4 min leitura
0

Solda higiênica: o que é e como avaliá-la na indústria de alimentos

4 min leitura

A solda higiênica, também chamada de solda sanitária, é um tipo de união metálica utilizada em tubulações, tanques, válvulas e equipamentos em que há contato direto com alimentos ou bebidas. Seu principal objetivo é garantir que não haja pontos de acúmulo de resíduos, contaminações ou dificuldades de limpeza, mantendo assim a segurança dos alimentos.

Ela é frequentemente usada em sistemas onde o contato direto com alimentos é inevitável, como processamento de laticínios, bebidas, carnes e também em linhas de produtos farmacêuticos e cosméticos. Para ser considerada sanitária, a solda deve ser perfeita em termos de acabamento e integridade, de modo a evitar pontos de falha onde contaminantes possam se acumular.

Diferentemente das soldas comuns, a solda higiênica precisa apresentar:

  • Superfícies lisas e contínuas, sem rebarbas ou cavidades;
  • Ausência de trincas, poros ou descontinuidades;
  • Acabamento interno e externo polido, conforme as especificações sanitárias (geralmente até Ra 0,8 m de rugosidade);
  • Alinhamento preciso entre as partes unidas, sem degraus internos.

Exemplo de solda higiênica polida em tubulação de aço inox AISI 316 usada na indústria de alimentos

Por que a solda higiênica é crítica na indústria de alimentos?

Qualquer falha em uma solda pode se tornar um ponto de risco microbiológico. Um pequeno poro pode permitir o acúmulo de resíduos e biofilmes, comprometendo a limpeza e desinfecção, mesmo com CIP (Cleaning in Place). Isso pode levar à contaminação cruzada, deterioração do produto e até recall.

Equipamentos como vasos e tubulações utilizados na fabricação higiênica de produtos alimentícios são frequentemente fabricados em aço inoxidável austenítico (por exemplo, tipo AISI-316). A soldagem é o método usual de conexão das várias partes componentes de uma planta, sendo fundamental que as soldas reflitam as qualidades higiênicas do material base o mais próximo possível.

A filosofia de design de uma planta higiênica segue três linhas centrais:

  1. O produto deve fluir livremente pela linha e não estagnar;
  2. A linha deve ser limpa e permitir a destruição de microrganismos;
  3. O conteúdo da linha deve ser protegido do ambiente externo.

Consequentemente, as soldas também devem atender a esses requisitos. Soldas deficientes podem contribuir para vários problemas de higiene, como retenção de produto em frestas, outras áreas mortas ou superfícies rugosas, que podem ser difíceis ou impossíveis de limpar no ciclo usual de limpeza em linha (CIP).

Problemas comuns em soldas

Vários tipos de defeitos comuns em soldas podem atuar como fontes de problemas microbiológicos devido à limpeza inadequada e retenção de produto:

  • Desalinhamento: Pode ser causado por montagem incorreta antes da soldagem ou desajuste nos diâmetros ou espessuras, introduzindo um degrau na parede ou no furo, o que pode reter produto.
  • Trincas: Trincas que penetram na superfície de contato do produto podem alojar material. O tipo mais comum é a “trinca central”, que corre ao longo do metal de solda, geralmente causada por um espaço muito amplo durante a preparação da junta.
  • Porosidade: A presença de poros na solda pode comprometer a integridade da união e dificultar a limpeza.
  • Oxidação: A oxidação excessiva pode ocorrer pelo uso de temperaturas elevadas durante a soldagem, comprometendo as propriedades higiênicas do material.

Como avaliar soldas higiênicas na prática?

A avaliação de soldas higiênicas envolve critérios visuais, dimensionais e funcionais. Veja os principais métodos:

1 – Inspeção Visual

  • Deve ser feita por um profissional qualificado.
  • Busca-se uma superfície uniforme, sem respingos, poros, trincas, cavidades ou sobreposição de material.
  • A solda deve ser contínua e sem sinais de oxidação (cor azulada, amarelada ou preta indica superaquecimento).

2 – Rugosidade (Ra)

  • Medida com rugosímetro.
  • Para superfícies em contato com alimentos, a rugosidade interna deve ser de Ra 0,8 µm (alguns casos exigem 0,6 µm).
  • Quanto menor a rugosidade, mais fácil é a limpeza.

3 – Teste de Penetração por Líquido (PT)

  • Usado para identificar trincas superficiais invisíveis a olho nu.
  • Consiste na aplicação de um líquido penetrante seguido de revelador.

4 – Videoscopia (borescope ou boroscópio)

  • Inspeção interna de tubulações soldadas.
  • Ideal para locais de difícil acesso, onde o acabamento interno da solda deve ser perfeito.

5 – Radiografia Industrial (RX)

  • Avaliação da integridade interna de soldas, identificando poros, inclusões e trincas.
  • Muito usada em soldas de alta criticidade, mas de custo elevado.
  • A avaliação das soldas higiênicas deve ser feita com base em uma série de critérios técnicos que assegurem a funcionalidade e segurança da instalação. Além de uma inspeção visual detalhada, também são utilizados testes mais específicos para garantir que a solda atenda aos padrões de segurança de alimentos.

Critérios de aceitação (exemplos práticos)

Tipo de Defeito Aceitável? Observação
Rebarba ou saliência Não Pode reter resíduos alimentares
Poros ou crateras Não Indicam penetração incompleta ou contaminação
Cor azul/amarela na solda Não Indica oxidação por superaquecimento
Alinhamento irregular Não Causa zonas mortas e acúmulo
Superfície polida e lisa Sim Ideal para limpeza e sanitização

Boas práticas na execução da solda higiênica

  • Usar soldagem TIG (GTAW), preferencialmente com gás de purga para proteção interna;
  • Garantir que o soldador seja qualificado para soldagem sanitária;
  • Realizar controle do calor para evitar oxidação;
  • Executar treinamentos periódicos e qualificação contínua da equipe.

A solda higiênica é muito mais do que estética, ela é essencial para garantir a segurança dos alimentos e o cumprimento das normas sanitárias.

A inspeção regular e o uso de critérios técnicos objetivos contribuem para manter a integridade do processo produtivo e evitar riscos à saúde pública.

Além disso, a qualificação contínua dos soldadores, o uso de técnicas avançadas de soldagem e inspeção são fundamentais para manter os elevados padrões exigidos pelas indústrias alimentícias.

O cuidado com a solda higiênica não é apenas uma questão de qualidade do alimento, mas de responsabilidade sanitária.

Aproveite esse momento de leitura e explore outras postagens do blog sobre solda higiênica:

  1. Solda sanitária: vamos conversar?
  2. Os perigos que envolvem as soldas na indústria de alimentos
  3. Perigo de corrosão a partir de soldas em equipamentos de aço inoxidável
  4. Por que a solda TIG é a mais indicada para a indústria de alimentos?

Ana Sílvia Mattos Gonçalves é engenheira de alimentos, coordenadora de Segurança de Alimentos e Qualidade e especialista em assuntos regulatórios e qualificação de fornecedores.

