leitor, deu para ver que entender os detalhes que permeiam as nanotecnologias em alimentos não é tarefa simples, mas se sua leitura o trouxe até aqui, então você já sabe o fundamental para entender as aplicações nanotecnológicas na cadeia produtiva de alimentos e quais as implicações para a segurança dos alimentos. 

Para mais detlahes, consulte o posicionamento da EUROPEAN COMMISSION.

Um link interessante sobre os investimentos para 2016 é o da NATIONAL NANOTECHNOLOGY  INITIATIVE  (NNI), uma iniciativa americana.

Alguns estudos clássicos sobre os fundamentos da nanociência e nanotecnologia:

FEYNMAN, R. P. “there’s plenty of room at the bottom.” Engineering and science 23, n. 5,  p. 22-36, 1960.

KOVVURU, S. K.; et al. Nanotechnology: the emerging science in dentistry. Journal of orofacial research, v.2, n.1, p. 33-36, 2012.   apud  TANIGUCHI, N. 1974. On the basic concept of ‘nano-technology.’ in: proceedings of the international conference on production engineering, tokyo, 1974. Tokyo: japan society of precision engineering.

Alguns trabalhos que embasaram este post:

ADAM, S F. C.; BARBANTE C. Nanoscience, nanotechnology and spectrometry.  Spectrochimica acta part b, Italia, v. 86, p. 3-13, 2013.

ASSIS, L. M. de. Características de nanopartículas e potenciais aplicações em alimentos. Campinas, v. 15, n. 2, p. 99-109, 2012.   

BROWN, J.;  KUZMA J. Hungry for Information: Public Attitudes Toward Food Nanotechnology and Labeling. Review of Policy Research, USA, v. 30, n. 5, 2013.

GREINER, R. Current and projected applications of nanotechnology in the food sector. Nutrire: rev. Soc. Bras. Alim. Nutr.j. Brazilian soc. Food nutr., são paulo, sp, v. 34, n. 1, p. 243-260, 2009.

HUANG, C.; WU, Y. State-led technological development: a case of china’s nanotechnology development. World development, Netherlands,  v.  40, n. 5, p. 970–982, 2012.

SEKHON, B. S. Food nanotechnology – an overview. Nanotechnology, science and applications, India, v. 3, p. 1-15,  2010.

MARTINS, P. Nanotecnologia e meio ambiente para uma sociedade sustentável. Estud. Soc,    México,  v. 17,  n. 34, 2009 .

SEKHON, B. S. Food nanotechnology – an overview. Nanotechnology, science and applications, India, v. 3, p. 1-15,  2010.

SIQUEIRA-BATISTA, R. et al. Nanociência e nanotecnologia como temáticas para discussão de ciência, tecnologia, sociedade e ambiente. Ciência & educação, v. 16, n. 2, p. 479-490, 2010.

4 min leituraVocê deve estar se perguntando por que deveria entender a relação entre nanotecnologia e a segurança de alimentos. Esta é uma dúvida pertinente, já que tão pouco ouvimos falar sobre […]

2 min leitura
2

Desinfecção de embalagem utilizando radiação ultravioleta – Parte 1

2 min leitura

Antes de falar sobre a aplicação da luz UV para desinfecção de embalagens é importante entendermos um pouco mais sobre o princípio de funcionamento deste processo. UV é a sigla para ultravioleta, tipo de radiação eletromagnética que pode ser dividida de acordo com o comprimento eletromagnético:

  • Ondas longas – UVA: 320-400 nm;
  • Ondas médias – UVB: 280-320 nm;
  • Ondas curtas – UVC: 200-280 nm;

lanza1

A luz ultravioleta pode ser gerada por duas fontes:

  • Fonte Natural (Sol) que produz o UVA e UVB;,
  • Fonte Artificial (lâmpadas) que produzem o UVA, UVB e UVC.

As lâmpadas UVA e UVB são utilizadas para bronzeamento artificial, e a mais conhecida, luz negra que utilizamos nas fabricas como armadilha de inseto, produzem raios luminosos na faixa de 350 nanômetros, atraindo os insetos por conta de sua parcela de cor ultravioleta, violeta e azul.

Já as lâmpadas UVC promovem uma ação sobre os microrganismos. A radiação destas lâmpadas é perigosa para os nossos olhos, devendo sempre utilizadas em locais vedados, e manusear com óculos de proteção de modo que luz não chegue a nossa vista.

A exposição à radiação UVC nos microrganismos como bactérias, vírus, fungos, protozoários, algas e leveduras, não destrói explicitamente os microrganismos, mas inibe sua capacidade de reprodução.

