3 min leitura
0

Perigos químicos emergentes identificados pela EFSA

3 min leitura

A European Food Safety Agency – EFSA (Agência Europeia de Segurança de Alimentos) – recentemente publicou um relatório técnico sobre perigos químicos emergentes relacionados à segurança de alimentos para humanos e animais, compreendendo o período de 2020 a 2023.

Perigos químicos emergentes são aqueles que eram desconhecidos ou pouco mencionados até então. Durante o levantamento de dados pela EFSA, diversas fontes foram consideradas, como: projetos de avaliação da EFSA, como Screener Project, mudanças climáticas, desafios dos oceanos e outras ferramentas de dados (ex. JRC TIM Analytics tool e EuroCigua I and II projects).

A identificação destes perigos químicos emergentes foi baseada em análises a partir de uma abordagem multidisciplinar, considerando aspectos toxicológicos, químicos, epidemiológicos e outras informações relevantes.

No projeto SCREENER, a EFSA realizou avaliação de 212 substâncias químicas. Destas, 15 foram priorizadas por resultados de análises quantitativas em amostras de diversos alimentos. Na tabela abaixo são apresentadas 12 dessas substâncias, sendo que 3 ainda carecem de mais estudos (3,4-dimethylaniline, quinoline, n-methylacetamide).

Com base no TIM Analytics tool, desenvolvido pelo Joint Research Centre (JRC), 60 químicos foram analisados, baseados na lista de 212 substâncias do EFSA e em outros químicos analisados utilizando o “TIM Technology” e “TIM News”. Nos estudos, foram considerados cerca de 3.000 artigos. Os químicos emergentes identificados são apresentados nas tabelas abaixo. A Tabela 2 refere-se aos resultados usando a ferramenta “TIM Technology”, enquanto a Tabela 3 usou a “TIM News”.

Com relação às mudanças climáticas, o CLEFSA Project identificou uma lista de 19 químicos emergentes, apresentados na Tabela 4, que representam impacto à saúde pública por serem caracterizados como novos perigos, pelo aumento à exposição de um perigo conhecido. Na Tabela 5, são apresentados perigos de variação de micro/macro nutrientes nas matrizes de alimentos.

Os projetos EuroCigua I and II identificaram ocorrências de ciguatoxinas, resultado da bioacumulação e biotransformação por precursores de toxinas produzidos por dinoflagelados Gambierdiscus spp. e Fukuyoa spp., com registro de um total de 209 casos em 34 surtos de ciguatera na União Europeia de 2012 a 2019.

Por fim, o projeto “Food and feed safety vulnerabilities in the circular economy” (Vulnerabilidades na segurança dos alimentos e de rações na economia circular), com base em diversos estudos, identificou alguns perigos químicos emergentes, como: metais pesados (em particular, altos níveis de Cd e Ni em pré-pupas), dioxinas, bifenilos policlorados (PCBs), hidrocarbonetos aromáticos policíclicos (HAPs), hidrocarbonetos de óleo mineral, medicamentos veterinários, pesticidas e a absorção de alérgenos por insetos do substrato (ex. glúten).

Além destes, também são apresentadas duas tabelas com alguns outros químicos que atualmente não podem ser concluídos como perigos emergentes, devido à insuficiência de dados e informações.

O estudo completo pode ser acessado diretamente no site da EFSA, clicando aqui.

Imagem em destaque gerada por inteligência artificial

3 min leituraA European Food Safety Agency – EFSA (Agência Europeia de Segurança de Alimentos) – recentemente publicou um relatório técnico sobre perigos químicos emergentes relacionados à segurança de alimentos para humanos […]

3 min leitura
0

Nova página do FDA: o que precisamos saber sobre microplásticos e nanoplásticos em alimentos

3 min leitura

 

No cenário atual, os plásticos são essenciais em uma variedade de produtos de consumo e industriais, abrangendo desde brinquedos e eletrodomésticos até cosméticos, dispositivos médicos, componentes de veículos, tecidos e materiais de construção. Apesar disso, a reciclagem e a incineração de plásticos são limitadas, resultando em uma acumulação significativa em aterros sanitários e no ambiente. A poluição plástica é onipresente, visível em áreas terrestres, riachos, rios, costas e oceanos.

Em 2022, a produção mundial de plásticos atingiu o recorde de 400,3 milhões de toneladas métricas, representando um aumento de aproximadamente 1,6% em relação ao ano anterior. Essa tendência de crescimento na produção de plásticos começou na década de 1950, impulsionada pela versatilidade e utilidade desses materiais.

A maioria dos plásticos não se biodegrada rapidamente, e ao longo do tempo, devido à exposição aos elementos ambientais, eles se fragmentam em partículas menores, conhecidas como microplásticos e nanoplásticos. Estes materiais podem permanecer como contaminantes marinhos ativos por até 450 anos.

A presença de microplásticos e nanoplásticos em alimentos é uma questão crescente, principalmente devido à contaminação ambiental nos locais de cultivo de alimentos. Embora não haja evidências científicas suficientes para afirmar que esses microplásticos e nanoplásticos migram de embalagens plásticas para alimentos e bebidas, a exposição humana a eles pode ocorrer através do ar, alimentos e absorção pela pele.

A preocupação com os impactos dos microplásticos é um foco crescente nos últimos anos, atraindo a atenção de formuladores de políticas, organizações ambientais e cientistas em todo o mundo. A busca por dados, informações e estratégias eficazes para mitigar seus efeitos no meio ambiente e na saúde humana é uma prioridade.

Em 2024, a celebração do Dia Mundial do Meio Ambiente reforça a necessidade urgente de combater a poluição plástica, um dos maiores desafios ambientais de hoje. O objetivo é aumentar a conscientização global e promover ações concretas para a proteção do meio ambiente.

Com base neste contexto, visando promover maior conscientização e material técnico informativo, a Food and Drug Administration (FDA) dos EUA lançou uma página específica para esclarecer as preocupações sobre microplásticos e nanoplásticos.

Algumas evidências sugerem que esses materiais estão entrando no suprimento de alimentos, principalmente através do ambiente. Apesar de não haver evidências científicas atuais de que os níveis de microplásticos ou nanoplásticos detectados em alimentos representam um risco à saúde humana, a FDA continua monitorando a situação.

A página da FDA inclui informações sobre saúde, regulamentação e ciência. Em termos de saúde, estudos mostram que microplásticos e nanoplásticos foram encontrados em amostras humanas, mas os potenciais efeitos na saúde ainda são pouco compreendidos, e mais pesquisas são necessárias. A Agência de Substâncias Tóxicas e Registro de Doenças dos EUA e o Centro Nacional de Saúde Ambiental dos Centros de Controle e Prevenção de Doenças estão trabalhando para avaliar os riscos à saúde humana e compartilharão suas descobertas com a comunidade científica.

No campo científico, a FDA reconhece que, embora existam muitos estudos sobre microplásticos e alguns sobre nanoplásticos, há lacunas significativas na pesquisa. A falta de definições padronizadas, materiais de referência, métodos de coleta e preparação de amostras, além da ausência de controles de qualidade adequados, dificulta a avaliação de risco regulatória. Além disso, os métodos disponíveis para detectar nanoplásticos são menos confiáveis devido ao tamanho minúsculo dessas partículas.

A FDA está comprometida em avançar na ciência por meio da análise de metodologias de teste e outros trabalhos relacionados, incluindo a participação em grupos de trabalho governamentais e interinstitucionais. A agência também está monitorando a pesquisa sobre microplásticos e nanoplásticos em alimentos, buscando desenvolver, validar e implementar métodos analíticos para a tomada de decisões regulatórias.

