2 min leitura
0

Segurança de Alimentos na fabricação de polpa de tomate concentrada

2 min leitura

A segurança de alimentos é um dos pilares fundamentais na indústria de alimentos, especialmente na produção de polpa de tomate concentrada, um produto amplamente utilizado como base para molhos, temperos e pratos industrializados. Devido ao seu alto teor de umidade, pH relativamente baixo e contato direto com o ambiente e equipamentos, a fabricação da polpa exige rígidos controles de qualidade, sanitização e rastreabilidade para garantir a inocuidade do produto final.

Perigos associados à produção de polpa de tomate

Durante as etapas de recebimento, lavagem, moagem, concentração térmica, envase e armazenamento da polpa de tomate, diversos perigos podem comprometer a segurança do alimento:

  • Perigos biológicos

– Presença de microrganismos patogênicos como Salmonella spp., Clostridium botulinum, Listeria monocytogenes e bolores toxigênicos.

– Contaminação cruzada devido a superfícies mal higienizadas ou água contaminada.

  • Perigos químicos

– Resíduos de agrotóxicos nos tomates crus.

– Lubrificantes ou produtos de limpeza em contato com a linha de produção.

– Migração de metais pesados ou contaminantes de embalagens inadequadas.

  • Perigos físicos

– Presença de fragmentos de vidro, metais, pedras ou plásticos.

– Falhas nos sistemas de peneiramento ou detecção de corpo estranho.

Boas práticas na produção

Para controlar esses perigos e assegurar a inocuidade do alimento, é essencial implementar Boas Práticas de Fabricação (BPF) e Programas de Pré-Requisitos (PPRs) bem definidos:

– Seleção e recebimento rigoroso da matéria-prima: avaliação da qualidade dos tomates, rastreabilidade e análise de resíduos químicos.

– Lavagem eficiente com água potável e sanitizantes, reduzindo carga microbiana inicial.

– Processo térmico adequado (pasteurização/concentração): deve ser validado para garantir destruição microbiana sem comprometer a qualidade sensorial.

– Controle do tempo e temperatura nas etapas críticas.

– Manutenção e higienização periódica de equipamentos e utensílios.

– Treinamento contínuo da equipe sobre higiene pessoal e procedimentos operacionais padronizados (POPs).

Controle de Pontos Críticos (APPCC)

Na produção de polpa de tomate concentrada, o sistema APPCC (Análise de Perigos e Pontos Críticos de Controle) comumente identifica alguns pontos críticos, como:

– Tratamento térmico (tempo e temperatura): para inativação de Clostridium botulinum e outros patógenos.

– Selagem e integridade das embalagens: prevenir recontaminações pós-processamento.

– pH e atividade de água (Aw): monitoramento para garantir que esteja inibido o crescimento microbiano.

Imagem gerada por I.A. – ChatGPT

Conformidade com normas e certificações

A segurança da polpa de tomate deve estar alinhada com padrões nacionais e internacionais, como as normas da Anvisa e os padrões do Codex Alimentarius.

Em síntese, a fabricação de polpa de tomate concentrada requer uma abordagem preventiva e sistemática para garantir sua segurança. Desde a seleção dos tomates até o armazenamento do produto final, o cumprimento rigoroso de normas, o uso de tecnologias apropriadas e a capacitação da equipe são indispensáveis para garantir um alimento seguro, estável e em conformidade legal.

Por Maria Bearzotti

2 min leituraA segurança de alimentos é um dos pilares fundamentais na indústria de alimentos, especialmente na produção de polpa de tomate concentrada, um produto amplamente utilizado como base para molhos, temperos […]

2 min leitura
0

Perigos químicos na indústria de atomatados: quais são e como controlar

2 min leitura

A segurança de alimentos na indústria de atomatados (molhos, extratos e polpas de tomate) envolve o controle rigoroso de diversos perigos, entre eles os perigos químicos, que representam um risco significativo à saúde do consumidor. Esses perigos podem estar presentes em diferentes etapas do processo produtivo e devem ser identificados, controlados e monitorados conforme os princípios do sistema APPCC (Análise de Perigos e Pontos Críticos de Controle).

Fontes comuns de perigos químicos na indústria de atomatados

– Resíduos de agrotóxicos e pesticidas

Tomates contaminados por pesticidas além dos limites máximos permitidos (LMR) podem comprometer a segurança do produto final. É essencial que os fornecedores adotem boas práticas agrícolas (BPA) e que sejam realizadas análises laboratoriais periódicas.

– Contaminação por metais pesados

Pode ocorrer por meio da água de irrigação, solo contaminado ou equipamentos corroídos (ex: chumbo, mercúrio, cádmio). A análise da matéria-prima e da água utilizada na produção é fundamental.

– Lubrificantes e produtos de limpeza

Uso inadequado ou vazamento de lubrificantes não alimentares em equipamentos pode levar à contaminação do alimento. Produtos de limpeza e sanitização também podem deixar resíduos químicos se não forem adequadamente removidos durante o enxágue.

– Migração de contaminantes de embalagens

Substâncias químicas presentes em embalagens (como ftalatos, BPA e solventes de tintas) podem migrar para os alimentos. É necessário usar embalagens seguras e aprovadas para contato com alimentos.