Referências:

AISI Steel Products Manual, Stainless and Heat Resisting Steels (1974)

EHEDG Doc 9, Welding stainless steel to meet hygienic requirements

4 min leituraA solda higiênica, também chamada de solda sanitária, é um tipo de união metálica utilizada em tubulações, tanques, válvulas e equipamentos em que há contato direto com alimentos ou bebidas. […]

2 min leitura
0

Guia do EHEDG traduzido orienta como implementar requisitos do GFSI para gestão de projeto sanitário

2 min leitura

O GFSI publicou, em 2020, um White Paper explicando como implementar os requisitos do GFSI para gestão de projeto sanitário. Essa notícia demos aqui:  EHEDG explica como atender os requisitos do GFSI para projeto sanitário em White Paper.

A novidade é que agora este conteúdo pode ser lido em português, graças ao trabalho de uma consultoria, que realizou a tradução e revisão técnica.

Qual é o conteúdo deste manual?

O documento tem 59 páginas  na versão original e cobre um por um dos requisitos dos documentos JI e JII em 3 seções:

Seção 1: Requisitos de  perigos e riscos  do sistema de gestão

Seção 2: Requisitos de Projeto Sanitário do sistema de gestão

Seção 3: Requisitos de Boas Práticas Industriais do setor

Ele apresenta cada requisito do GFSI, tanto para o escopo JI quanto JII e traz uma interpretação de como aplicar, sendo rico em exemplos.

Hoje em dia vemos estes requisitos serem incorporados cada vez mais para o escopo JII, o que foi feito de forma muito clara pela  FSSC 22000, que trouxe um guia que usa vários elementos do manual do EHEDG. Confira aqui.

Entendendo o que são os requisitos de benchmarking

O  GFSI criou dois escopos de certificação em Projeto Sanitário de Edifícações e Processamento de Alimentos e Equipamento (JI e JII).

JI é para construtores de edifícios e fabricantes de equipamento.

Ou seja, um dia, se os esquemas de certificação desejarem, pode haver uma certificação de empresa de arquitetura ou um fabricante de equipamentos em normas de segurança de alimentos. O escopo está montado, seria só adotar e formatar uma norma específica para este mercado.

JII é  para usuários dos equipamentos e edificações

Assim, um dia pode ser que haja algum módulo adicional ou certificação específica para o departamento de engenharia da empresa que contrata os empreiteiros civis, arquitetura e montagem de equipamentos. Na prática, já existe a adoção gradual de alguns requisitos do JII pelos esquemas de certificação.

O documento é gratuito!

Você quer que o EHEDG invista mais no Brasil?

Então NÃO compartilhe o manual em pdf com seus colegas, e sim o link para acesso ao documento, direto da página do EHEDG. Só assim o grupo europeu reconhecerá, pela quantidade de acessos, o quanto nosso país é relevante no cenário global, é comprometido com a segurança dos alimentos e tem interesse em desenho sanitário.

Clique aqui para baixar o White Paper em inglês ou português

https://www.ehedg.org/guidelines-working-groups/guidelines/guidelines/detail/white-paper-1-tes

2 min leituraO GFSI publicou, em 2020, um White Paper explicando como implementar os requisitos do GFSI para gestão de projeto sanitário. Essa notícia demos aqui:  EHEDG explica como atender os requisitos […]

< 1 min leitura
0

2º Seminário online sobre projeto sanitário para indústrias de alimentos

< 1 min leitura

Tema: Projeto Sanitário para Indústrias de Alimentos

Data: 03 e 04 de junho de 2024

Horário: 08:30 às 12:00

Local: Online – Plataforma Zoom

Descrição: A implementação de um projeto sanitário eficiente é crucial para a indústria de alimentos, garantindo a qualidade, segurança e conformidade dos produtos. Este seminário online é uma oportunidade imperdível para profissionais do setor aprenderem sobre as melhores práticas e normas sanitárias.

Por que o projeto sanitário é importante? Um projeto sanitário bem executado oferece inúmeros benefícios para as indústrias de alimentos, tais como:

  • Segurança de Alimentos: Reduz o risco de contaminações, protegendo a saúde dos consumidores.
  • Qualidade do Produto: Mantém a integridade dos alimentos, assegurando um alto padrão de qualidade.
  • Conformidade Regulamentar: Garante que a empresa esteja em conformidade com as normas e regulamentações vigentes, evitando multas e sanções.
  • Eficiência Operacional: Otimiza os processos produtivos, reduzindo desperdícios e aumentando a produtividade.
  • Imagem e Reputação: Melhora a percepção da marca junto aos consumidores e stakeholders, reforçando a confiança no mercado.

Tópicos Abordados:

  • Conceitos fundamentais de projetos sanitários
  • Normas e regulamentações atualizadas
  • Estudos de casos e exemplos práticos
  • Sessão de perguntas e respostas ao vivo

Inscreva-se agora e garanta sua vaga: Link de inscrição

Não perca esta oportunidade de se atualizar e trocar experiências com especialistas da área!

< 1 min leituraTema: Projeto Sanitário para Indústrias de Alimentos Data: 03 e 04 de junho de 2024 Horário: 08:30 às 12:00 Local: Online – Plataforma Zoom Descrição: A implementação de um projeto […]

2 min leitura
0

Fluxograma para implementação do requisito adicional da FSSC 22000 de gestão de equipamentos

2 min leitura

Recentemente foi lançado pela Foundation o documento guia de gestão de equipamentos.

O documento pode ser acessado na íntegra através desse link. De forma complementar, a nossa colunista Cíntia Malagutti publicou dois posts relacionados ao tema, um com dicas de elementos a serem considerados na elaboração de uma especificação (acesse aqui) e outro sobre orientações para elaboração de uma especificação de compras (acesse aqui).

Para facilitar o entendimento do tema e do guia, elaboramos um fluxograma de resumo das principais etapas abordadas pelo guia, a fim de ajudar a implementar esse requisito na prática.

Inicialmente é importante constituir uma equipe multidisciplinar e, a partir dela, avaliar o impacto do novo equipamento ou da sua mudança. No caso de o projeto sanitário do equipamento ter impacto na segurança dos alimentos, o requisito de gestão de equipamentos se aplica. Situações em que o equipamento tem contato direto com o produto ou pode introduzir perigos no produto ou processo são exemplos de impactos na segurança do produto.

Em seguida, devem ser coletadas informações de entrada sobre os requisitos aplicáveis aos equipamentos e seu uso pretendido. Um equipamento usado para pasteurização de leite pode ter requisitos diferentes de outro usado para processamento de suco, por exemplo. Com essas informações, deve ser feita uma avaliação de riscos para a segurança dos alimentos do novo equipamento ou da mudança.

No documento guia do EHEDGE, há orientações importantes que podem ser usadas para essa avaliação.

A partir da avaliação de risco, será possível definir quais os requisitos de compra, de forma a mitigar os perigos identificados. Da mesma forma, poderão ser estabelecidos os documentos a serem apresentados pelos fornecedores, de forma a atender os requisitos definidos.

Por fim, porém não menos importante, é necessário fazer o comissionamento do equipamento, de forma a garantir que seu recebimento, instalação e uso atendam os requisitos definidos. Na sequência, no caso de mudanças, é importante que seja seguido o mesmo fluxo de gerenciamento, a fim de garantir as características sanitárias do equipamento.

Você pode acessar uma cópia na íntegra do fluxograma clicando aqui.

Sua empresa está preparada para implementar esse requisito?