A FDA não possui regulamentações que autorizem microplásticos ou nanoplásticos como ingredientes acidentais em alimentos. Para plásticos usados em contato com alimentos, a legislação exige que todos os materiais sejam aprovados antes de serem comercializados. A agência avalia dados de testes para garantir que a exposição do consumidor seja segura.

A responsabilidade legal recai sobre as empresas que cultivam, produzem alimentos ou fabricam produtos destinados ao uso com alimentos. Se a FDA determinar que os níveis de microplásticos ou nanoplásticos tornam os alimentos inseguros, a agência tomará medidas regulatórias.

Pode-se inferir que na busca pela segurança dos alimentos, a FDA permanece à frente, vigilante e comprometida em garantir que os produtos disponíveis no mercado norte-americano atendam aos padrões de qualidade e segurança. Através de regulamentações, monitoramento contínuo e pesquisa científica avançada, a agência trabalha para proteger os consumidores de potenciais riscos, incluindo a presença de microplásticos e nanoplásticos em alimentos.

À medida que a ciência evolui e novas informações se tornam disponíveis, a FDA adapta-se, atualizando suas diretrizes e práticas para manter a saúde pública como sua prioridade máxima. Com a página recém-lançada sobre microplásticos e nanoplásticos, a agência oferece uma ferramenta valiosa para educar o público e divulgar suas ações.  Conheça a página aqui.

Imagem gerada por inteligência artificial

3 min leitura  No cenário atual, os plásticos são essenciais em uma variedade de produtos de consumo e industriais, abrangendo desde brinquedos e eletrodomésticos até cosméticos, dispositivos médicos, componentes de veículos, tecidos […]

3 min leitura
0

Micotoxinas em alimentos são mais comuns do que você imagina!

3 min leitura

O termo micotoxina é derivado da palavra grega “mykes” que significa fungo e do latin “toxican” que significa toxinas. Designa um grupo de compostos produzidos por algumas espécies fúngicas durante seu crescimento. Micotoxinas em alimentos podem causar doenças ou morte quando ingeridas pelo homem ou animais.

As micotoxinas são contaminantes naturais que desafiam o controle da segurança dos alimentos. Estima-se que cerca de 25% de todos os produtos agrícolas do mundo estejam contaminados por tais substâncias.

As principais micotoxinas de importância global são: ocratoxina A, tricotecenos, zearalenona, fumonisina e aflatoxinas.

Micotoxinas e os correspondentes produtos de fungos toxicogênicos

No último relatório RAASF de 2023 (Rapid Alert System for Food and Feed – sistema para intercâmbio de informações sobre notificações referentes à segurança de alimentos entre os países europeus), as aflatoxinas estão entre as Top 10 notificações, pelo perigo, categoria do produto e origem, apresentando 85 notificações, atrás de resíduos de pesticidas, Salmonella e migração.

Notificações por perigo, categoria de produto e origem

Fonte: RASFF, 2023

As micotoxinas ocorrem em uma extensa classe de alimentos e estão envolvidas em uma série de doenças humanas e animais. Podem ser cancerígenas, mutagênicas, teratogênicas e imunossupressoras. A capacidade de algumas micotoxinas de comprometer a resposta imune e, consequentemente, reduzir a resistência a doenças infecciosas é hoje amplamente considerada o seu efeito mais importante, principalmente nos países em desenvolvimento.

Os fungos que invadem sementes e grãos em geral são frequentemente divididos em dois grupos: fungos do campo, que infectam o produto ainda no campo, e fungos de armazenamento, que invadem o grão pouco antes e durante o armazenamento.

Os fungos do campo requerem uma umidade relativa de 90-100% para crescerem. Os principais gêneros são Cephalosporium, Fusarium, Gibberella, Nigrospora, Helminthosporium, Alternaria e Cladosporium que invadem grãos e sementes durante o amadurecimento e o dano é causado antes da colheita. Estes fungos não se desenvolvem normalmente durante o armazenamento, exceto em milho armazenado com alto teor de umidade.

Os fungos de armazenamento, como por exemplo, o Aspergillus, Penicillium, Rhizopus e Mucor, em condições favoráveis, desenvolvem-se com rapidez durante o processo de cultivo, colheita, transporte e armazenamento.

Os principais fungos produtores de micotoxinas, conhecidos como micotoxicogênicos, correspondem ao gênero Aspergillus, Penicillium e Fusarium.

Nas tabelas abaixo, estão as principais micotoxinas, fungos produtores, ocorrência em alimentos, destacando o impacto em cereais, leite e derivados, chás, café e algumas frutas.

Micotoxinas, fungos produtos e ocorrência em alimentos

Fonte: EMBRAPA, 2015

Principais efeitos de algumas micotoxinas na saúde humana e animal

Fonte: Embrapa, 2015

Um ponto relevante foi a escolha do Brasil pela FAO para ser o estudo de caso sobre micotoxinas em cereais. Ainda há muitos desafios neste tema, mas estamos avançando em técnicas e ações de mitigação para o controle de micotoxinas no Brasil e no mundo.

Referência: Micotoxinas: Importância na Alimentação e na Saúde Humana e Animal – Embrapa, 2007 

Renata Cerqueira é farmacêutica e bioquímica, com especializações em Qualidade e Produtividade, Ciência e Tecnologia de Alimentos, Cosméticos e Segurança dos Alimentos. Mestre em Toxicologia de Alimentos e doutoranda em Ciência dos Alimentos. Docente em cursos de especialização de segurança de alimentos e de gestão da qualidade. Possui 27 anos de experiência em Gestão de Controle e Garantia da Qualidade em indústrias químicas e de alimentos.

Leia também:

Micotoxinas em alimentos processados: devo me preocupar?

3 min leituraO termo micotoxina é derivado da palavra grega “mykes” que significa fungo e do latin “toxican” que significa toxinas. Designa um grupo de compostos produzidos por algumas espécies fúngicas durante […]

6 min leitura
0

Risco de dioxinas e furanos nos alimentos

6 min leitura

Entre os riscos de contaminantes químicos potenciais nos alimentos, um dos mais temidos são as dioxinas e os furanos. São compostos solúveis em gordura (lipofílicos) e, assim, bioacumulativos na cadeia alimentar, especialmente associados com carne, leite e seus derivados.

Dioxinas e furanos são duas classes de compostos aromáticos tricíclicos, de função éter, com estrutura quase planar e que possuem propriedades físicas e químicas semelhantes.

Nestes compostos, os átomos de cloro se ligam aos anéis benzênicos, possibilitando a formação de um grande número de congêneres: 75 para as dioxinas e 135 para os furanos, totalizando 210 compostos.

Das 210 dioxinas e furanos existentes, 17 compostos com substituições nas posições 2, 3, 7 e 8 destacam-se sob o ponto de vista toxicológico. A toxidade aguda mais elevada é para o 2,3,7,8-tetraclorodibenzo-p-dioxina (2,3,7,8-TCDD), que é ultrapassado somente por algumas outras toxinas de origem natural. Veja a tabela a seguir:

A contaminação em pequenas doses não é facilmente perceptível, porque em curto espaço de tempo não gera sintomas, mas como são cumulativas no organismos, podem causar intoxicações a médio e longo prazo.

Problemas comumente associados com estas moléculas são a cloroacne, que se apresenta como um tipo de erupção, cistos ou fissuras semelhantes à acne na pele, além de manchas escuras e mudanças nas funções do fígado.

Porém, os casos podem ser mais graves. As dioxinas e os furanos foram incluídos na lista de substância cancerígenas do programa Nacional de Toxicologia (NTP) dos EUA, com base nos estudos do Instituto Nacional da Saúde (NHIS – National Health Interview Survey) em 2001. Até então, eram classificados pela Agência de Proteção Ambiental dos EUA (USEPA – United States Environmental Protection Agency) no grupo B1 (provável carcinogênico).