– Aditivos e ingredientes não autorizados ou fora do padrão

O uso indevido ou em excesso de conservantes, corantes e outras substâncias pode representar riscos químicos. Todos os aditivos devem estar em conformidade com as normas legais e devem ser usados conforme as Boas Práticas de Fabricação (BPF).

Medidas preventivas e de controle

  • Homologação e controle de fornecedores: Garantir que os tomates e ingredientes utilizados venham de fontes confiáveis e que apresentem laudos de análise.
  • Monitoramento de resíduos químicos: Realização de análises laboratoriais periódicas para pesticidas, metais pesados e aditivos.
  • Controle dos produtos químicos de uso industrial: Armazenamento, rotulagem e aplicação devem seguir normas rígidas de segurança.
  • Treinamento dos colaboradores: Conscientização sobre o manuseio seguro de produtos químicos e procedimentos em caso de acidentes.
  • Rastreabilidade e recall: Sistemas eficazes de rastreamento e recolhimento de produtos em caso de contaminação química.

Por Maria Bearzotti

2 min leituraA segurança de alimentos na indústria de atomatados (molhos, extratos e polpas de tomate) envolve o controle rigoroso de diversos perigos, entre eles os perigos químicos, que representam um risco significativo […]

8 min leitura
1

Detectores de metais: entendendo falsos rejeitos e como evitá-los (I)

8 min leitura

Entre os perigos físicos na indústria de alimentos, a contaminação metálica é um dos mais críticos, oferecendo riscos à segurança de alimentos e à reputação das empresas. Mesmo em sistemas validados, monitorados e verificados, podem ocorrer falsos rejeitos, impactando a produtividade e a confiança no processo. Entender como os detectores de metais funcionam é essencial para garantir a eficácia dessa medida de controle, seja ela um PCC, PPRO ou PC, e para conduzir análises de causa raiz sempre que necessário.

Este artigo foi elaborado a partir de uma entrevista com Mateus, especialista em detector de metais, da empresa Fortress, e complementado com informações de referências técnicas e documentos especializados. O objetivo é apresentar, de forma prática, as principais causas de falsas rejeições (falsos positivos), como identificá-los e estratégias para reduzir sua ocorrência, contribuindo para a gestão eficaz da segurança de alimentos. Este conteúdo contém exemplos não exaustivos e não substitui as recomendações específicas para cada equipamento ou processo.

Como funciona um detector de metais?

O detector de metais opera com base em um campo eletromagnético gerado por bobinas localizadas na abertura de inspeção do equipamento. Quando um material condutor, como um contaminante metálico, atravessa esse campo, ele interrompe o equilíbrio eletromagnético, gerando um “sinal” que é interpretado pelo equipamento.

Exemplo prático: imagine um lago calmo. Se você jogar uma pedra, as ondas geradas indicarão a presença de algo que perturbou aquela superfície tranquila. O detector age de forma parecida.

O detector pode identificar diferentes tipos de metais com base no tipo de distorção gerada no campo eletromagnético:

• Valor Reativo – gerado por metais ferrosos (Fe), que produzem uma distorção intensa e facilitam a detecção.

• Valor Resistivo – característico de metais não ferrosos (NF), como cobre e alumínio. O aço inoxidável (SS) apresenta um efeito resistivo mais baixo, dificultando sua detecção, especialmente em ambientes com fatores interferentes.

Quanto mais próximo o sinal estiver do chamado ponto “R”, menor será a distorção no campo, resultando em um sinal mais fraco e difícil de detectar. Os metais ferrosos (Fe) e não ferrosos (NF) estão a uma distância considerável de “R”, gerando um sinal mais forte e facilmente reconhecido pelo detector. Já o aço inoxidável (SS) está mais próximo de “R”, gerando um sinal fraco, o que exige sensibilidade ajustada e controle rigoroso das variáveis de inspeção.

Outro fator relevante é que o próprio produto pode causar distorções no campo, exigindo ajustes adequados para evitar interferências na leitura.

Falsos rejeitos: o que são e por que acontecem?

Falsos rejeitos ocorrem quando o detector de metais rejeita um produto sem que haja contaminação metálica real. Essa rejeição indevida pode ser causada pelo sinal gerado pelo próprio produto ou por interferências externas, como equipamentos próximos ou variações elétricas.

Além de gerar desperdício de produto e interrupções no processo produtivo, os falsos rejeitos comprometem a confiabilidade do sistema de detecção de metais.

Exemplo prático:

Imagine uma linha de produção em que o detector rejeita vários pacotes sem uma causa aparente. Se isso ocorrer repetidamente, os operadores podem passar a questionar a confiabilidade do equipamento e ignorar alertas reais, deixando de realizar as ações corretivas necessárias. Isso aumenta o risco de que um produto realmente contaminado não seja detectado, colocando em risco a segurança de alimentos e podendo resultar em recall ou danos ao consumidor.

As principais causas de falsos positivos incluem:

1- Interferências eletromagnéticas e elétricas

1.1 Rádios comunicadores e transmissores de RF podem causar distorções no campo magnético do detector, comprometendo sua sensibilidade. É importante evitar o uso desses dispositivos próximos à abertura de inspeção. O celular não  gera interferência.

1.2 Motores, inversores de frequência e válvulas: equipamentos com componentes eletromagnéticos próximos ao detector de metais podem gerar campos que interferem na estabilidade dos detectores de metais.