Imagens https://inycomindustria.com

2 min leituraRecentemente foi lançado pela Foundation o documento guia de gestão de equipamentos. O documento pode ser acessado na íntegra através desse link. De forma complementar, a nossa colunista Cíntia Malagutti […]

< 1 min leitura
0

Tradução – Documento Guia: Gestão de Equipamentos (FSSC 22000)

< 1 min leitura

Mais um guia foi lançado no FSSC 22000, e como não poderia deixar de ser, o Food Safety Brazil lança em primeira mão uma tradução nossa deste documento. Trata-se do Documento Guia: Gestão de equipamentos. Aproveite!

Neste link você acessa o documento original. Para acessar a nossa tradução, clique aqui.

Veja mais:

– Tradução: Requisitos Adicionais da FSSC 22000 versão 6.0 [link]

< 1 min leituraMais um guia foi lançado no FSSC 22000, e como não poderia deixar de ser, o Food Safety Brazil lança em primeira mão uma tradução nossa deste documento. Trata-se do […]

2 min leitura
0

EHEDG disponibiliza revista e canal com conteúdo gratuito sobre projeto sanitário

2 min leitura

O European Hygienic Engineering and Design Group já é um conhecido aqui no blog. Porém nem todos sabem que esta organização sem fins lucrativos publica semestralmente uma revista com conteúdo gratuito sobre projeto sanitário.

É a EHEDG Connects.

Como exemplo, a última edição da revista tem 52 páginas recheadas de entrevistas com experts, novidades em publicações e matérias, como:

GFSI HD BENCHMARKING

HYGIENIC WELDING

PRACTICAL ASPECTS FOR DRAINAGE SYSTEMS

MISSING SAFETY LINK IN FOOD SUPPLY CHAIN

INDUSTRY STORIES

HYGIENIC DESIGN STRATEGY

HYGIENIC STUDY AWARD

Vou dar só uma “palhinha” de trechos interessantes:

Como as empresas de processamento de alimentos e as empresas de equipamentos de alimentos devem abordar e entender os novos requisitos de benchmarking do GFSI?

‘Você pode ver isso como uma espécie de pirâmide. No topo estão os requisitos de benchmarking GFSI e abaixo estão os padrões dos esquemas de certificação. Eles elaboram as normas nos quais as pessoas podem basear seus certificados, como FSSC 22000, BSC ou IFS e vários outros. Então, é claro, existem os usuários finais reais. Os usuários finais são, neste caso, não apenas as empresas de processamento de alimentos, mas também os fabricantes de equipamentos. O requisito de benchmarking JI é para fabricantes de equipamentos e JII é para fabricantes de alimentos. Existe um grande interesse em obter esses certificados, em criar a oportunidade de ser certificado, mas primeiro é preciso haver normas por parte dos donos dos esquemas, que só serão desenvolvidos se houver interesse suficiente dos usuários finais. E os usuários finais provavelmente só manifestarão interesse e começarão a se mexer quando houver normas publicadas’

O EHEDG tem um plano para oferecer apoio a seus membros nessas questões (atender requisitos do GFSI)?

‘O EHEDG começou a escrever um novo documento de orientação sobre como realizar efetivamente uma avaliação de risco de projeto sanitário e fornecer orientações sobre como fazer isso para os processos de produção de alimentos. Chegar a um consenso sobre como fazer isso será benéfico para toda a indústria. A EHEDG está na posição perfeita para fornecer esse conhecimento, com base em nossa experiência em design higiênico. Está em total conformidade com nossa visão e missão, então é isso que defendemos.’

Para acessar a revista, clique aqui.

E para quem prefere ser lembrado das novidades e webinares através de publicações curtas, a dica é seguir o canal do LinkedIn.

Destaque para a seção de entrevistas de até cinco minutos como o “Hygienic Design Top Tips”.

2 min leituraO European Hygienic Engineering and Design Group já é um conhecido aqui no blog. Porém nem todos sabem que esta organização sem fins lucrativos publica semestralmente uma revista com conteúdo […]

2 min leitura
1

Solda sanitária: vamos conversar?

2 min leitura

Quando o assunto é Design Higiênico, um dos maiores desafios é a aplicação de soldas bem executadas, a chamada solda sanitária ou solda higiênica. Vamos conversar sobre isso?

Mesmo quando o equipamento é comprado novo de um fabricante experiente ou renomado na indústria alimentícia, é muito comum vermos soldas mal executadas, que criam locais de acúmulo de sujidades e de difícil higienização.

Mas de quem seria a responsabilidade da solução desse problema? Vejamos:

  • A área da qualidade não conhece as técnicas de soldagem, portanto, geralmente consegue avaliar uma solda, mas dificilmente pode orientar a manutenção ou o fornecedor do equipamento sobre como proceder para obter soldas higiênicas.
  • A área da manutenção pode conhecer as técnicas de solda, mas bons soldadores são raros. É algo que requer muita prática e paciência, além é claro, de equipamentos adequados à disposição.
  • Fabricantes de equipamentos têm a obrigação de contratar soldadores competentes, ou então de capacitá-los. Mas isso tem um custo, que muitas vezes as empresas não querem pagar, levando à aceitação de projetos apenas “parcialmente” sanitários.

Dadas as dificuldades listadas acima, imaginamos que seja um assunto de difícil discussão entre as partes interessadas.

Por isso, neste artigo, trouxemos um vídeo sobre solda sanitária, que pode ajudar as 3 áreas a conversarem sobre o tema de forma clara e produtiva.

No vídeo explicamos de forma bastante sucinta:

  • Diferenças entre as soldas TIG e MIG;
  • Boas práticas a serem aplicadas nas etapas pré-solda e pós-solda;
  • Tipos de defeitos nas soldas; e
  • A importância da solda sanitária na prevenção de contaminação por patógenos.

Para ir até o vídeo, clique neste link. Recomendamos que você compartilhe esse vídeo com o pessoal que tem papel relevante no projeto, construção, manutenção de máquinas e utensílios, bem como na seleção de fornecedores de equipamentos na sua empresa.

O vídeo pode ser um excelente ponto de partida nas discussões desse tema, levando o time a buscar mais conhecimento e condições adequadas para a execução de soldas sanitárias.

Caso queira saber mais sobre Design Higiênico, recomendamos que você acesse esse outro link, no qual um vídeo em animação vai tentar simplificar esse conceito para você.

Lembre-se: evitar pontos de acúmulo de sujidades e crescimento de patógenos pode trazer mais benefícios do que você imagina para a sua empresa.

Leia mais sobre este assunto em:

2 min leituraQuando o assunto é Design Higiênico, um dos maiores desafios é a aplicação de soldas bem executadas, a chamada solda sanitária ou solda higiênica. Vamos conversar sobre isso? Mesmo quando […]

5 min leitura
0

Monitoramento de higienização na produção de alimentos

5 min leitura

Todos os processadores de alimentos sabem da importância de implementar métodos de monitoramento de higienização de equipamentos na indústria de alimentos.

Falhas na higienização podem ter consequências na segurança do alimento, reduzir o shel-life ou vida de prateleira, afetar o desempenho do negócio (alterando a produtividade, por exemplo) e podem levar a riscos de recall, prejudicando a imagem da empresa.

Por isso criamos um vídeo, no estilo animação whiteboard para explicar diferentes técnicas de monitoramento e o desenvolvimento de um plano de monitoramento ambiental. Para acessar o vídeo, acesse este link. Esse vídeo pode ser usado para o treinamento do seu time, juntamente com tantos outros já publicados no canal do Youtube Food Safety Brazil.