As evidências disponíveis apontam fortemente que a TCDD exerce seu efeito carcinogênico primariamente por meio de sua efetividade como agente promotor de estimulação de replicação de células de maneira reversível e inibindo apoptoses.

O 2,3,7,8-TCDD tem a propriedade de se tornar um produtor de proteínas se inserido nas células do corpo. Ele penetra no núcleo da célula e combina-se com o DNA, depois direciona a função das células para a produção de proteínas, o que resulta finalmente em um enfraquecimento do sistema celular, inclusive o imunológico.

ROTAS DE EXPOSIÇÃO

As rotas de exposição identificadas incluem exposição direta pelas emissões atmosféricas e de chaminés e exposição indireta pela contaminação do solo e de produtos alimentícios, água e outros elementos.

ar > solo > vegetais > animais > seres humanos

O isômero 2,3,7,8-TCDD é extremamente estável quimicamente e é consideravelmente insolúvel em água e em muitos compostos orgânicos, mas é muito solúvel em óleos e gorduras. Assim,  suas propriedades fazem com que não seja levado pela chuva, tornando-se um resíduo cumulativo.

A sequência de reações de formação dos PCDD e PCDF não é bem entendida ou conhecida, mas existem três teorias básicas para a ocorrência desses compostos em incineradores:

  1. Ocorrem como constituintes em pequeníssimas quantidades, traços, no próprio resíduos e uma parte passa através do incinerador, sem transformação;
  2. São produzidos durante a incineração ou em caldeiras, a partir de precursores, como o PCB (bifenila policlorada), os pentaclorofenois e os benzenos clorados;
  3. São produzidas a partir de materiais não diretamente relacionados a esses compostos (ex.: produtos de petróleo em geral, hidrocarbonetos clorados, íons cloreto inorgânico e plásticos).

A 1ª hipótese tem sido descartada nos casos em que a temperatura de combustão dos fornos é alta o suficiente para destruir os PCDD e PCDF, como ocorre na incineração de resíduos em que a temperatura está próxima ou acima de 900ºC e o tempo de residência é alto (1 a 2 segundos).

A 3ª hipótese é a mais aceita, pelo mecanismo conhecido como síntese “de novo” que permite chegar a moléculas complexas a partir de moléculas simples por reações elementares entre C, H, O e Cl.

Observa-se a formação de dioxinas, furanos e compostos relacionados com o benzeno e fenóis clorados no carbono residual coletado na saída de sistemas de combustão (região de temperatura entre 300 a 400ºC), quando na presença de HCl, O2 e H2O. Essas reações são catalisadas por vários metais, óxidos metálicos e silicatos, também presentes no material particulado arrastado.

Por isso, sua geração está associada a processos de combustão que podem ocorrer em:

  1. Incineradores de lixo municipal, de resíduos industriais, de lodos residuários e hospitalares;
  2. Plantas de preparação e termelétricas de carvão;
  3. Queima ao ar livre de resíduos de madeira;
  4. Veículos automotores;
  5. Fumaça de cigarro;
  6. Lareiras que queimam madeira;
  7. Aciarias;
  8. Fundições de cobre;
  9. Outros processos similares.

Tal síntese ocorre especialmente quando na combustão há presença de subproduto da sínteses de herbicidas, desinfetantes e outros; PCB (formação de furanos somente); componentes agente laranja (2,4,5-T e 2,4-D); benzenos clorados; compostos de cloro e bromo assemelhados; diversos derivados de petróleo.

O NOTÓRIO CASO BELGA

O caso mais conhecido de alimentos contaminados com dioxinas e furanos ocorreu em 1999, quando um produtor de Roulers, norte da Bélgica, ficou intrigado com a falta de apetite de seus frangos e com a diminuição da produção de ovos.

Nesta ocasião, os veterinários levantaram a hipóteses de uma contaminação por dioxina na ração dos frangos.

Certificados da hipótese, o governo belga estimou que 80 mil toneladas de ração potencialmente contaminada foram fornecidas a 1400 fazendas, o que corresponde a metade das granjas daquele país, sendo que 40% de produção suína e 17% da pecuária foram atingidas.

O governo da Bélgica, apenas pela hipótese de algumas fazendas não terem se submetido ao controle de qualidade dos seus rebanhos, resolveu interditar 230 fazendas e proibir a comercialização de centenas de milhares de animais.

Vários países na Europa, EUA, Japão e inclusive Brasil cancelaram as exportações de produtos granjeiros provenientes da Bélgica, tais como linguiças, carne de aves, de gado, leite e derivados, o que evidentemente levou o país a ter um prejuízo de milhões de euros.

O Ministro da Agricultura da Holanda teve de renunciar após descobrirem que conscientemente havia importado ração de origem belga potencialmente contaminada com dioxina.

A Nestlé suspendeu temporariamente a produção em sua fábrica de chocolates na Bélgica. Em Paris e na França, a cadeia McDonalds recolheu do mercado toda sobremesa à base de leite, pois o fornecedor de produtos para fabricação de sorvetes era uma companhia belga.

Inicialmente as autoridades belgas não concluíram se a dioxina teve origem numa fábrica de Ghent ou se veio de material vendido à fábrica por fornecedores que reaproveitam azeite e gorduras usados em restaurantes.

Houve muitas hipóteses sobre a origem da contaminação. Por isso, foi investigada uma ampla gama de possibilidades: detergentes, pesticidas, tintas etc., mas ao final, a ração diária do rebanho foi identificada como principal responsável pela contaminação.

Vários componentes da ração foram analisados separadamente e o farelo de polpa cítrica, proveniente justamente do Brasil, foi identificado como fonte potencial mais provável de contaminação.

A rastreabilidade demonstrou que esta polpa cítrica tinha sua acidez neutralizada por cal (CaO) e este foi identificado como principal contaminante potencial: a cal é obtida pela combustão do CaCO3 em fornos, e se este processo for realizado sem os devidos cuidados e com a utilização de materiais impróprios como combustível (como plásticos, pneus, madeira fumigada, etc), pode haver formação de dioxinas e furanos que vão se impregnar na cal.

Rastreabilidade da possível rota de contaminação da polpa cítrica por dioxinas.

Milhares de toneladas de polpa cítrica foram destruídas no exterior e outras milhares de toneladas deixaram de ser exportadas pelo Brasil.

PARA CONCLUIR

Dioxinas e furanos são perigos normalmente de baixa probabilidade na cadeia produtiva de alimentos, exceto quando as rotas produtivas esbarram direta ou indiretamente com suas fontes geradoras. No entanto, quando ocorrem, são de alta gravidade, seja pelos danos à saúde humana que devem ser o elemento de consideração prioritária, como também pelos colossais prejuízos econômicos que podem ocasionar em decorrência do rompimento de contratos e consequente perda de credibilidade em relação aos produtores.

Leia também:

Bioacumulação de pesticidas e dioxinas em moluscos bivalves

Severidade de perigos químicos em alimentos

Medidas de controles de perigos químicos à segurança dos alimentos

Europa publica relatório sobre resíduos de dioxina em alimentos

Poluentes Orgânicos Persistentes: eles estão entre nós

Como interpretar laudos de dioxinas e PCBs? – Parte 1 de 2

Como interpretar laudos de dioxinas e PCBs? – Parte 2 de 2

6 min leituraEntre os riscos de contaminantes químicos potenciais nos alimentos, um dos mais temidos são as dioxinas e os furanos. São compostos solúveis em gordura (lipofílicos) e, assim, bioacumulativos na cadeia […]

5 min leitura
0

Cerveja envenenou 6000 pessoas por arsênio e matou mais de 70 na Inglaterra

5 min leitura

Nos anos 1900, mais de 6.000 pessoas na Inglaterra foram envenenadas por cerveja contaminada com arsênio, resultando na morte de mais de 70.  Estima-se que essa grande crise de segurança de alimentos foi se alastrando silenciosamente por anos, por causa de um erro sistemático de diagnóstico.