1.3 Oscilações na rede elétrica: variações de tensão ou ruídos de alimentação prejudicam a consistência da detecção.

1.4 Aterramento inadequado: sistemas de aterramento inadequados podem aumentar o nível de ruído elétrico, interferindo no funcionamento correto do detector. Recomenda-se a utilização de cabos blindados e aterramento em conformidade com as especificações do fabricante.

1.5 Zona Livre de Metais (MFZ): é a área ao redor da abertura do detector que deve ser mantida livre de metais, para evitar interferências no campo de detecção.  As distâncias recomendadas variam conforme o formato da abertura do detector:

  •  Detectores com aberturas retangulares: manter objetos metálicos fixos a uma distância mínima de 1,5 vezes a menor dimensão da abertura (altura ou largura). Manter objetos metálicos em movimento a uma distância mínima de 2 vezes a menor dimensão da abertura.
  • Detectores com aberturas circulares: a zona livre de metais deve ser de 0,64 a 0,8 vezes o diâmetro da abertura.

1.6 Deixe um espaço de 2 a 5 metros entre detectores de metais para evitar que interfiram um no outro.

2- Fatores mecânicos

2.1-  Vibração mecânica

  • Equipamentos e estruturas próximos, como motores, válvulas de by-pass, bombas e sistemas móveis, podem gerar vibrações que interferem no campo eletromagnético do detector de metais. Essas vibrações podem reduzir a sensibilidade, gerar leituras imprecisas e causar falsos rejeitos.
  • O detector de metais deve ser instalado em estruturas fixas e soldadas. O uso de suportes parafusados é desaconselhado, pois pode formar curtos-circuitos variáveis, levando a ativações acidentais.
  • A estrutura da esteira transportadora e o suporte do detector devem ser firmemente ancorados na base, impedindo movimentos relativos entre as estruturas.
  • Respeitar um espaçamento de, no mínimo, o dobro (2x de cada lado) da menor dimensão do detector (largura ou altura, sendo geralmente a altura, e para  tubulação considerar o  diâmetro).

Exemplo prático:

Se a largura for 1m e a altura for 0,5m , aplica-se à altura: 0,5 × 2 = 1 m. Portanto, a distância mínima para instalação de motores deve ser 1m de cada lado.

2.2 Tamanho da abertura do detector

O tamanho da abertura dos detectores de metais influencia diretamente sua sensibilidade de detecção.

  • Quanto menor a abertura do detector, maior sua sensibilidade para detectar partículas metálicas pequenas. Detectores superdimensionados apresentam sensibilidade reduzida.
  • A proporção do tamanho da abertura para o tamanho do produto é importante, para atingir desempenho ideal. A sensibilidade do detector é medida no centro geométrico da abertura, que é o ponto menos sensível. Isso é inversamente proporcional ao tamanho da abertura.
  • Para alimentos com alto efeito de produto (alta condutividade), o túnel não deve ser muito pequeno, pois o preenchimento excessivo pode gerar falsos rejeitos.
  • Regra prática: O nível de preenchimento do túnel deve ser inferior a 70% da área útil, especialmente em produtos altamente condutivos, para evitar interferências e perda de desempenho.

Exemplo prático:

Se a abertura do túnel for 500 mm x 200 mm, o produto não deve ultrapassar 350 mm de largura ou 140 mm de altura.

3 -Efeito do produto

3.1 Composição do alimento 

Alimentos com alto teor de água, sal ou ingredientes condutivos, como carnes frescas, queijos, molhos e refeições prontas, podem gerar sinais elétricos próprios que interferem no funcionamento dos detectores de metais. Esse fenômeno, conhecido como efeito de produto, ocorre devido à condutividade elétrica natural desses alimentos, influenciada por fatores como umidade, salinidade, atividade de água (Aw) e temperatura. Essas características podem simular a presença de contaminantes metálicos, impactando a sensibilidade e a precisão do equipamento.

Além disso, produtos com características variáveis dentro de um mesmo lote, como diferentes cortes de carne ou alterações na receita, aumentam a variabilidade do sinal, tornando o controle mais desafiador. Outro ponto importante é a diferenciação entre produtos “úmidos” e “secos”. Produtos úmidos, por serem altamente condutivos, são mais suscetíveis ao efeito de produto, enquanto produtos secos apresentam menor interferência no processo de detecção.

  • Produtos secos – Ex.: açúcar, farinha, salgadinhos, confeitaria, cereais -> Alta sensibilidade
  • Produtos úmidos (efeito de produto) – Ex.: refeições prontas, carne, peixe, molhos, conservas ->  Sensibilidade reduzida
  • Produtos ricos em ferro-> Alta sensibilidade
  • Produtos com altos níveis de sal-> Sensibilidade reduzida
  • Produtos com formatos irregulares->  Sensibilidade reduzida

A composição do alimento também pode intensificar esse efeito. A água, combinada com sal ou açúcar, aumenta a condutividade elétrica e pode distorcer o campo eletromagnético do detector. Além disso, o tamanho e a densidade do alimento também influenciam a detecção: produtos muito grandes ou excessivamente compactados podem distorcer o campo magnético do detector e afetar sua sensibilidade.

Exemplo prático:

A massa total do produto influencia o volume de água e, consequentemente, o comportamento no detector. Um produto com 10 kg a -18°C terá uma condutividade diferente de um lote com 30 kg a -18°C, devido à quantidade de água e densidade da massa. Isso pode criar cenários distintos, simulando condições de produto úmido ou seco.