Pois a absorção da luz pelo seu material genético (ácido nucleico) acarreta em um  rearranjo da informação genética provocando o rompimento de cromossomos, mutações genéticas e inativação de enzimas.

2016-11-13-1

As lâmpadas UVC usadas têm um princípio de funcionamento idêntico ao de uma lâmpada de neon. A única diferença é a luminescência do mercúrio utilizada no lugar da lâmpada de neon. Existem dois tipos de lâmpadas UVC classificadas em:

  1. Lâmpada de baixa pressão: A mistura de vapor de mercúrio e de pós fluorescentes contidos na lâmpada em quartzo é utilizada a baixa pressão, operando a uma temperatura baixa e com baixo consumo. As lâmpadas de baixa pressão emitem essencialmente radiação monocromática a um comprimento de onda de 253,7nm;
  2. Lampadas de Média á Alta pressão (com alta intensidade UV): São do tipo de mercúrio de média a alta pressão, caracterizadas principalmente por uma saída muito maior do que as opções UVC de baixa pressão. As lâmpadas de média a alta pressão produzem uma vasta gama de comprimentos de onda, de 100 nanômetros para maior que 700 nanômetros, bem dentro do espectro de luz visível.

Fonte:

  1. Food Safety News;
  2. Revista Tae;
  3. National Center for Food Safety and Technology, Illinois Institute of Technology, 6502 S. Archer Road, Summit-Argo, IL 60501;
  4. Acquaticos.

2 min leituraAntes de falar sobre a aplicação da luz UV para desinfecção de embalagens é importante entendermos um pouco mais sobre o princípio de funcionamento deste processo. UV é a sigla para […]

2 min leitura
3

Melhor trabalho de Segurança de Alimentos | CBCTA 2016

2 min leitura

De 24 a 27 de outubro de 2016 aconteceu, em Gramado-RS, o XXV Congresso Brasileiro de Ciência e Tecnologia de Alimentos (CBCTA), e teve como tema “Alimentação: a árvore que sustenta a vida”, com o intuito de promover debates e atualizações que contemplem a sustentabilidade na produção de alimentos. 

Dentre 1500 trabalhos, foram selecionados os melhores em cada área de pesquisa. O trabalho destaque em segurança de alimentos teve como título “Efeito de Bacillus spp. sobre o crescimento, produção de esporos e produção de Ocratoxina A por Aspergillus westerdijkiae em um meio de cultura a base de café”.

De forma mais prática, ele conseguiu identificar 3 espécies de Bacillus que possuem grande competitividade frente ao fungo produtor da Ocratoxina A, no cultivo de café. Lembrando que a Ocratoxina A é uma micotoxina tóxica para fígado e rins, e é considerada possivelmente cancerígena para humanos. 

Esse estudo tem grande relevância para o futuro do agronegócio do café, uma vez que elimina ou, ao menos, reduz a toxina deste cultivo sem a necessidade de utilização de agrotóxicos.

O Blog conseguiu conversar com o autor desta pesquisa, Dr. Tiago Centeno Einloft, e a seguir apresentamos seu relato:

Nosso trabalho, que foi premiado no evento, na realidade é um pequeno pedaço do meu trabalho de doutorado, que envolve a busca de potenciais agentes de biocontrole, ou seja, microrganismos com a capacidade antagônica a algum fitopatógeno ou contaminante de alimentos. O controle biológico, no nosso caso, visa ao mesmo tempo reduzir ou inibir por completo a contaminação fúngica e a produção de micotoxinas em alimentos e a redução do uso de agrotóxicos, tendo em vista que o controle biológico é um método “alternativo” ao uso de fungicidas químico-sintéticos. 

Encontramos três espécies de bactérias do gênero Bacillus que demonstraram grande capacidade competitiva e antifúngica, frente a diversos fungos produtores de micotoxinas de diversos alimentos. O trabalho premiado no evento relata resultados do efeito destas três espécies sobre o crescimento, produção de esporos e produção de Ocratoxina A pelo fungo Aspergillus westerdijkiae, que é considerado atualmente o principal produtor de Ocratoxina A no café.

Resumidamente, os experimentos deste trabalho foram realizados todos in vitro, em um meio de cultura tendo o próprio café como base. As três bactérias foram capazes de reduzir o crescimento fúngico entre 76-95%, reduzir a produção de esporos em até 10 vezes e reduzir as concentrações finais de Ocratoxina A entre 60-97%, ou seja, foram extremamente efetivas neste substrato em controlar o Aspergillus westerdijkiae. Os resultados são extremamente promissores, porém, precisamos agora avaliar a ação destas bactérias quando aplicadas in vivo, ou seja, diretamente nas plantas de café”

Parabéns, Tiago. Sucesso!