Os médicos atribuíam aos pacientes “bons de copo” a sentença de neurite periférica, vinculando os sintomas ao alcoolismo, sem enxergar algo muito mais grave que estava acontecendo. As vítimas apresentavam severa fraqueza muscular e dormência nas mãos ou nos pés.

Foi então que o inconformado médico Ernest Septimus Reynolds iniciou uma extensa pesquisa para entender a epidemia. Ele começou com o levantamento de dados de ocorrência na cidade de Manchester, que era muito maior comparado com Londres e outras mais distantes.

Outras cidades das proximidades tiveram suas estatísticas de internações aumentadas, sendo que, em comum, todos os pacientes tinham o currículo de bebedores  regulares de cerveja. Alguns deles apresentavam também alterações na pele, como vermelhidões, descamações, ou pele pálida. Outro ponto comum é que pertenciam às classes sociais mais desvaforecidas, ou então eram indigentes e ou alcoólatras. Contudo, a pesquisa mostrou que essa doença não afetava da mesma maneira os bebedores de vinho ou uísque e também que a quantidade consumida era baixa a moderada em muitos casos. Pesquisando as causas para a fraqueza muscular, amostras de cervejas foram coletadas e foi detectado arsênio. Era hora de rastrear a causa-raiz.

Foi fraude em cima de outra fraude

Uma vez identificadas as cervejarias afetadas, investigou-se a origem do contaminante. Verificou-se que o arsênio estava presente no açúcar invertido fornecido às cervejarias pela Bostock & Co., de Garston. Para reduzir os custos no mercado cervejeiro inglês, algumas cervejarias substituíram o malte de cevada de alta qualidade por malte de baixa qualidade, suplementado com açúcar invertido. Essa prática era um tanto controversa e fez parte da discussão do movimento “Pure Beer”, quando se abriu um inquérito sobre o uso de substitutos da cerveja. Este inquérito, que começou em 1896 e terminou em 1899, concluiu que os substitutos da cerveja não eram “materiais deletérios” sob a Lei de Venda de Alimentos e Medicamentos de 1875 e que não era necessário regulamentar. Bem, para alguns era uma fraude, mas para outros fazia parte de um padrão de “qualidade alternativa”, justamente a qualidade que aquele público consumidor podia comprar.

Lembrando que o açúcar invertido é obtido por hidrólise ácida do açúcar comum (sacarose), que é aquecido na presença de um ácido para formar glicose e frutose. Essa tecnologia era empregada comercialmente desde pelo menos 1814. A Bostock & Co. usou ácido sulfúrico para realizar a hidrólise ácida. Este ácido, adquirido da Nicholson & Sons e, era feito de piritas que continham arsênico, que não era eliminado no processo.

A John Nicholson & Sons, de Leeds, fornecia ácido sulfúrico para a Bostock & Co. desde 1888. Também fornecia para outras duzentas cervejarias. Durante a maior parte do relacionamento comercial, o ácido fornecido era isento de arsênico, com o que hoje em dia chamamos de “food grade”. No entanto, em março de 1900, a Nicholson começou a fornecer ácido sulfúrico não purificado contaminado com arsênio. Essa prática continuou até novembro de 1900, quando se descobriu que o ácido era a causa do surto. Nicholson alegou que não conhecia o uso intencional do ácido por Bostock e que poderia ter fornecido ácido livre de arsênio se isso tivesse sido especificado.

Bônus: o carvão da secagem do malte também estava contaminado

Os peritos da época tinham outras frentes de pesquisa e não se deram por satisfeitos com a conclusão de que o ácido sulfúrico sozinho foi a causa-raiz do problema.  Eis que uma segunda fonte de contaminação foi identificada: a cevada maltada. Para realizar a secagem do malte, utilizavam-se fornos a coque ou carvão. O coque é um tipo de combustível derivado da hulha. Quando o arsênio estava presente no combustível, ele se depositava na cevada antes da maceração, permanecendo no produto final. A investigação sobre o surto revelou que a maioria dos casos de neuropatia alcoólica endêmica em Manchester foram, na verdade, envenenamento por arsênio mal diagnosticado, sendo esta rota alternativa responsável pelo envenenamento de milhares de pessoas nos anos anteriores ao surto.

Comportamento do mercado e punição aos fabricantes

Como sempre ocorre após uma crise dessas, de largo impacto na opinião pública, medidas foram tomadas. As autoridades da época determinaram que qualquer cerveja produzida a partir do açúcar invertido da Bostock fosse imediatamente recolhida e, se fosse considerada contaminada, destruída. Além disso, nenhuma cerveja deveria ser expedida sem ter sido previamente testada, e certificados que verificassem a sua ausência de arsênio deveriam ser emitidos com a cerveja.

Após a divulgação da causa do envenenamento pela mídia, notou-se uma redução considerável no consumo de cerveja na região.

Qualquer semelhança não é mera coincidência. Escândalos sempre mexem com a opinião pública, o que pode ser conferido nas publicações de noticiário do Brasil sobre o famoso caso de uma cervejaria no Brasil que causou  mortes e sequelas em várias pessoas.

Caso Backer abala mercado que cresce cerca de 30% ao ano

Prejudicados pelo caso Backer e pandemia, cervejeiros só veem recuperação em 2023

Em defesa de seu mercado, cervejarias e pubs usaram a panfletagem e os cartazes (como o mostrado abaixo) para divulgar que seus produtos eram livres de arsênio. Outras deixavam claro que não utilizavam açúcar do fornecedor culpado e que faziam análises do produto.

Quanto ao recall, a resposta da indústria cervejeira foi variada. Houve uma reação de compromisso com a segurança de alimentos forte e imediata  liderada pela grande cervejaria de Manchester Groves e Whitnall, que chegaram a enviar telegramas a todas as tabernas e pousadas que haviam comprado sua cerveja. As cervejarias descartaram milhares de barris de cerveja jogando-os nos esgotos da cidade.

Outras cervejarias demoraram a tomar uma atitude, sendo necessário criar uma lei segundo a qual seriam multadas se a sua cerveja ainda pudesse ser comprada pelos investigadores. Além disso, pubs foram multados por vender cerveja contaminada,  mesmo tendo sido notificados pelo fabricante sobre a presença de arsênio.

A Bostock & Co. entrou em falência e processou a Nicholson & Sons por danos, por violação de uma condição implícita na Lei de Venda de Mercadorias de 1893. O caso foi julgado no Tribunal Superior: o juiz concedeu a Bostock a indenização do valor do ácido contaminado e o valor de seus produtos perdidos, mas nenhuma indenização especial pela perda de reputação ou pelos danos reclamados pelos cervejeiros, decorrentes do uso do produto contaminado na fabricação de seu açúcar. A Nicholson & Sons sobreviveu e mais tarde foi adquirida por outra empresa.

Os efeitos sobre o mercado cervejeiro foram efêmeros e o consumo de cerveja foi retomado ao longo do ano. As tentativas de reviver o movimento da cerveja pura foram anuladas pelo relatório da comissão técnica e pelo fato de que o arsênio estava presente tanto na cevada maltada quanto no açúcar. Parecia não haver efeitos diretos na legislação resultante do incidente.