Por isso, é fundamental  ter uma “receita” para rodar cada produto, com parâmetros validados  e específicos no equipamento para compensar essas variações e evitar falsos rejeitos, assegurando a eficácia na detecção de contaminantes metálicos.

3.2  Temperatura do alimento

A temperatura influencia diretamente a condutividade elétrica do produto. Pequenas variações térmicas, como o descongelamento parcial, podem elevar a umidade e a condutividade, alterando o sinal detectado. Isso aumenta o risco de falsos rejeitos, especialmente em produtos congelados expostos a variações de temperatura durante a inspeção.

Exemplo: cheesecakes inteiros e congelados apresentam um efeito de produto diferente em comparação aos cheesecakes fatiados e congelados, mesmo quando elaborados com os mesmos ingredientes. Esses mesmos cheesecakes podem apresentar um efeito de produto distinto imediatamente após saírem do túnel de congelamento, em relação ao efeito observado após permanecerem vinte minutos em uma esteira transportadora.

3.3 Embalagens e materiais de embalagem

Os materiais de embalagem também afetam o desempenho do detector de metais:

  • Embalagens contendo alumínio criam campos magnéticos que podem dificultar a identificação de contaminantes metálicos ou gerar falsas detecções. Por isso, recomenda-se que a inspeção ocorra antes do envase, para evitar interferências no processo de detecção.
  • Embalagens recicláveis podem conter materiais compostos ou fragmentos metálicos que causam interferências.  Um exemplo é o uso de embalagens kraft ou de papelão reciclado, que podem conter partículas metálicas oriundas do processo de fabricação e reciclagem (uso de embalagens Tetra Pak, por exemplo).
  • Dimensionamento do produto e da embalagem: quanto maior a dimensão do produto e do detector, menor será a sensibilidade do equipamento, devido ao aumento da interferência no campo magnético.

Exemplo: em linhas com embalagens em sacaria, recomenda-se limitar a largura das sacarias a 660 mm e a altura do produto a 254 mm. Além disso, variações na compactação do produto podem alterar os sinais de detecção, sendo necessário configurar diferentes receitas no equipamento para cada tipo de produto e embalagem.

Referências: 

  • Minebea Intec. (2022). Rilievo dei metalli nelle linee di produzione. Capítulo 4.4 – Factores que influyen en la sensibilidad de detección. Páginas 20 a 27.
  • Metal Detection Guide. (Minebea Intec, 2020). Capítulo 4 – Metal-Free Zone e Fatores Críticos de Detecção. Páginas 18 a 24.
  • Guide to Metal Detection in Food Production. (Loma Systems, 2019). Seções: Principles of Detection e Factors Influencing Performance. Páginas 5 a 12.
  • Fortress Technology. (2020). Metal Detection Basics. Seção 2 – Sensitivity and Product Effect. Páginas 10 a 14.
  • Eriez. (2019). Metal Detector Verification and Validation White Paper. Seção 3 – Best Practices for Validation and Verification. Páginas 6 a 11.
  • Mettler Toledo. (2020). White Paper – Metal Detection vs X-ray Inspection. Capítulo 5 – Comparativo de Tecnologias. Páginas 17 a 21.
  • Anritsu Industrial Solutions. (2018). Metal Detection Guide – Best Practices. Capítulo 3 – Sensitivity Settings and Contaminant Types. Páginas 13 a 20.
  • Safe Food Alliance. (2023). The 6th HACCP Principle: Verification. Seção 6.1 – Procedimentos de Verificação em Pontos Críticos de Controle.

8 min leituraEntre os perigos físicos na indústria de alimentos, a contaminação metálica é um dos mais críticos, oferecendo riscos à segurança de alimentos e à reputação das empresas. Mesmo em sistemas validados, […]

4 min leitura
0

IFS FOCUS DAY 2024: Verificação e Validação do Plano APPCC na prática

4 min leitura

Dando continuidade à série de posts sobre o evento IFS FOCUS DAY 2024, realizado em São Paulo, no dia 26 de setembro de 2024, destaco hoje a palestra ministrada por Maristela Portela (4WFOOD). Ela fez uma abordagem prática e detalhada sobre a Verificação e Validação do Plano APPCC, ressaltando a importância desses processos para garantir a segurança dos alimentos.

Durante a apresentação, foram discutidos os conceitos fundamentais que diferenciam monitoramento, validação e verificação no contexto do APPCC, destacando como cada etapa contribui para a eficácia do plano e o cumprimento dos requisitos de segurança dos alimentos.

A palestrante reforçou que a segurança dos alimentos começa com um bom plano, mas só se concretiza pela  validação, que transforma a teoria em prática. A verificação contínua garante a execução correta, mantendo a eficácia e a proteção dos alimentos. Além disso, Maristela enfatizou que o APPCC, conforme a norma IFS v.8, é um sistema que identifica, avalia e controla perigos significativos para a segurança dos alimentos. Já o PCC (Ponto Crítico de Controle) é uma etapa essencial onde medidas de controle são aplicadas para garantir a segurança.