Por isso, ter um procedimento de monitoramento de higienização é fundamental. Recomenda-se que um procedimento de monitoramento comece com inspeção organoléptica na qual visão, olfato e tato ajudem a identificar falhas de limpeza e presença de matéria orgânica nos equipamentos. Afinal, se a sujidade é visual, não são necessários testes laboratoriais para que correções e melhorias sejam identificadas como necessárias. Mas é claro, recomenda-se também o uso de medições quantitativas, com uso de técnicas de swab, como medição de ATP (adenosina-trifosfato) e APC (aerobic plate count ou contagem total de aeróbicos), para identificar resíduos orgânicos e carga microbiana, respectivamente.

Vamos entender um pouco mais sobre cada método

Método da medição de ATP

Todos os organismos vivos contêm adenosina trifosfato, a energia universal. A maioria dos alimentos têm ATP por natureza. Quando resíduos de alimentos são deixados em uma superfície, o nível de ATP pode ser medido. As bactérias também têm ATP. Portanto, o valor medido denuncia resíduos de alimentos e / ou presença de bactérias.

As tecnologias usadas para medição de ATP em superfícies de equipamentos usam a bioluminescência. Uma vez que uma superfície é esfregada com a técnica de swab, a amostra é exposta a um agente químico e a um substrato produtor de luz ativado por ATP (luciferina / luciferase). Então, após algum tempo, o ATP presente (se houver) reage com o substrato e emite luz. A quantidade de luz é diretamente proporcional à quantidade de ATP coletada nas amostras. A luz é medida e relatada como Unidade de Luz Relativa (ULR).

Cada fabricante do kit de teste sugere um limite para ULR como a escala que determina falha, marginal ou satisfatório. Mas cada planta pode estabelecer o seu próprio limite com base no risco do produto e no zoneamento higiênico. Nesta técnica, os resultados são rápidos e saem em questão de segundos ou minutos.

Mas lembre-se: se uma fábrica irá estabelecer, em seu monitoramento de higienização, limites próprios menos rigorosos do que os recomendados pelos fabricantes do kit de teste, será fundamental validar os valores junto à equipe de segurança de alimentos da empresa.

Método APC ou TPC

O método APC (Aerobic Plate Count), também conhecido como TPC (Total Plate Count), quando aplicado no monitoramento de higienização, é usado para medir o nível de bactérias em uma superfície de contato com o produto, após a limpeza. Este método não mede toda a população bacteriana, mas sim o número de bactérias que se multiplicam na presença de oxigênio (aerobicamente) e em temperaturas médias (mesofílicas – 30-37°C).

Contagens altas são uma indicação de falhas de higienização ou problemas de design de equipamentos.

Mas atenção: esse método não determina a presença de patógenos nas superfícies. Quanto aos limites aceitáveis, geralmente o número ideal é <100 CFU/swab, sendo valores superiores  >1.000 CFU/swab representativos de falhas importantes nos processos de sanitização. Neste método, as amostras coletadas precisam ser incubadas e os resultados podem ser lidos após 48 horas de incubação.

Agora que já sabemos como os métodos funcionam e quais seu limites, vamos entender como usá-los a favor de um monitoramento ambiental otimizado.

LAB TEST

Qual dos métodos usar e quando realizar as coletas?

Os dois métodos, ATP (adenosina-trifosfato) e APC (aerobic plate count ou contagem total de aeróbicos), são amplamente usados na indústria. Importante lembrar que os métodos nem sempre se correlacionam, ou seja, baixa contagem de ATP nem sempre se traduz em baixa contagem de APC, mas ambos são igualmente indicados e extremamente úteis no monitoramento da eficácia da higienização.

Recomenda-se que os swabs sejam coletados após a limpeza, mas antes da higienização, para medir a eficácia da limpeza, pois um processo de limpeza eficaz deve remover 99,5% dos sólidos orgânicos e da atividade microbiana. Em ambos os casos, a superfície precisa estar livre de resíduos visuais, visto que a presença já representa falhas no processo de limpeza. Além disso, no caso do ATP, a presença de resíduos sólidos pode gerar resultados inconclusivos e até falsos negativos. Caso a empresa decida coletar swab de APC após a sanitização, um neutralizante deve ser adicionado na solução umidificante para inibir sua ação no crescimento microbiano durante a incubação.

Um processo de limpeza eficaz deve remover 99,5% dos sólidos orgânicos e da atividade microbiana.

Para estabelecer a frequência e o tipo de testes a serem feitos na inspeção pré-operacional, o time deve conhecer os riscos associados aos produtos, a qualidade dos materiais das superfícies de contato e não contato com o produto, os desafios de design higiênico presentes no equipamentos e estruturas e o tamanho das linhas produtivas.

A amostragem deve acontecer diariamente e deve considerar todas as superfícies dos equipamentos e não apenas as mais visíveis, acessíveis e com contato direto ao produto.

Por exemplo: para analisarmos a eficácia da limpeza de uma esteira transportadora, devemos considerar as rodas dentadas, barras transversais, sistema de tração, raspadores, guardas laterais, especialmente quando infelizmente nichos, juntas sobrepostas e locais de difícil acesso estão presentes, podendo acumular resíduos e promover o crescimento de microrganismos. Ou seja, testes devem ser feitos com maior frequência nas zonas 1 (contato com produto) e 2 (anexos às zonas de contato com produto). A variação e rotatividade nos pontos de coleta é fundamental para garantir a representatividade dos resultados.

A empresa pode optar por alternar testes ATP e APC ao longo da semana.

Como o método ATP fornece resultados imediatos, possibilita a correção da limpeza imediatamente. Já o método APC vai levar a uma investigação das falhas ocorridas 2 dias atrás.

Também é possível e recomendado ter um programa de monitoramento de patógenos implementado. Esse programa deve considerar bactérias como Salmonella spp ou Listeria spp, dependendo do tipo de produto em questão. Normalmente, busca-se patógenos em partes dos equipamentos onde o acesso é mais restrito, como aquelas partes que dependem de desmontagem para a realização da limpeza. Por isso, os testes de patógenos não costumam acontecer na zona 1, mas sim nas zonas 2 (partes anexas e próximas à zona de contato com alimento), 3 (estruturas dentro do local produtivo) e 4 (áreas externas ao local produtivo) dos equipamentos e instalações.

Lembre-se: quando o assunto é higienização de equipamentos e design higiênico, sempre há o que melhorar.

A busca por conhecimento e pela ajuda de especialistas nesses assuntos pode melhorar significativamente os resultados da sua planta, incluindo não apenas indicadores relativos à qualidade e segurança dos produtos, mas também indicadores de produtividade e indicadores financeiros. É incrível o que um Plano de Higienização otimizado, ou seja, operacionalmente eficaz pode fazer por uma indústria processadora de alimentos.

Caso não tenha acessado o vídeo deste artigo, clique na imagem abaixo e aproveite.

5 min leituraTodos os processadores de alimentos sabem da importância de implementar métodos de monitoramento de higienização de equipamentos na indústria de alimentos. Falhas na higienização podem ter consequências na segurança do […]

4 min leitura
1

Higienização e Segurança de Alimentos

4 min leitura

Hoje iniciaremos uma série de artigos e vídeos relacionados ao tema Higienização, uma peça fundamental para a Segurança de Alimentos.