O dia seguinte… danos além dos efeitos agudos

O envenenamento resultou na nomeação de uma Comissão Real liderada por Lord Kelvin, que apresentou um relatório preliminar em 1901 e um relatório final em 1903.

Em 1901, um declínio considerável na taxa de natalidade foi observado em Manchester, Salford e Liverpool. Este declínio foi maior nas áreas mais afetadas, levando a Comissão Real a concluir que a causa foi a epidemia.

Fontes: 

https://en.wikipedia.org/wiki/1900_English_beer_poisoning

Death in the beer-glass: the Manchester arsenic-in-beer epidemic of 1900-1 and the long-term poisoning of beer (inclui as imagens utilizads aqui), de TN Kelynack, W Kirkby (Life time)

5 min leituraNos anos 1900, mais de 6.000 pessoas na Inglaterra foram envenenadas por cerveja contaminada com arsênio, resultando na morte de mais de 70.  Estima-se que essa grande crise de segurança […]

3 min leitura
3

Contaminantes químicos em alimentos: como evitá-los?

3 min leitura

A contaminação de alimentos é uma preocupação constante em todos os países do mundo. De acordo com a Anvisa, contaminantes em alimentos são “agentes biológicos, físicos ou químicos que são introduzidos no alimento de forma não intencional e que podem trazer danos à saúde da população”. Entre esses contaminantes, estão os de natureza química, que podem oferecer risco aos consumidores, dependendo das concentrações presentes no alimento.

Esse tipo de contaminação pode ocorrer devido à presença de substâncias químicas em excesso, tais como metais pesados, antibióticos, resíduos de praguicidas e de agrotóxicos presentes nas matérias-primas, além de toxinas microbianas.

Diferentes reações adversas causadas por contaminantes químicos podem ser desencadeadas nos consumidores, podendo ser de natureza aguda (curto prazo) ou crônica (longo prazo). Os efeitos observados incluem distúrbios gastrointestinais, urticária, angiodema (inchaço nos olhos e lábios) e, até mesmo, toxicidade severa, como choque anafilático.

Um fator preocupante é que, muitas vezes, os contaminantes químicos não alteram o aspecto sensorial dos alimentos, como o sabor, textura, cor ou o aroma, diferentemente de alguns contaminantes biológicos que, ao promoverem alterações nas características sensoriais dos alimentos, podem levar a sua rejeição pelos consumidores, evitando-se a ocorrência de surtos alimentares.

A presença de contaminantes químicos em alimentos dificilmente pode ser totalmente evitada, mas pode ser minimizada. Dessa forma, considerando-se o potencial tóxico dessas substâncias, recomenda-se que suas concentrações sejam as menores possíveis, mediante a aplicação das melhores práticas e tecnologias de produção disponíveis, adotando-se práticas agrícolas e de produção adequadas. Ações como redução da poluição ambiental, boas práticas de produção, manuseio, armazenamento, processamento, embalagem de alimentos e medidas de descontaminação de alimentos contaminados podem ser usadas para evitar que estes contaminantes estejam presentes nos alimentos em níveis acima daqueles considerados seguros.

A adoção do sistema de Análise de Perigos e Pontos Críticos de Controle (APPCC) é de extrema importância, por se tratar de um sistema preventivo de garantia da segurança dos alimentos. Considerando que este sistema tem por objetivo principal a identificação dos perigos potenciais presentes nas matérias primas, assim como aqueles que poderão ser inseridos durante o processamento, e o estabelecimento de medidas preventivas a serem adotadas em pontos específicos, denominados Pontos Críticos de Controle (PCC), muitos contaminantes podem ser controlados, garantindo a inocuidade dos alimentos e a segurança dos consumidores.

A metodologia pode ser aplicada em qualquer etapa da cadeia produtiva de alimentos, incluindo a produção primária, contribuindo para redução da contaminação das matérias primas que serão recebidas pelas indústrias de alimentos.

Há situações em que pequenas quantidades desses agentes podem ser toleradas sem trazer prejuízos significativos à saúde. Para estes casos, existem os limites máximos aceitáveis (LMT), os quais normalmente variam com o tipo de alimento e estão disponíveis na Instrução Normativa nº 160, de 1° de julho de 2022 (Anvisa). Os limites são baseados em estudos científicos e fundamentados para proteção da saúde humana. Alimentos com teores de contaminantes superiores aos estipulados nos regulamentos não podem ser comercializados.

Autoras: Daiana Júnia de Paula Antunes, Tássia Estevão Oliveira Furtado, Wellingta Cristina Almeida do Nascimento Benevenuto, Eliane M. Furtado Martins, do Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, campus Rio Pomba.

Leia também:
Medidas de controles de perigos químicos à segurança dos alimentos [link]

Referências

INTERNATIONAL LIFE SCIENCES INSTITUTE. Contaminantes químicos em alimentos. 2022. Disponível em: https://ilsibrasil.org/3954-2/. Acesso em 11 abril 2024.

OLIVEIRA et al. Substâncias químicas presentes em sucos de frutas em pó comercializados no Brasil. Rev. Bras. Alergia Imunopatol, v. 29, p.127-132, maio-jun. 2006.

SEIXAS, P.; MUTTONI, S.M.P. Doenças transmitidas por alimentos, aspectos gerais e principais agentes bacterianos envolvidos em surtos: uma revisão. Nutrivisa, v. 7, p. 23-30, 2020.

SOUZA. R. Contaminantes Em Alimentos: Quais São e Como Evitar. Gepea, 2023. Disponível em: https://gepea.com.br/contaminantes-em-alimentos/. Acesso em 07 de abril de 2023.

3 min leituraA contaminação de alimentos é uma preocupação constante em todos os países do mundo. De acordo com a Anvisa, contaminantes em alimentos são “agentes biológicos, físicos ou químicos que são introduzidos […]

3 min leitura
2

Como interpretar laudos de dioxinas e PCBs? – Parte 2 de 2

3 min leitura

Na semana passada começamos a falar sobre este tema (laudos de dioxinas e PCBs). Leia aqui antes de prosseguir.

Neste post vamos focar a interpretação de laudos voltados ao mercado feed (produtos para alimentação de animais de criação), incluindo legislações europeias.

Segue novamente um exemplo de laudos de dioxinas e PCBs:

IN nº 1 (MAPA), de 23/01/2018 – Limites máximos de dioxinas e bifenilas policloradas sob a forma de dioxinas em produtos destinados à alimentação animal

Esta instrução (ver na íntegra aqui) traz o seguinte padrão:

Contaminantes

Produtos destinados à alimentação animal

Limite máximo em ng PCDD/F-TEQ-OMS/kg de alimento1 para um teor de umidade de 12 %

Dioxinas [soma das dibenzo-para-dioxinas policloradas (PCDD) e dos dibenzofuranos policlorados (PCDF), expressa em equivalente tóxico OMS com base nos fatores de equivalência tóxica da OMS (TEF-OMS)

Ingredientes de origem vegetal, incluindo os óleos vegetais e seus subprodutos

0,75 ng TEQ PCDD/F OMS/kg

Ingredientes para alimentação animal de origem mineral

0,75 ng TEQ PCDD/F OMS/kg

Para avaliar o laudo acima, avaliamos o OMS (2005)-PCDD/F TEQ upper-bound.

O resultado do laudo foi 0,1465 ng/kg, inferior a 0,75 ng/kg. Neste caso, o produto está dentro do padrão (seja para ingredientes de origem vegetal ou mineral).

Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed – Council statement

A legislação do European Commission (ver aqui na íntegra) é um pouco mais complexa que a do MAPA. Há diferentes padrões conforme o tipo de feed. Seguem abaixo padrões para feeds de origem vegetal e óleos:

Observação: o mesmo padrão é seguido também no GMP+ FSA em seu documento TS 1.5.

Substância indesejável

Produtos destinados à alimentação animal

Limite máximo em mg/kg (ppm) relativo a produtos para alimentação animal com teor de umidade de 12 %

Dioxinas (soma de dibezo-para-dioxinas policloradas (PCDD’s) e dibenzofuranos policlorados (PCDF’s) expressa em equivalente tóxico OMS com base nos fatores de equivalência tóxica da OMS (TEF-OMS)

Feed materials de origem vegetal, exceto óleos vegetais e seus subprodutos

0,75 ng WHO-PCDD/ F-TEQ/kg

Óleos vegetais e seus subprodutos

0,75 ng WHO-PCDD/ F-TEQ/kg

Soma de dioxinas e PCB’s semelhantes a dioxinas (soma de dibezo-para-dioxinas policloradas (PCDD’s), dibenzofuranos policlorados (PCDF’s) e bifenilas policloradas (PCB’s) expressa em equivalente tóxico OMS com base nos fatores de equivalência tóxica da OMS (TEF-OMS)

Feed materials de origem vegetal, exceto óleos vegetais e seus subprodutos

1,25 ng WHO-PCDD/ F-TEQ/kg

Óleos vegetais e seus subprodutos

1,5 ng WHO-PCDD/ F-TEQ/kg

Começando com o padrão de dioxinas, segue o mesmo do exemplo anterior. O resultado está dentro do padrão (abaixo de 0,75 ng/kg).

Sobre o parâmetro soma de dioxinas e PCBs semelhantes a dioxinas, avaliamos o OMS (2005)-PCDD/F+PCB TEQ upper-bound.

O resultado do laudo foi 0,1465 ng/kg, inferior a 1,25 ng/kg (considerando feed material de origem vegetal). Neste caso, o produto está dentro do padrão.

Quer ler mais sobre interpretação de laudos? Dê uma olhada nos seguintes posts:

– Laudos de análises microbiológicas: você sabe interpretar os resultados? [link]
– Dúvida de leitor: unidade de medida em laudos de análises microbiológicas [link]
– Tudo o que você sempre quis saber sobre laudos de migração de embalagens de alimentos [link]

3 min leituraNa semana passada começamos a falar sobre este tema (laudos de dioxinas e PCBs). Leia aqui antes de prosseguir. Neste post vamos focar a interpretação de laudos voltados ao mercado […]

3 min leitura
0

Fatores antinutricionais sob a ótica da segurança de alimentos

3 min leitura

Apesar de inúmeros benefícios, alguns alimentos possuem fatores antinutricionais (FANs), como metabólitos secundários, que nos alimentos de origem vegetal atuam como mecanismo de defesa contra fungos, bactérias, insetos e animais. Estes fatores são chamados de antinutricionais, pois interferem negativamente no processo de digestão e absorção de nutrientes presentes nos alimentos e podem, até mesmo, serem tóxicos, dependendo da quantidade ingerida. O efeito tóxico ou antinutricional pode ocorrer quando os alimentos que os possuem são consumidos crus, sem cozimento.

Grãos, raízes, leguminosas e cereais são aliados importantes da dieta, mas possuem antinutrientes incluindo saponinas, taninos, fitatos, compostos polifenólicos e inibidores de protease. Esses componentes interferem no valor nutricional dos alimentos, reduzindo a absorção de vitaminas e minerais, principalmente cálcio e ferro. Também dificultam a digestibilidade de proteínas e carboidratos, causando toxicidade e distúrbios de saúde e flatulência quando presentes e ingeridos em altas concentrações. Dessa forma, o tratamento térmico é uma das técnicas usadas para reduzir ou inativar os antinutrientes indesejáveis, sob a ótica da segurança.

Na figura abaixo, são apresentados alguns fatores antinutricionais, os alimentos que os contêm e seus principais efeitos:


Os cianetos e saponinas, encontrados em vegetais como grão de bico, ervilhas e feijões, podem ser reduzidos com o processamento a quente e cozimento, mas a inativação desses inibidores é dependente do tempo e temperatura adotados durante o tratamento térmico. Já os inibidores de proteases, como a tripsina, podem ser reduzidos de forma mais eficaz ao se utilizar o método a vapor, a 100°C.

Os oxalatos, encontrados principalmente nas leguminosas, nozes e diversas farinhas à base de grãos, podem ser eliminados com métodos úmidos, com o uso de remolho, fervura e cozimento a vapor. O elevado consumo de oxalato é preocupante, visto que o ácido oxálico pode formar sais insolúveis com cálcio e magnésio, promovendo a formação de cálculos renais.

O remolho em água, previamente ao cozimento, também é uma forma de reduzir os FANs, uma vez que muitos deles são hidrossolúveis e, dessa forma, eliminados.

Portanto, uma alimentação diária variada aliada às técnicas mencionadas, é de suma importância para obtenção de uma dieta segura, evitando o acúmulo dos antinutrientes no organismo.

Autoras: Patrícia Cândido da Silva, Nataly Almeida Marques e Eliane M. Furtado Martins

Leia também: 

Quais são os perigos de uma alimentação à base de plantas?

Referências:

ALSALMAN, F.B.; RAMASWAMY, H. Reduction in soaking time and anti-nutritional factors by high pressure processing of chickpeas. Journal of Food Science and Technology, v. 57, n. 7, p. 2572–2585, 2020.

CHAI, W.; LIEBMAN, M. Oxalate content of legumes, nuts and grain-based flours. Journal of Food Composition and Analysis, v. 18, n. 7, p.723-729, 2005.

DEL-VECHI, G.; CORRÊA, A.D.; ABREU, C.M.P.; SANTOS, C.D.  Efeito do tratamento térmico em sementes de abóboras (Cucurbita spp.) sobre os níveis de fatores antinutricionais e/ou tóxicos. Ciências Agrotecnologicas, v. 29, n.2, p. 369-376, 2004.

GEMEDE, H. F.; RETTA, N. Antinutritional Factors in Plant Foods: Potential Health Benefits and Adverse Effects. International Journal of Nutrition and Food Sciences, v. 3, n. 4, p. 284, 2014.

HIGASHIJIMA, N. S.; LUCCA, A.; REBIZZ, L. R. H.; REBIZZI, L. M. H. Fatores antinutricionais na alimentação humana. Segurança Alimentar e Nutricional, v. 27, 2020.

SAMTIYA, M.; ALUKO, R.E.; DHEWA, T. Plant food anti-nutritional factors and their reduction strategies: an overview. Food Production Processing and Nutrition, v. 2, p. 6, 2020. 

WANG, N.; LEWIS, M.J.; BRENNAN, J.G.; WESTBY, A. Effect of processing methods on nutrients and anti-nutritional factors in cowpea. Food chemistry, v.58, n.2, p.59-68, 1997.

3 min leituraApesar de inúmeros benefícios, alguns alimentos possuem fatores antinutricionais (FANs), como metabólitos secundários, que nos alimentos de origem vegetal atuam como mecanismo de defesa contra fungos, bactérias, insetos e animais. […]

4 min leitura
1

Como interpretar laudos de dioxinas e PCBs? – Parte 1 de 2

4 min leitura

Você já leu um laudo de análise laboratorial de dioxinas? Já se perdeu naquela sopa de letrinhas e números? Pois bem… fique tranquilo que o Food Safety Brazil irá ajudá-lo a desvendar este laudo.