Diferença entre Monitoramento, Verificação e Validação

Maristela Portela iniciou sua apresentação esclarecendo a diferença entre três conceitos fundamentais:

  • Validação: confirmação, por meio do fornecimento de evidência objetiva, de que os requisitos para uma utilização ou aplicação específica pretendida, foram atendidos. A validação das medidas de controle definidas para os PCCs e outras medidas de controle consiste em obter evidências de que uma medida de controle ou uma combinação de medidas de controle, se adequadamente implementada, é capaz de controlar o perigo em relação a obter um resultado específico.
  • Monitoramento: determinação do status de um sistema, processo, produto, serviço ou atividade. Para medidas de controle definidas para um  PCC e outras medidas de controle: o ato de conduzir uma sequência planejada de observações ou medições de parâmetros de controle para avaliar se as medidas de controle definidas para PCC e outras medidas de controle estão sob controle.
  • Verificação: confirmação, por meio do fornecimento de evidência objetiva, de que requisitos especificados foram atendidos. Aplicação de métodos, procedimentos, testes e outras avaliações, em adição ao monitoramento, para determinar se uma medida de controle está ou tem sido operada conforme pretendido.

Validação do plano  APPCC e estabelecimento de procedimento de verificação

Validação & APPCC

Conforme a norma IFS v.8, o item 2.3.11.1 estabelece que os procedimentos de validação, incluindo a revalidação após qualquer modificação que possa impactar a segurança dos alimentos, devem ser documentados, implementados e mantidos. O objetivo é garantir que o plano APPCC seja adequado para controlar efetivamente os perigos identificados.

A escolha da abordagem para a validação dependerá de fatores como:

  • Tipo de perigo envolvido;
  • Características das matérias-primas e do produto final;
  • Tipo de medidas de controle adotadas;
  • Rigor necessário para o controle do perigo.

 Maristela também destacou que o Codex Alimentarius publicou diretrizes para a validação das medidas de controle de segurança dos alimentos (CAC/GL 69-2008, revisado em 2013), que incluem:

  • Tarefas prévias à  validação das medidas de controle

  • Abordagens para validação de medidas de controle

  • Qualificação de equipamento na validação de uma medida de controle (PCC)

  •  Etapas gerais do processo de validação

  •  Como validar ou revalidar um plano APPCC já existente?

  • Principais problemas relacionados à validação
  •       Falta de compreensão adequada dos  PCCs
  •       Falta ou falha no planejamento estruturado compromete a execução eficaz da validação dos PCCs e das medidas de controle;
  •       Falta de testes de validação desafiadores;
  •       Insuficiência de dados científicos ou técnicos;
  •       Testes práticos incompletos ou ineficazes;
  •       Excesso de dependência de dados teóricos;
  •       Mudanças no processo sem revalidação;
  •       Ausência de revisões regulares.
  • Exemplo – Validação detectores de metais

 

Verificação no APPCC

Na norma IFS v.8, o item 2.3.11.2 especifica que os procedimentos de verificação devem ser documentados, implementados e mantidos para confirmar que o plano APPCC está funcionando conforme o planejado. Isso inclui a realização de auditorias internas, revisões de registros e monitoramento contínuo das operações para garantir a eficácia das medidas de controle estabelecidas.

As verificações devem ser realizadas pelo menos uma vez a cada 12 meses ou sempre que ocorrerem mudanças significativas. Os resultados devem ser incorporados ao plano APPCC.

Exemplos de atividades de verificação:

  • Auditorias internas;
  • Testes e amostragens;
  • Registros de desvios e não conformidades;
  • Análise de reclamações.

Segundo o Codex Alimentarius (CAC/GL 69-2008, revisado em 2013), após implementar o sistema APPCC, é necessário estabelecer procedimentos para garantir que o sistema funcione de forma eficaz.

 

4 min leituraDando continuidade à série de posts sobre o evento IFS FOCUS DAY 2024, realizado em São Paulo, no dia 26 de setembro de 2024, destaco hoje a palestra ministrada por […]

4 min leitura
0

Norma da ABNT para APPCC: NBR 17183:2024 – Parte III: 7 princípios

4 min leitura

Nesta última postagem da série, vamos abordar os 7 princípios da metodologia proposta pela norma da ABNT para APPCC NBR 17183:2024.

A primeira postagem, sobre elementos introdutórios e etapas preparatórias da organização para implementar o APPCC, pode ser acessada aqui. A segunda, sobre as 5 etapas preliminares, está aqui.

Princípio 1 (Etapa 6) – Análise de perigos

É definida a necessidade de uma análise de perigos documentada, com base no fluxograma e outros dados técnicos levantados pela equipe. Essa etapa divide-se em três subetapas, sendo a primeira a “identificação dos perigos associados a cada passo do processo e das medidas de controle a estes perigos”. Para isso, a equipe deve considerar as etapas de processo do fluxograma, ingredientes e materiais de contato, para identificar os perigos biológicos, químicos e físicos que podem ser previstos ou aumentar até um nível inaceitável. Também deve ser estabelecido o nível aceitável para cada perigo.