Trata-se de um assunto muitíssimo importante e bastante abrangente, por isso, serão necessários alguns vídeos e artigos para nos aprofundarmos. Neste post / vídeo, veremos:

1)           A importância da higienização para indústria de alimentos;

2)           A diferença entre Limpeza, Desinfecção e Higienização;

3)           Cuidados com os utensílios de limpeza;

4)           As etapas de uma higienização úmida e higienização a seco;

5)           Os tipos de tipo de produtos químicos para limpeza e desinfecção.

A manutenção da higiene no local de produção de alimentos é complexa e fundamental no controle eficaz de contaminação de natureza biológica, química e física, assim como da presença de pragas no local.

É importante pensarmos que é um direito do consumidor adquirir alimentos seguros e adequados ao consumo. Além disso, contaminações causam:

  • Doenças e mortes;
  • Desperdícios de alimentos e aumentam custos;
  • Afetam a confiança do consumidor;
  • Afetam negativamente o comércio, podendo causar perdas econômicas significativas.

Como toda tarefa crítica e complexa, uma boa higienização consiste em:

  • Planejamento;
  • Abordagem científica;
  • Padronização;
  • Registro;
  • Treinamento;
  • Validação; e
  • Monitoramento e Verificação.

A diferença entre limpeza, desinfecção e higienização

Limpeza consiste essencialmente na eliminação de restos de alimentos e outras partículas que ficam sobre as superfícies.

Desinfecção consiste na destruição ou remoção dos microrganismos.

Já a higienização deve remover todos os materiais indesejados (restos de alimentos, corpos estranhos, resíduos de produtos químicos e microrganismos) a um nível tal que os resíduos que persistirem não apresentem qualquer risco para a qualidade e segurança do produto.

Portanto, dependendo da natureza do seu produto, um processo de higienização pode ser apenas a LIMPEZA ou a LIMPEZA seguida da DESINFECÇÃO.

O processo de higienização

Um processo de higienização pode ter de 3 a 6 etapas.

Produtos frescos e úmidos requerem mais etapas:

(1)         Enxágue;

(2)         Limpeza, geralmente com uso de detergente;

(3)         Enxágue;

(4)         Desinfecção (com calor ou sanitizante químico);

(5)         Enxágue;

(6)         Secagem.

Para as linhas de produtos secos, cuja a utilização de umidade deve ser evitada, temos 3 etapas:

(1)         Remoção das Sujidades;

(2)         Limpeza Detalhada; e

(3)         Desinfecção (se necessário).

Abordaremos tais etapas, com maiores detalhes nos próximos posts, aqui no blog.

Utensílios de Limpeza: cuidados necessários

Cuidar dos utensílios e mantê-los higienizados é fundamental para garantir a eficácia da higienização e evitar a contaminação cruzada.

Para isso, seguem 2 dicas importantes:

1)           Zoneamento: estabeleça cores diferentes para os diferentes setores e diferentes superfícies. Dessa forma você garante a exclusividade de um determinado utensílio em uma determinada área ou superfície. Por exemplo: utensílios que higienizam um sanitário não podem, em hipótese alguma, higienizar a área produtiva. Utensílios que higienizam o chão de uma área produtiva não devem em hipótese alguma higienizar as superfícies de contato com o produto.

2)           Condições dos utensílios: utensílios de limpeza devem estar higienizados antes do uso. Além disso, panos e esponjas precisam ser descartáveis, pois promovem o crescimento microbiano rapidamente. Devem ser de materiais que não deixem partículas na superfície, como fiapos, por exemplo. O uso de utensílios de madeira deve ser evitado. Todos devem estar íntegros, ou seja, sem partes soltas, rachaduras e outros danos que possam acumular sujidade e bactérias e possam soltar partes no ambiente.

Produtos químicos para higienização

Diferentes produtos de limpeza industriais são usados, dependendo do item a ser limpo, do método de limpeza e do tipo de sujeira encontrado no item. Existem 4 tipos principais de agentes de limpeza usados em área de processamento de alimentos:

  1. Detergentes
  2. Desengordurantes
  3. Abrasivos
  4. Limpadores Ácidos

Detergentes: Existem três tipos diferentes de detergentes profissionais com aplicações diferentes: os ácidos, os alcalinos e os neutros. A diferença está no pH de cada produto. E sua escolha depende especialmente das superfícies em que serão utilizados.

Desengordurantes: também conhecidos como solventes ou desengraxantes, costumavam ser tóxicos no passado. Felizmente, atualmente o mercado já oferece desengordurantes não tóxicos e não fumegantes para evitar a contaminação química dos alimentos e tornar o seu uso mais seguro.

Desincrustantes e abrasivos: estes são produtos químicos que dependem da ação de esfregar, por isso devem ser usados com cuidado, pois podem riscar certos tipos de materiais usados em equipamentos, como plástico ou aço inoxidável, causando regiões onde haverá maior acúmulo de matéria orgânica e bactérias.

Limpadores ácidos: são o tipo mais poderoso de agente de limpeza e devem ser usados com cuidado. Se não forem diluídos corretamente, os limpadores ácidos podem ser muito venenosos e corrosivos. Geralmente são usados para remover depósitos minerais e são úteis para descalcificar tubulações.

Já em relação aos desinfetantes ou sanitizantes, existe uma gama bastante diversa de agentes:

  • Compostos de amônio quaternário (Quats);
  • Compostos de Cloro;
  • Álcoois;
  • Aldeídos;
  • Iodóforos;
  • Compostos fenólicos;
  • Peróxido de hidrogênio.

Para a melhor escolha, é preciso responder a algumas perguntas:

  • É eficaz? Um desinfetante mata os microrganismos e patógenos que são as principais preocupações em suas instalações?
  • Tempo de ação? Com que rapidez um produto desinfetante mata um patógeno específico? O produto mantém as superfícies visivelmente úmidas para cumprir esses tempos de matança?
  • É Seguro? O produto é seguro para as pessoas e seguro para as superfícies às quais está sendo aplicado?
  • É prático? As etapas necessárias para usar um determinado desinfetante são práticas para sua instalação?

Nos próximos vídeos nos aprofundaremos nas etapas da higienização úmida e seca; nas etapas anteriores e posteriores da higienização, como o preparo dos equipamentos e inspeção pré-operacional; no monitoramento e na verificação de eficácia dos procedimentos de higienização e na importância do desenho sanitário de equipamentos e instalações.

Acesse o link para ver o vídeo.


Para saber mais sobre o tema, veja esses outros artigos aqui no blog:

Procedimentos básicos de higienização nas empresas de alimentos

Tradução: Químicos Aplicados na Higienização dos Processos de Alimentos V. 2


O vídeo citado neste post é um vídeo animado do tipo “whiteboard”.

 

4 min leituraHoje iniciaremos uma série de artigos e vídeos relacionados ao tema Higienização, uma peça fundamental para a Segurança de Alimentos. Trata-se de um assunto muitíssimo importante e bastante abrangente, por […]

15 min leitura
3

Dicas rápidas para desenvolver um olhar crítico em projeto sanitário

15 min leitura

O velho ditado “uma imagem fala mais que mil palavras” é um truísmo bem usado por uma razão: muitas vezes, ver algo em uma forma visual acende um “Aha!”. Quando você pensa nos volumes científicos que lemos, sem mencionar códigos regulamentares, documentos de conformidade e diretrizes de normas, políticas de melhores práticas da empresa e muito mais, também é fácil entender por que é desejável usar imagens para contar uma história. E isso é válido também para a avaliação de projeto sanitário na indústria de alimentos.