Entrevistado: Dr. Tiago Centeno Einloft. Biólogo formado pela PUC-RS (2009), Mestre em Ciência e Tecnologia de Alimentos pela UFRGS (2012) e Doutor em Fitotecnia com ênfase em Fitopatologia (2016).

2 min leituraDe 24 a 27 de outubro de 2016 aconteceu, em Gramado-RS, o XXV Congresso Brasileiro de Ciência e Tecnologia de Alimentos (CBCTA), e teve como tema “Alimentação: a árvore que […]

3 min leitura
0

Indústria 4.0

3 min leitura

O blog Food Safety Brasil recebeu uma cortesia para participar do VII SIMCOPE, Simpósio de Controle de Qualidade do Pescado, que aconteceu em São Paulo, de 9 a 11 de outubro. Este ano a temática do evento tratou de “Estratégias para aumentar o consumo de pescado”. Vamos transmitir a você, leitor, alguns pontos importantes abordados durante o VII SIMCOPE. Hoje falaremos sobre o conceito de Indústria 4.0, uma tendência que já começa a se instalar na indústria de pescados espanhola.

Ao longo dos anos a forma de manufatura dos produtos foram mudando e todas estas revoluções alcançaram o setor de alimentos, desta vez a história não vai ser diferente. Veja na imagem as fases que passamos.

ind4-0

O número 4.0 faz referência as fases da revolução industrial, estamos entrando na quarta. A primeira com as maquinas a vapor. A segunda, marcada pela introdução na indústria da energia elétrica e combustíveis derivados do petróleo. A terceira foi protagonizada pelo avanço tecnológico e sistemas de computadores.

A indústria 4.0 é o início da planificação, uma tendência que está ligada em tentar ser mais eficiente em toda cadeia, utilizando recursos da robótica e automação, garantindo desse modo mais competitividade.

Na pratica são todos os equipamentos e máquinas de processo trocando informações entre si, e disponibilizando essas informações numa grande base de dados capaz de tomar decisões, no nível gerencial ou de forma autônoma.  

Durante o SIMCOPE, o Secretário Geral, Juan Vietes, da Associação Nacional de Fabricantes de Conserva de Pescado e Marisco da Espanha, a ANFACO CECOPESCA, explicou que a complexidade de transferir este conceito para indústria de beneficiamento de pescados está na grande diversidade da matéria-prima e de seus parâmetros de qualidade.

Por esse motivo, a ANFACO CECOPESCA vem investindo em tecnologias para aprimorar o conhecimento sobre pescados e mariscos afim de alcançar um modelo de processamento para pescados que agregue valores nutritivos e saudáveis para o consumidor.

Quando questionado sobre como este modelo lida com a segurança de alimentos, uma vez que a matéria-prima é super perecível e sensível, o Sr. Juan Viestes é bem pontual em afirmar que tal modelo de processamento consegue perfeitamente, por exemplo, monitorar os padrões físico-químicos e microbiológicos, de maneira continua, automatizada e segura.  Viestes, afirmou que isto já é realidade em uma grande indústria de beneficiamento de pescados na Espanha e que até 2020 o país terá um grande número de empresas neste padrão.

Olhando para este tipo de panorama podemos transferir esse conceito para todo o segmento de alimentos e imaginar como esta indústria se comportará em um futuro próximo.  Veja esta imagem:

ind4-0-1

No exemplo acima conseguimos ver a aplicação do conceito de Industria 4.0 em uma planta sucro-alcooleira. Todas as informações e demandas são processadas online em um único banco de dados. As decisões são tomadas a partir do cenário apresentado pelo cruzamento de informações, de maneira automática, baseada em um banco de dados Big Data. Essa é a indústria do futuro, a 4.0!  

Referências:

Automação Industrial, Industria 4.0: Uma visão da automação Industrial. Acesso em 13 de Outubro de 2016.

Citisystms, O que é a Industria 4.0 e como ela vai impactar o mundo. Acesso em 13 de Outubro de 2016.

3 min leituraO blog Food Safety Brasil recebeu uma cortesia para participar do VII SIMCOPE, Simpósio de Controle de Qualidade do Pescado, que aconteceu em São Paulo, de 9 a 11 de […]

Compartilhar
Pular para a barra de ferramentas