A etapa seguinte, de “avaliação de perigos,” consiste em determinar se a eliminação, redução ou prevenção do perigo é essencial e se, portanto, este deve ser considerado no plano APPCC. A norma define que essa avaliação deve ser feita conforme o “risco, considerando a severidade de seus efeitos adversos para a saúde e a probabilidade de sua ocorrência. Similar à ISO 22000:2018, o termo “perigo significativo” é empregado na subetapa seguinte

Por fim, na “determinação das medidas de controle”, deve-se determinar as medidas de controle para prevenir, eliminar ou reduzir os perigos significativos. É prevista a possibilidade de uso de mais de uma medida de controle para o mesmo perigo, um perigo ser controlado por mais de uma medida de controle ou a necessidade de mudanças no processo. Devem ser apresentadas as justificativas de inclusão ou exclusão de um perigo potencial.

Princípio 2 (Etapa 7) – Determinação dos prontos críticos de controle

Para determinação dos PCC, a norma cita a possibilidade de uso de uma árvore decisória ou outra ferramenta equivalente. No Anexo C são disponibilizados 2 modelos de árvores decisórias.

Para registro das etapas 6 e 7 é disponibilizado um modelo de formulário no Anexo A.

Princípio 3 (Etapa 8) – Estabelecer os limites críticos e as tolerâncias para cada PCC

Para cada PCC, a equipe APPCC deve definir e documentar os parâmetros e justificativas dos limites críticos. É recomendado que sejam escolhidos limites que possam ser medidos de forma rápida e fácil e, no caso de serem baseados em dados subjetivos (ex. avaliação visual, análise sensorial etc.) deve haver instruções, especificações e capacitações documentadas.

Princípio 4 (Etapa 9) – Estabelecer um sistema de monitoramento para cada PCC

Para cada PCC, deve ser estabelecido, mantido e documentado um sistema de monitoramento pela equipe APPCC, de forma que qualquer desvio seja detectado a tempo de controlar os perigos. Devem ser considerados fatores como: adequação do sistema de monitoramento ao respectivo limite crítico; responsável com conhecimento, treinamento e autoridade para tomada de ações corretivas, que deve assinar ou endossar os registros gerados; frequência de monitoramento, com considerações sobre processos contínuos ou não; descrição no caso de monitoramento por medições ou observações. Assim como no Codex Alimentarius, são fornecidas orientações sobre análise de tendência para detectar desvios do limite crítico antes que estes ocorram.

No Anexo B é fornecido um exemplo de formulário para determinação do monitoramento de um PCC.

Princípio 5 (Etapa 10) – Estabelecimento de correções e/ou ações corretivas

A equipe APPCC deve estabelecer um procedimento documentado para as correções no caso de desvio de cada PCC e, caso necessário, para tomada de ações corretivas, com indicação de responsabilidades pela disposição do produto inseguro ou inadequado e registros. Outras orientações são dadas sobre registros das ações, práticas na tomada de ação corretiva, análise de eficácia e necessidade de retirada se necessário.

Princípio 6 (Etapa 11) – Estabelecer procedimentos de validação, verificação e revisão

Validação: as medidas de controle para os perigos significativos devem ser validadas antes de sua implementação e após mudanças. Se necessário, as medidas devem ser modificadas e reavaliadas. Deve ser mantida documentada a metodologia e evidências da validação. A sistemática indicada é similar à da ISO22000:2018. Também é mencionada a possibilidade de uso dos guias de validação do Codex Alimentarius.

Verificação: deve-se estabelecer um sistema de verificação que especifique os métodos, frequência, responsáveis e dados para todos os procedimentos de APPCC, incluindo registros de monitoramento e ações corretivas. São indicadas verificações que devem ser realizadas regularmente e a necessidade de manter registros dessas atividades.

Revisão do sistema APPCC: a alta direção deve assegurar a revisão do sistema APPCC, com base em um cronograma e entradas mínimas, com finalidade de avaliar sua eficácia e identificar melhorias. Não é indicada uma frequência mínima obrigatória, porém indica-se a necessidade de revisão completa no caso de falhas maiores nas atividades de verificação. Os resultados das revisões devem ser incorporados nos processos e devem ser mantidos registros das atividades de verificação.

Procedimento de verificação: verificação a ser realizada após a implementação do sistema APPCC, para garantir seu funcionamento efetivo, bem como revisões periódicas ou no caso de alterações. São indicadas metodologias e exemplos de verificações que devem ser realizados, bem como considerações sobre responsabilidades e frequência.

Princípio 7 (Etapa 12) – Estabelecer procedimento de conservação de registros e documentação

São determinados controles que a organização deve estabelecer e manter para controle da documentação, como acesso à informação, responsabilidades por modificação e aprovação, distribuição de cópias e controle de obsoletos; bem como de registros relacionados ao APPCC, como tempo de retenção de no mínimo a vida útil do produto e disponibilização para verificação por auditorias ou autoridades. São indicados os registros mínimos que devem ser mantidos.

Nessa série de postagens foi abordada a metodologia definida na norma da ABNT para APPCC NBR 17183:2024, sendo possível observar similaridades e diferenças entre as metodologias definidas no Codex Alimentarius e na ISO 22000:2018.

Imagem em destaque gerada por IA

4 min leituraNesta última postagem da série, vamos abordar os 7 princípios da metodologia proposta pela norma da ABNT para APPCC NBR 17183:2024. A primeira postagem, sobre elementos introdutórios e etapas preparatórias […]

2 min leitura
0

Norma da ABNT para APPCC: NBR 17183:2024 – Parte II: Estrutura e organização

2 min leitura

Estamos em nossa segunda postagem sobre a metodologia de APPCC proposta pela ABNT NBR 17183:2024.