Todos trabalhamos em ambientes de manuseio de alimentos em ritmo acelerado, que não demoram tanto quanto desejamos ler nos últimos artigos ou estudos e, no entanto, somos responsáveis por uma ampla gama de atividades que asseguram produção e entrega de alimentos aos nossos clientes. Além disso, embora estejamos em nossas fábricas de alimentos todos os dias, nem sempre vemos realmente o que está acontecendo no chão. Os seres humanos tendem a tornar-se atraídos pelos ambientes em que trabalham rotineiramente e, como resultado, podem não perceber mudanças muito leves nesse ambiente ao longo do tempo. Essa tendência pode representar uma desvantagem significativa para uma empresa de produção de alimentos quando o elemento negligenciado é um risco à segurança de alimentos.

O equipamento é a força vital da planta de processamento de alimentos e a indústria entende o importante papel que o próprio maquinário pode desempenhar na melhoria da segurança de alimentos por meio de melhorias no processo de limpeza. Porém, como muitos itens em nosso ambiente diário, podemos passar por linhas de produção,  tubulações e compressores todos os dias sem realmente ver os problemas potenciais ou existentes causados por equipamentos não higiênicos e ou mal posicionados e peças de máquinas auxiliares. Projeto sanitário e higienização são parceiros porque, se o equipamento não for projetado e construído para ser limpo, ele não será limpo. Se ele foi projetado e construído para ser limpo, a higienização será mais eficiente e eficaz, aumentando o quociente da segurança alimentos. Entender isso é o primeiro passo para obter um resultado de retorno em segurança de alimentos quando sanitaristas, engenheiros e equipes de manutenção discutem a compra, atualização ou renovação de equipamentos de processamento e contato com alimentos.

Obviamente, o segundo passo crítico é tornar-se mais consciente do que você pode não estar vendo quando olha para os equipamentos e componentes existentes, a fim de fazer escolhas mais informadas, evitando investir em novos equipamentos mal projetados. Aqui, forneceremos algumas das principais perguntas que você deve fazer a si mesmo, aos seus colegas de higenização, engenharia e manutenção e a seus fornecedores de equipamentos durante o processo de tomada de decisão e ilustraremos com fotografias alguns dos problemas comuns de projeto sanitário que podem existir na sua planta.

Exposição ao básico

O projeto de equipamento sanitário é definido como o projeto de engenharia de instalações, processamento, instalações e equipamentos de manuseio de alimentos para criar um ambiente de processamento sanitário no qual a produção de alimentos puros, não contaminados e de alta qualidade seja consistente, confiável e econômica. A diretriz universal que é mais útil para projeto sanitário na indústria de alimentos é Boas Práticas de Fabricação (21 CFR Part 110), Sec. 110.40, Equipamentos e utensílios, onde se lê:

(a) Todo o equipamento e utensílio da planta deve ser:

  • adequadamente lavável
  • impedir a adulteração com lubrificantes, combustível, fragmentos de metal, água contaminada ou quaisquer outros contaminantes
  • instalado e mantido de forma a facilitar a limpeza
  • resistente à corrosão quando em contato com alimentos
  • feito de materiais não tóxicos e projetado para suportar o ambiente do uso pretendido

(b) As costuras nas superfícies de contato com os alimentos devem ser coladas ou mantidas suavemente, de modo a minimizar o acúmulo de partículas, sujeira e matéria orgânica e, assim, minimizar a oportunidade de crescimento de microrganismos.

(c) Os equipamentos que estão na área de manufatura ou manuseio de alimentos e que não entram em contato com os alimentos devem ser construídos de forma que possam ser mantidos em boas condições de limpeza.

Os 10 princípios de design de equipamentos sanitários do AMI (American Meat Institute) também fornecem aos fabricantes e manipuladores de alimentos orientações claras e diretas, independentemente do tipo de alimento que você esteja processando ou servindo. Os 10 princípios afirmam que o equipamento considerado “sanitário” deve ser:

  1. Limpável a um nível microbiológico
  2. Feito de materiais compatíveis
  3. Acessível para inspeção, manutenção, limpeza e saneamento sem ferramentas especiais
  4. Nenhum produto ou áreas de coleta de líquidos
  5. Todas as áreas vazias hermeticamente seladas
  6. Sem nichos
  7. Deve ser capaz de operar de maneira sanitária
  8. Compatibilidade higiênica com outros sistemas da planta
  9. Ser capaz de validar protocolos de limpeza e higienização

Os documentos de orientação GMP e AMI fornecem uma boa base para a compreensão de quais perguntas devem ser feitas e respondidas ao considerar, para um projeto sanitário, a compra de novos equipamentos e as decisões de renovação ou substituição de equipamentos existentes.

As perguntas que você precisa fazer: exposição de problemas

Embora existam muitas perguntas que, quando feitas e respondidas, fornecerão informações sobre o processo de tomada de decisões sobre equipamentos sanitários, essas 10 perguntas certamente estão entre as prioridades a serem consideradas.

  1. Os materiais de contato com os alimentos atendem aos critérios da FDA para superfícies?

Existem cinco critérios que podem ser obtidos nos regulamentos relevantes da Food and Drug Administration (FDA) dos EUA. Simplificando, as superfícies de contato com os alimentos devem ser não reativas ao produto, não contaminantes do produto, não corrosivas, não absorventes de qualquer tipo de líquido e, acima de tudo, laváveis, para garantir a prevenção da formação de biofilme e nichos de abrigos para microrganismos, resíduos contendo alérgenos ou outros contaminantes químicos. A importância desses cinco critérios é óbvia quando olhamos para as Fotos 1 e 2a / b.

Como mostrado na Foto 1, em alta ampliação, vemos à esquerda uma seção de chapa de aço inoxidável, que foi recebida diretamente da fábrica; observe as rachaduras e fendas. À direita, após algum tempo de uso em uma fábrica de alimentos, podemos ver que os micróbios entraram e se estabeleceram nessas fendas. Se os micróbios se apossarem e sobreviverem no equipamento por tempo suficiente, eles produzem um biofilme que é extremamente difícil de remover. E uma peça de equipamento projetada ou fabricada incorretamente pode abrigar muitas bactérias. A foto 2a mostra um orifício microscópico em um trocador de calor de aço inoxidável; a foto 2b mostra a proliferação de bactérias nesse buraco quando se toma uma ação menos do que adequada para limpar a um nível microbiológico. É claro que, quando inabaláveis, esses microrganismos continuarão a crescer e podem chegar facilmente ao lado esterilizado ou pasteurizado de uma unidade.

Obviamente, os microrganismos não são os únicos riscos alimentares que o equipamento projetado higienicamente ajuda a resolver. Olhe ao redor da planta. O equipamento está livre de tinta? Lembre-se de que você deseja que as superfícies de contato com os alimentos não contaminem o produto nas áreas de produção de alimentos. A tinta não é boa, pois pode descascar e entrar no produto e, sem o revestimento protetor, permitir a ferrugem do equipamento ou componente (Foto 3). O descascamento pode ser causado por uma variedade de coisas, detergentes, spray de água quente, ou mesmo por apenas um componente pintado com um carrinho e uma batida na tinta. Pode parecer óbvio, mas o equipamento existente pintado deve ser substituído para evitar esses problemas inevitáveis.