Uma breve introdução sobre dioxinas e PCBs:

  • Dioxinas: É o nome genérico dado a um conjunto de dibenzo-P-dioxinas policloradas (PCDDs) e dibenzo-furanos policlorados (PCDFs). Apresentam-se sob um total de 210 formas (congêneros), sendo apenas 17 tóxicos ou carcinogênicos (aqueles contendo átomo de cloro na posição 2, 3, 7 e 8). São subprodutos da combustão incompleta de matérias orgânicas contendo halogênios e fonte de cloro.
  • PCBs:  É a sigla de Bifenilas Policloradas, um grupo de compostos produzidos até a década de 1980 para uso industrial. São exemplos de usos de PCBs: fluidos dielétricos em transformadores, condensadores e óleos de corte, lubrificantes hidráulicos, lubrificantes hidráulicos, tintas e adesivos.

Dioxinas e PCBs são substâncias químicas diferentes com propriedades e características distintas. Em suma, temos:

Falando especificamente dos PCBs, eles compreendem diferentes tipos de moléculas semelhantes, ao todo 209 congêneres, mas que variam a depender da quantidade de átomos de cloro ligados às cadeias aromáticas e da posição destes átomos. Alguns deles estão abaixo:

Quem estudou química orgânica já deve saber que pequenas mudanças em uma cadeia geram grandes diferenças. E é exatamente o que ocorre aqui. Alguns PCBs induzem respostas bioquímicas e tóxicas semelhantes às das dioxinas. A estas moléculas convencionou-se denominar: dioxin-like PCBs (em bom português: PCBs semelhantes a dioxinas). São eles:  PCB 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169 e 189.

Os PCBs que não induzem respostas bioquímicas e tóxicas semelhantes às das dioxinas são denominados non-dioxin-like PCBs (PCBs não semelhantes a dioxinas). São todos os congêneros, exceto os citados acima.

E feita esta introdução, segue abaixo um exemplo de laudo de análise:

Observe o primeiro item: 1, 2, 3, 4, 6, 7, 8-HeptaCDD. Trata-se de uma dibenzo-P-dioxina policlorada (PCDD) — ou seja, um composto pertencente ao grupo das dioxinas — contendo 7 átomos de cloro, distribuídos nas posições 1, 2, 3, 4, 6, 7 e 8.

Outro exemplo, o quinto item: 1, 2, 3, 4, 7, 8-HexaCDF. Trata-se de um dibenzo-furano policlorado — ou seja, um composto pertencente ao grupo das dioxinas — contendo 6 átomos de cloro, distribuídos nas posições 1, 2, 3, 4, 7 e 8.

Vamos avançar.
Há uma legislação brasileira prevendo padrões de dioxinas e PCBs em alimentos. Trata-se da IN nº 160/2022 (Anvisa).
Segue o trecho dela que trata deste tema:

 

Por exemplo, para carne bovina, a legislação prevê limite máximo tolerável (nível aceitável):

  • soma de PCDD, PCDF e PCB: 4,0 pg/g
  • soma de PCDD e PCDF: 2,5 pg/g

 

Para avaliar o laudo, vamos primeiro converter a unidade de medida do padrão, de pg/g (que é o padrão da legislação) para ng/kg (que é o padrão do laudo). Assim, fica… a mesma coisa!

  • soma de PCDD, PCDF e PCB: 4,0 ng/kg
  • soma de PCDD e PCDF: 2,5 ng/kg

 

Agora sim, onde encontrar os parâmetros abaixo no laudo? Veja abaixo:

  • soma de PCDD, PCDF e PCB = OMS (2005)-PCDD/F+PCB TEQ upper-bound
  • soma de PCDD e PCDF =OMS (2005)-PCDD/F TEQ upper-bound

 

Ou seja, se fôssemos considerar o laudo acima*, o produto analisado estaria dentro do padrão:

  • soma de PCDD, PCDF e PCB: 0,02121 ng/kg (< 4,0 ng/kg)
  • soma de PCDD e PCDF: 0,1465 ng/kg (< 2,5 ng/kg)

Nota: O laudo, em particular, trata de uma análise de produto de origem vegetal. O MC12% na frente dos resultados indica isso. O padrão para produtos de origem animal é em função do teor de gordura do produto. Então, considere o explicado acima como uma aplicação teórica.

 

E aí? Ajudei a entender melhor?

Em breve, escreverei outro post voltado a produtos para alimentação animal.

4 min leituraVocê já leu um laudo de análise laboratorial de dioxinas? Já se perdeu naquela sopa de letrinhas e números? Pois bem… fique tranquilo que o Food Safety Brazil irá ajudá-lo […]

7 min leitura
5

Perigos radiológicos em alimentos

7 min leitura

Os perigos radiológicos em alimentos provêm de radioisótopos, também chamados de radionuclídeos. São átomos sujeitos ao processo de decaimento radioativo, liberando assim radioatividade através de partículas alfa, beta e gama. Eventualmente, podem chegar à cadeia produtiva de alimentos, expondo as pessoas à contaminação e gerando efeitos adversos à saúde, cuja gravidade dependerá especificamente do radioisótopo e do grau de radiação ao qual um indivíduo foi exposto.

No entanto, segundo a Organização Mundial da Saúde (OMS), os perigos radiológicos são incomuns na cadeia produtiva de alimentos. A grande questão é que quando ocorrem, podem representar um risco de elevada significância, principalmente se a exposição ao risco for prolongada ao longo do tempo.

A ingestão de alimentos ou água com radioisótopos leva a uma contaminação interna na qual o material radioativo irá se depositar no organismo, podendo ser transportado para vários locais, tais como a medula óssea, onde continua a emitir radiação, aumentando a exposição da pessoa à radiação, até ser removido ou emitir toda sua energia (desintegração).

A contaminação interna com radioisótopos é mais difícil de remover do que a contaminação externa.

O consumo de alimentos contaminados com radioisótopos aumenta a quantidade de radioatividade a qual a pessoa é exposta, o que pode provocar efeitos agudos como vermelhidão da pele (eritemas), queda de cabelo e síndrome de radiação aguda, que inclui sintomas iniciais como náuseas, vômitos, dor de cabeça e diarreia. Com o tempo, pode chegar a uma perda de apetite, fadiga e possivelmente convulsões e coma. Em alguns casos, pode provocar doenças graves, inclusive alguns tipos de câncer, como na tireoide e leucemia.

A maioria dos elementos radioativos naturais tem sua origem na crosta terrestre como o Potássio-40 (K-40), Urânio-238 (U-238) e Tório-232 (Th-232), que são elementos radioativos primitivos, ou seja, estão presentes desde a formação da Terra há cerca de 4,6 bilhões de anos.

A população mundial está exposta diariamente à radiação natural, que vem do espaço através dos raios cósmicos e de materiais radioativos que ocorrem no solo, na água e no ar, quase sempre, em quantidades ínfimas e inócuas à saúde.

Porém, a radiação pode ocorrer também devido aos efeitos antrópicos, tendo como exemplos os acidentes nucleares ocorridos em Chernobyl, na Ucrânia, em 1986, quando esta pertencia à URSS (União das Repúblicas Socialistas Soviéticas) e em Fukushima no Japão em 2011. Em consequência, a superfície de alimentos como cereais, frutas e legumes ou destinados para alimentação de animais para leite ou corte, pode se tornar radioativa devido à deposição de poeira com radioisótopos ou da água da chuva contaminada.

Além do efeito imediato, os locais onde houve exposição aos elementos radioativos se tornarão áreas de risco, uma vez que o solo ficará contaminado. Com o tempo, a radioatividade também poderá ser detectada nos alimentos porque os radioisótopos do solo serão absorvidos pelas plantas, e em seguida, pelos animais que se alimentam delas, chegando à carne, ao leite e derivados, portanto, à cadeia alimentar humana.

O Césio-137 tem um período de semidesintegração de 30 anos, e por isso afeta áreas agricultáveis durante décadas.

Como exemplo, ainda citando o fatídico acidente de Chernobyl, a nuvem de poeira radioativa cujos principais radioisótopos produzidos na reação de fissão (divisão) nuclear do Urânio-235 (combustível nuclear do reator) foram o Iodo-131, Césio-137, Césio-134 e o Estrôncio-90, varreu a Europa e causou a precipitação destes radioisótopos em diversos países da Europa e da Ásia. Isto é mostrado no mapa a seguir, com graves perturbações na produção e no comércio de produtos alimentícios.

Mapa com a nuvem de radiação que envolveu a Europa durante o desastre de Chernobyl em 1986.

Na ocasião do acidente em Chernobyl, o Brasil havia importado carne bovina e leite de países que estavam dentro do raio atingido pela poeira radioativa, como a Alemanha, Holanda e França. Descobriu-se mais tarde que estes alimentos  estavam contaminados com os radioisótopos Césio-137 e Césio-134, potencialmente cancerígenos.

Jornal Correio do Povo de 21 de janeiro de 1988.

Já no acidente mais recente em Fukushima não houve impactos no Brasil, uma vez que não somos um importador habitual de alimentos do Japão. No entanto, naquele país diversos alimentos como carne, chá, cogumelos e verduras cultivados nas proximidades da região de Fukushima, foram identificados com níveis de radioatividade acima do permitido para o consumo, inclusive arroz, alimento tradicional da culinária japonesa, numa fazenda a 60 quilômetros da instalação nuclear.

A experiência em Fukushima mostrou existir dificuldades para rastrear a radiação espalhada pela chuva e o vento, sendo que governos locais em áreas rurais montaram centros de teste para evitar a distribuição de produtos contaminados e a própria população começou a medir radiação por conta própria, usando aparelhos simples.

Jornal Hoje, G1 de 19 de março de 2011.

Seja por origem natural ou antrópica, a água potável ou mineral pode absorver a radioatividade, e assim, contaminar peixes e frutos do mar. Por isso, estima-se que os frutos do mar são os alimentos com radiação natural mais concentrada, e, também, com grande probabilidade de exposição aos acidentes nucleares.

CNN Brasil de 26 de julho de 2023.

Por isso, na análise de perigos radiológicos em alimentos num plano de HACCP, há que se considerar a probabilidade do risco em cada região produtora e em cada alimento específico, levando em consideração a rastreabilidade de sua origem para poder avaliar o histórico de acidentes nucleares na região (lembrando que partículas radioativas podem permanecer ativas por décadas), a proximidade a locais de guarda de lixo nuclear, assim como áreas geográficas onde existam depósitos naturais de minerais radioativos como os uraníferos ou de tório.

Localição georgráfica no Brasil de jazidas de minérios radioativos. 

No entanto, apelando para a obviedade, veja que um peixe proveniente do mar do Japão próximo à região costeira de Fukushima, terá uma probabilidade de contaminação radioativa muito maior que um outro que foi pescado na costa brasileira. Analogamente, grãos provenientes da Ucrânia, onde ocorreu o acidente de Chernobyl, terão uma probabilidade maior do que aqueles cultivados no cerrado brasileiro.

Não há no Brasil uma legislação ou referências específicas para níveis máximos permitidos de contaminação radioativa em alimentos, no entanto, há para água destinada ao consumo humano.

A Portaria GM/ MS Nº 888 do Ministério da Saúde, no Art. 37 dita que “os níveis de triagem usados na avaliação da potabilidade da água, do ponto de vista radiológico, são os valores de concentração de atividade que não excedam 0,5 Bq/L para atividade alfa total e 1,0 Bq/L para beta total, portaria esta que foi analisada no artigo “Análise da nova Portaria MS 888/21 sobre controle e vigilância da água para consumo humano“.

Monitorar água, em especial proveniente de poços artesianos em regiões onde há probabilidade natural de radioisótopos, é muito relevante, e logicamente, caso os níveis radiológicos ultrapassem o que está definido na legislação, o consumo deve ser vetado.

Neste tema é relevante um esclarecimento sobre irradiação, que não deve ser confundida com contaminação radiológica

Numa contaminação radioativa, como visto, há presença de um isótopo radioativo indesejável que é capaz de emitir radiação (alfa, beta e gama) de forma espontânea a partir de seus núcleos instáveis e, assim, causar danos à saúde. Porém, em alimentos que passaram por um processo de irradiação não, pois trata-se da exposição deste alimento à radiação, porém, sem contato direto com os elementos radioativos.

A tecnologia de irradiação de alimentos foi aprovada pela Organização das Nações Unidas para a Agricultura e Alimentação (FAO) como segura e é utilizada em cerca de 50 países. Estima-se que o volume de alimentos tratados em todo o mundo por esta tecnologia exceda 500 mil toneladas anualmente, sendo um método eficaz para melhorar a qualidade de produtos alimentícios reduzindo cargas microbianas e aumentando a shelf life.

Esse processo é bastante utilizado em frutas frescas, grãos e vegetais para prevenir o brotamento, retardar a maturação e aumentar o tempo de conservação, uma vez que os alimentos são submetidos a uma quantidade minuciosamente controlada e precisa de radiação. Sugiro neste tema a leitura dos artigos:

  1. Radioatividade do bem: entenda a técnica de irradiação de alimentos
  2. Por uma cultura de segurança de alimentos baseada na ciência: mitos sobre alimentos processados e irradiação

A irradiação não faz com que o alimento se torne radioativo, não compromete a qualidade nutricional e não altera sabor, textura ou aparência do alimento. Além disso, o uso de radiação ionizante é uma opção com menor impacto ambiental, pois não deixa resíduos.

Um alimento irradiado praticamente não sofre qualquer alteração física ou organoléptica, por isso é muito difícil dizer se o alimento foi ou não irradiado.

No Brasil, a regulamentação sobre alimentos irradiados é definida pelo Decreto nº 72.718, de 29 de agosto de 1973, que estabelece normas gerais sobre irradiação de alimentos e pela Resolução ANVISARDC nº 21, de 26 de janeiro de 2001, que aprovou o Regulamento Técnico para Irradiação de Alimentos, estabelecendo os requisitos gerais para o uso da irradiação de alimentos com vistas à qualidade sanitária do produto final. Lembramos que deve sempre haver transparência ao consumidor, pois nos rótulos dos alimentos que passaram por este processo deve constar a frase “alimento tratado por processo de irradiação”, como visto no artigo “Anvisa entende que alimento que passa por raios X deve ser rotulado como irradiado“.

Logomarca utilizada para alimentos irradiados.

Espero que o artigo tenha ajudado a perceber que o tema dos riscos radiológicos não é um bicho de sete cabeças, mas que precisa ser visto com atenção, considerando a necessidade de uma boa análise de riscos em relação à probabilidade de contaminação e rastreabilidade da água e insumos utilizados na cadeia produtiva de alimentos.

Deixe sua opinião, complemente com sua experiência e seu conhecimento, isso é muito importante para nós!

Leia também:

Irradiação e perigos radiológicos em alimentos

FDA permite o uso de irradiação em crustáceos para controle de patógenos de origem alimentar

Perigos radiológicos foram levantados no seu plano HACCP?

7 min leituraOs perigos radiológicos em alimentos provêm de radioisótopos, também chamados de radionuclídeos. São átomos sujeitos ao processo de decaimento radioativo, liberando assim radioatividade através de partículas alfa, beta e gama. […]

Compartilhar
Pular para a barra de ferramentas