  1. Todas as soldas na zona de contato com alimentos são sanitárias e a zona do produto está livre de soldas sobrepostas?

Certamente, soldas inadequadas em equipamentos e peças de processamento estão entre os obstáculos mais comuns e problemáticos para obter bons resultados de saneamento. A foto 4 mostra duas soldas em chapas de aço inoxidável planas. À esquerda, vemos uma solda de topo na qual as placas são unidas topo a topo, o estilo de soldagem preferido, pois, por definição, não há sobreposição, o que pode resultar em flexão. A flexão pode causar rachaduras, permitindo que solos, microrganismos e resíduos indesejados fiquem sob a sobreposição, difíceis de remover por métodos de saneamento. Embora a solda de topo à esquerda seja agradável e uniforme, ainda pode coletar micróbios porque não é retificada e polida para um acabamento suave ao qual as bactérias não conseguem aderir fortemente. O critério para uma boa solda de topo é que a solda seja retificada e polida com a mesma textura que as peças adjacentes. A solda “globular” à direita é anti-higiênica em maior grau, pois há mais fendas e depressões nas quais micróbios e resíduos químicos podem se firmar.

As fotos 5, 6 e 7 ilustram uma solda de topo sanitária. Na primeira foto, vemos uma placa plana soldada de um lado sem barra de apoio – e a depressão que é um esconderijo para micróbios e solos. Na segunda, a placa é soldada com haste de apoio, mas ainda não foi retificada e polida e, portanto, ainda apresenta alguns riscos à segurança de alimentos. Finalmente, vemos o solo e a solda sanitária polida.

O que você deve procurar no projeto sanitário da soldagem de tubos? Quando um tubo de aço inoxidável é soldado, um gás inerte é introduzido no interior do tubo e depois soldado no exterior para evitar a oxidação no interior do tubo. No entanto, se a pressão do gás no interior for inadequada, a solda penetrará e resultará em uma superfície irregular, como mostra a Foto 8, onde a aplicação do gás de purga ID Argônio era insuficiente. Quando isso ocorre, haverá nichos em que os micróbios podem se esconder e o sistema CIP (Clean-in-Place) não tocará neles, independentemente do caminho pelo qual o produto esteja fluindo. Uma maneira de verificar a integridade da solda do tubo interno é inserir um boroscópio para que você possa vê-lo após a conclusão da solda. Se passar na inspeção inicial, você poderá continuar verificando as várias soldas. Mas se falhar, convém exigir que o contratado faça o boroscópio de cada solda às suas custas.

Outros problemas de solda de tubo ocorrem quando existe um poço no final da solda (Foto 9), causado pela terminação muito rápida da solda. Se o poço atravessar todo esse tubo de aço inoxidável, ele se tornará um nicho no qual solos, micróbios e outros resíduos podem se acumular e será muito difícil de remover. A foto 10 mostra outro exemplo de uma solda amiga do nicho, uma solda convexa na DI cuja superfície irregular é causada pela aplicação de muito calor na parte externa do tubo. Além disso, verifique se o equipamento está livre de soldas por pontos, o que provavelmente é uma das soldas mais comuns realizadas em plantas de processamento de alimentos – e um dos maiores pecados. A Foto 11 mostra uma junção de lapidação com uma solda adesiva, na qual podemos ver a fenda ou lacuna que pode ser um ponto de acesso para Listeria ou outros microrganismos indesejáveis.  A soldagem a ponto deve ser evitada devido ao grande espaço que ocorre onde duas peças de metal que se juntam. E você não pode separar as duas peças porque elas são soldadas, dificultando a limpeza. Esse tipo de costura precisa ser eliminado ou refeito usando uma solda contínua e suave para evitar bactérias.

A foto 12 mostra uma solda manual aceitável do interior de um tubo. A solda é uniforme e lisa, o que torna o tubo mais lavável e permite que o produto flua corretamente. No entanto, a melhor maneira de soldar um oleoduto é usar um soldador orbital automático, pois controla a pressão do gás no interior do tubo, bem como o calor e a velocidade, e, portanto, é muito eficiente (Foto 13).

Uma nota final relacionada à soldagem e saneamento da planta. Se você já viu uma área ou componente de um equipamento de aço inoxidável ficar enferrujado, é provável que seja devido à contaminação cruzada causada por retíficas e polidoras. Se a manutenção tiver usado essas ferramentas em aço macio em outras partes da planta, assim que tocarem em uma solda de aço inoxidável, qualquer contaminante nela impregna esse ferro na solda de aço inoxidável e fica enferrujado. Portanto, o equipamento de soldagem de aço inoxidável, incluindo as hastes de aço inoxidável, os trituradores e polidores, deve ser dedicado apenas às superfícies de aço inoxidável.

  1. As superfícies horizontais de contato / zona de alimentos estão livres de fixadores embutidos?

Quando as cabeças Allen, as cabeças dos parafusos Phillips ou outros prendedores são recuados, eles se tornam não higiênicos porque esses recessos causam armadilhas sólidas, contato metal com metal e espaços mortos. Se houver uma depressão em uma superfície horizontal, ela se tornará um local de retenção de umidade e outros solos – todos os nutrientes necessários para o crescimento de bactérias. Para evitar isso, prenda as porcas no lado inferior da superfície de contato do produto para não ter nada no lado do produto e prenda-o a partir do fundo ou coloque uma junta para selá-lo. Verifique se todas as porcas (tampa, asa ou outra) estão montadas na parte externa do equipamento para que, se uma porca vibrar solta, ela caia no chão. Se a porca estiver do lado de dentro, poderá cair no produto, o parafuso permanecerá no lugar no orifício e você não suspeitará que a porca esteja faltando. As porcas em si devem ser de aço inoxidável polido, sem roscas expostas, e as roscas dos parafusos devem ser cobertas para eliminar ranhuras e fornecer menos lugares para as bactérias se agarrarem.

  1. Se existe alguma aresta no equipamento nas zonas de produto ou de respingo, ela está curvada para não exceder 180 graus?

Se houver mesas de aço inoxidável em sua fábrica onde o produto é colocado, coloque a mão embaixo delas. Muitas vezes, você encontra um punhado de glop porque existe uma borda por baixo que é um excelente esconderijo para solos e detritos (Foto 14, desenhos ruins, parte de baixo) que frequentemente não são limpos e higienizados. Todo o equipamento deve ser inspecionado para verificar essas bordas. Dos bons desenhos mostrados aqui (Foto 14, parte de cima), a imagem do meio é a melhor, pois possui integridade estrutural e nenhum lábio onde os detritos podem se esconder e se depositar.

  1. As pernas do equipamento foram projetadas para que não haja áreas de umidade ou detritos a serem coletados? Elas são fáceis de limpar?

Dê uma olhada na Foto 3 novamente. Este é um excelente exemplo de por que os suportes do piso do equipamento podem ser locais onde a sujeira pode se acumular. Como mostrado, é quase impossível limpar quando as pernas são aparafusadas ao chão ou elevadas incorretamente, permitindo que ocorram brechas de umidade e detritos. É melhor elevar as pernas do equipamento para que você possa limpá-lo (Foto 15) ou colocar cones em cada perna e soldá-los conforme mostrado no diagrama (Foto 16) para eliminar brechas nas cabeças de borrão que colocam as pernas o chão. Isso resulta em uma superfície limpa e inclinada que pode ser facilmente limpa.

  1. Todos os painéis de controle estão montados em postes de suporte, estrutura ou espaçadores com espaço atrás deles (1-2 polegadas) para limpeza adequada?

Você não deseja painéis de controle (ou qualquer outra coisa, inclusive sinalização, tubulações, equipamentos etc.) bem ao lado da parede, porque se você não pode ver por trás deles, não pode limpá-los. De fato, as baratas adoram ficar atrás de painéis elétricos. Os painéis de controle devem ser calafetados ou deve ser usado um intervalo. O último é recomendado, com o espaçador a uma polegada da parede, para que você possa ver atrás de qualquer painel de controle e limpá-lo, especialmente nas áreas de processo. Se a calafetagem for usada em uma área refrigerada, você poderá ter alguns problemas com o crescimento de fungos.

A foto 17 mostra como um posto de suporte resolve esse problema, criando espaço para a equipe de saneamento ver por trás e por baixo do painel de controle para uma limpeza eficaz. Isso não é caro, e pode ser feito em fábricas existentes.

Além disso, as caixas de controle e outras caixas de interruptores devem ter partes superiores inclinadas para evitar que a umidade assente sobre a própria porta. Essas caixas também devem estar livres de dobradiças para piano, que são grandes áreas de coleta de sujeira. Tente renová-las, substituindo-as por dobradiças de cinta, que possuem menos superfícies para limpar ou use suportes de aço inoxidável de qualidade alimentar.

  1. Os motores, mancais e componentes de acionamento são montados em suportes de fácil limpeza?

Os motores elétricos são famosos por atrair sujeira e poeira e é muito difícil limpar esse tipo de detrito, como mostra a Foto 18, quando estes são colocados em uma base sólida. A foto 19 ilustra como um motor pode ser elevado, montando-o em trilhos, para que a sujeira caia no chão, onde você pode varrê-la ou limpá-la.

  1. Se algum ar comprimido for usado nas zonas de contato do produto, a linha está equipada com um filtro coalescente e um filtro de ar (com 99,99% de eficiência a 0,2 mícrons) localizado a jusante dos reguladores de pressão ou de outros dispositivos contaminantes em potencial?

Esse é um problema de saneamento, principalmente se o ar comprimido for usado nas áreas de contato do produto. As próprias linhas de ar comprimido podem ser uma área significativa de crescimento bacteriano. Por quê? Embora o ar comprimido seja seco até um ponto de orvalho de pressão abaixo da temperatura ambiente mais baixa para evitar o acúmulo de umidade nas linhas de ar, a umidade pode se desenvolver se não houver filtros, principalmente se as linhas passarem por uma área refrigerada, depois por uma área quente, de volta à uma área refrigerada. Condensado se formará nos canos e são todos os elementos necessários para o crescimento bacteriano.

Se houver uma linha de ar comprimido que entre em contato com o produto, como a passagem de ar, verifique se o ar comprimido destinado ao contato direto com o produto é filtrado a pelo menos um nível de 0,3 mícron instalando-se bons filtros HEPA ou outros (Foto 20) em qualquer ponto de uso na planta.

  1. Todos os rolos de transporte e retorno são transportados em rolos ou corrediças sólidas, em vez de rolos de tubo oco?

Os rolos ocos têm tampas que permitem que a umidade entre no interior. A lógica nos diz que, se conseguir entrar, poderá sair novamente e contaminará o cinto em que está rolando. A Foto 21 é reveladora, mostrando um exemplo do tipo de detrito que pode se acumular em um rolo oco e por que é importante exigir rolos sólidos ou escorregadores para o retorno da correia.

As correias transportadoras também devem ser projetadas higienicamente para maior garantia de limpeza. Muitos fabricantes de correias introduziram correias transportadoras inovadoras com base no projeto sanitário. Esses tipos de espiral, curva em curva ou outras correias (Foto 22a-c) apresentam design de módulo aberto ou links com fenda dupla, que permitem o fluxo de ar e a limpeza máximos. Um projeto aberto permite um melhor acesso às hastes para remover solos e resíduos químicos.

  1. O sistema de tubulação está livre de pernas superiores a dois diâmetros de tubo?

Estes (Foto 23) podem ser mortais, trocadilhos. Segundo informações publicadas pela Unilever, podemos ver o que acontece em um deadleg. Como mostra a Foto 24, se você estiver tentando fazer um CIP nessa direção, a interseção em T apagada será preenchida porque a solução CIP seguirá o caminho de menor resistência. Se a E. coli for introduzida em 5 mL de produto levemente viscoso e com baixo teor de ácido, em 24 horas você terá 200 x 106 mL de células de E. coli. Quando você lava um mL por hora dos 200 x 106 e se sua capacidade de produção é de 5 a 106 mL por hora, você acaba com uma contaminação de 200/5, o que equivale a 40 células de E. coli por mL no produto, apenas sentado nessa área de deadleg e facilmente transferido por toda a linha. Portanto, livre-se dos deadlegs.

Recomenda-se que, se você não puder eliminar os deadlegs(“ponto morto”), eles não deverão ter mais de dois diâmetros de tubo – e um diâmetro de tubo será melhor – dependendo do fluxo do produto. Se você tem um ponto de aperto, ele deve ser inclinado para trás em qualquer direção. Coloque no mínimo um cotovelo no ponto da interseção em T.

Boa composição, excelente imagem sanitária

Essas 10 perguntas são apenas o começo da lista que pode ser solicitada para obter uma imagem clara dos elementos de design de equipamentos sanitários que você deve considerar ao planejar comprar ou renovar equipamentos de processamento e manuseio de alimentos. Uma imagem pode valer mais que mil palavras e também pode valer milhares de dólares em economia de operação, prevenindo perigos de alimentos com mais eficiência e aumentando a eficiência do programa de saneamento.

Donald J. Graham, presidente da Graham Sanitary Design Consulting, Ltd., se aposentou da Sverdrup Facilities, Inc., onde passou mais de 10 anos como tecnólogo sênior de alimentos / saneamento e membro da Sverdrup. Ele é um dos principais especialistas do setor na aplicação de princípios de design sanitário para instalações de processamento de alimentos. Antes de ingressar na Sverdrup, Don ocupou vários cargos técnicos na Green Giant Co., incluindo diretor de serviços técnicos da Green Giant do Canadá. Também atuou como diretor de garantia de qualidade da William Underwood Co. e foi diretor técnico da Divisão Internacional da Pet, Inc.

Don é ex-presidente da Associação de Processadores de Alimentos do Missouri e membro do Comitê de Currículos do Food Processors Institute; o Instituto de Tecnólogos em Alimentos; a Associação Internacional de Proteção de Alimentos; membro fundador do Institute for Thermal Processing Specialists. Ele também é membro do Conselho Consultivo Editorial da Food Safety Magazine e autor de inúmeras publicações do setor.

Muitas das fotos publicadas neste artigo foram tiradas por Don nas 1.300 fábricas que ele visitou em todo o mundo durante sua carreira.

Texto original: https://www.foodsafetymagazine.com/magazine-archive1/aprilmay-2006/snapshots-in-sanitary-equipment-developing-an-eye-for-hygiene/

15 min leituraO velho ditado “uma imagem fala mais que mil palavras” é um truísmo bem usado por uma razão: muitas vezes, ver algo em uma forma visual acende um “Aha!”. Quando […]

Compartilhar
Pular para a barra de ferramentas