Caso não tenha lido a primeira postagem, onde foram abordados elementos introdutórios e etapas preparatórias da organização para implementar o APPCC, você pode clicar aqui.

Hoje iremos tratar das etapas preliminares aos sete princípios.

Etapa 1 – Formação da equipe APPCC

É indicada a necessidade de estruturar uma equipe multidisciplinar para o APPCC.

Um ponto relevante é que fica claro que a alta direção é a responsável por selecionar os membros da equipe, ainda que não seja definida a quantidade de membros ou quais áreas devam fazer parte. Como exemplo, são mencionadas as áreas de produção, compras, finanças, engenharia e qualidade.

Para fazer parte da equipe, é estabelecido que os membros tenham conhecimento e experiência específicos no produto, seus processos de produção e perigos relacionados à segurança. Para essa equipe, são também definidos os conhecimentos mínimos necessários que seus membros devem possuir.

Também é indicada a necessidade de um “líder de equipe que represente a alta direção”, com responsabilidades como: assegurar o estabelecimento, implementação e manutenção do APPCC, assim como informar a alta direção sobre seu desempenho.

Uma atividade importante a ser realizada pela equipe é a definição do escopo do sistema APPCC, em um ou vários planos, com a determinação dos produtos ou grupo de produtos, linha ou processos de produção.

Etapa 2 – Descrição do produto

É definida a necessidade de descrição dos produtos intermediários e acabados e os itens que devem constar nesta, incluindo: tipo e composição, legislações aplicáveis, processo, apresentação, envasamento e embalagem, armazenamento, condições de distribuição e prazo de validade.

Deve ser feita ainda a descrição das matérias-primas, ingredientes e materiais de contato, citando como referência a ABNT NBR ISO 22000 item 8.5.1.2. Desta forma, esta metodologia, assim como a norma ISO 22000, diferencia-se da metodologia Codex Alimentarius.

Etapa 3 – Descrição do uso pretendido do produto

Neste item, é necessário indicar tanto o uso pretendido pelos consumidores, geral e específicos, como o uso não previsto, porém provável. Além disso, devem ser considerados grupos de consumidores vulneráveis, legislações pertinentes e instruções de uso do produto.

Etapa 4 – Construção de um fluxograma do produto

A NBR 17183:2024 define que a equipe APPCC é responsável por elaborar o fluxograma. Este deve ser detalhado, considerando os passos da produção, desde o recebimento à distribuição. A norma também determina as informações mínimas que devem ser incluídas no fluxograma.

Também é determinado que se realize uma breve descrição de cada etapa, considerando o leiaute, condições de PPR e controles operacionais. Tal necessidade também caracteriza uma condição que a diferencia da metodologia do Codex Alimentarius.

Etapa 5 – Confirmação “in loco” do fluxograma

A última etapa preliminar considera a confirmação do fluxograma. É de responsabilidade da equipe APPCC realizar essa confirmação em todas as etapas e tempos de operação. Se necessário, o fluxograma operacional deve ser revisado.

Na próxima postagem, iremos abordar os “7 princípios do APPCC”.

Imagem em destaque gerada por IA

2 min leituraEstamos em nossa segunda postagem sobre a metodologia de APPCC proposta pela ABNT NBR 17183:2024. Caso não tenha lido a primeira postagem, onde foram abordados elementos introdutórios e etapas preparatórias […]

2 min leitura
2

Norma da ABNT para APPCC: NBR 17183:2024 – Parte I: Estrutura e organização

2 min leitura

Foi publicada pela ABNT em julho de 2024, com vigência a partir de agosto, uma norma para elaboração do APPCC, a ABNT NBR 17183:2024.

O projeto foi elaborado pela Comissão de Estudo Especial de Segurança de Alimentos – ABNT/CEE-104 Segurança de Alimentos. Importante destacar que esta norma cancela e substitui a ABNT NBR 323:2010. Este documento, como todos os demais da ABNT, é pago e pode ser adquirido diretamente no site, clicando aqui.

Na primeira parte desta série de postagens, iremos trabalhar com a estrutura geral da metodologia abordada pela norma e seus elementos iniciais.

A ABNT NBR 17183:2024 não possui caráter legal, somente normativo. Dessa forma, sua adoção é opcional pelas empresas, salvo se um dispositivo legal determinar sua adoção. Entretanto, o uso desse tipo de documento é de grande valia para uso das organizações em seus sistemas de gestão.

Estrutura do APPCC

De forma geral, o documento mantém as mesmas 12 etapas para construção do APPCC, constituídas de 5 “etapas preliminares” e 7 princípios, como indicado abaixo:

   Etapa 1 – Formação da equipe APPCC

   Etapa 2 – Descrição do produto

   Etapa 3 – Descrição do uso pretendido do produto

   Etapa 4 – Construção de um fluxograma do produto

   Etapa 5 – Confirmação “in loco” do fluxograma

   Etapa 6 – Elaboração de uma lista de todos os perigos associados a cada etapa do processo e as medidas preventivas para controlá-los

   Etapa 7 – Determinação dos pontos críticos de controle

   Etapa 8 – Estabelecimento dos limites críticos para cada PCC

   Etapa 9 – Estabelecimento de um sistema de monitoramento para cada PCC

   Etapa 10 – Estabelecimento de correções e/ou ações corretivas

   Etapa 11 – Estabelecimento de procedimentos de verificação e revisão

   Etapa 12 – Estabelecimento de um sistema de documentação e registro

Preparação da organização para o APPCC

A primeira seção da norma, que corresponde à cláusula 4, aborda elementos preparatórios para a implementação do APPCC na organização. Esses elementos incluem:

  • Comprometimento e liderança da alta direção
  • Definição de uma política de segurança
  • Disponibilização de recursos
  • Estabelecimento de uma estrutura organizacional com responsabilidades e autoridades relacionada à segurança dos alimentos
  • Realização de análises críticas da eficácia do APPCC pela alta direção
  • Implementação dos PPR: BPF, PPHO, POP e Autocontroles
  • Criação de um programa de capacitação a todo pessoal vinculado ao estudo APPCC, incluindo seu desenvolvimento, implementação, verificação, auditorias e revisão.

Nota-se que, com a estrutura prevista nesta cláusula, o estudo APPCC adota aspectos de gestão (como o estabelecimento de política e análise crítica de eficácia) aliados aos técnicos das cláusulas subsequentes.

Outro elemento relevante da NBR 17183:2024 é que o item de PPR não tem a intenção de prescrever uma lista de elementos ou itens a serem implementados, mas sim de orientar a organização quanto à necessidade de realizar uma avaliação das condições atuais das BPF e a tomada de ações de correção. Também é prevista a necessidade de documentação e auditorias de conformidade.

Na próxima postagem, iremos abordar os aspectos principais das “etapas preliminares”.

A imagem em destaque foi gerada por IA

2 min leituraFoi publicada pela ABNT em julho de 2024, com vigência a partir de agosto, uma norma para elaboração do APPCC, a ABNT NBR 17183:2024. O projeto foi elaborado pela Comissão […]

6 min leitura
0

Princípios básicos do funcionamento de detectores de metal

6 min leitura

Detectores de metal são ótimos dispositivos para prevenir que contaminantes físicos metálicos, sejam ferrosos, não ferrosos ou inox, cheguem aos consumidores. Por esta razão, muitas vezes acabam por tornar-se PCC (Pontos Críticos de Controle) em planos de HACCP.

Um detector de metais tem como princípio de ação um sistema constituído por três bobinas equilibradas, que ao serem perturbadas, permitem detectar partículas ferrosas, não ferrosas e aço inoxidável.

Para tanto, as bobinas são alojadas em um contentor não metálico, paralelas uma com a outra, sendo que a bobina central é de transmissão (rádio frequência) e as outras duas laterais são de recepção (receptores de rádio ou antenas).

Figura 1: Alinhamento das bobinas de um detector de metais 

A bobina de transmissão emite uma frequência alta que induz corrente nas duas bobinas de recepção, criando campos magnéticos que são capazes de detectar metais.

Quando uma partícula metálica atravessa o campo magnético da primeira bobina, ocorre uma perturbação do sistema em relação à segunda bobina, criando uma voltagem de desequilíbrio. Esta voltagem é amplificada e processada por um módulo eletrônico, indicando a detecção do metal.

Figura 2: Princípio de desequilíbrio entre as bobinas gera sinal detectável

Para o perfeito funcionamento deste sistema, é preciso que haja, próximo do local onde o detector de metais está instalado, uma ZONA LIVRE DE METAIS como estruturas, eixos e rolos metálicos, além, é claro, de fontes magnéticas ou similares. Esta condição é necessária em cada lado da abertura do detector de metais, evitando que o equilíbrio magnético seja perturbado por fontes que não os contaminantes do produto em processo.

A SENSIBILIDADE de um detector corresponde ao diâmetro da partícula metálica esférica que “sempre” poderá ser detectada quando atravessar o centro da abertura do detector de metais, considerando as diferenças em relação às partículas metálicas, não metálicas e aço inoxidável.

Após um detector de metais ser instalado numa planta industrial, sua sensibilidade deverá ser sempre validada, justamente para avaliar se algo está intervindo no campo magnético e reduzindo a sensibilidade ou causando falhas aleatórias, e se for o caso, a zona livre de metais deve ser revisada ou o equipamento ajustado.

O tipo de metal e o tamanho da abertura do detector de metais influenciam a sensibilidade de detecção realizável.

Tamanho da abertura 

Uma abertura menor por onde o produto passa para ser submetido ao detector de metais cria uma maior densidade de fluxo dos campos magnéticos. Desta forma, detecta partículas menores de metal com maior facilidade.

O centro da abertura é a área de menor sensibilidade, porque proporciona um nível baixo de densidade de fluxo dos campos magnéticos, por isso uma amostra de teste deve ser passada preferencialmente pelo centro, que é o pior caso.

Por este princípio, fica evidente que detectores de queda que permitem o produto passar por um cilindro de pequeno diâmetro tendem a ser mais eficientes do que os detectores de metal de esteira.

Figura 3: Modelo de detector de metais de esteira 

Porém, quando modelos de esteira são os mais aplicáveis pelo desenho da linha industrial, sempre são mais eficientes para pacotes isolados do que para caixas com vários pacotes.

Tipo de metal 

Diferentes metais apresentam diferentes permeabilidades e condutividades:

  1. Permeabilidade – representa a capacidade de um metal ser penetrado por magnetismo;
  2. Condutividade – representa a capacidade para transmitir correntes elétricas.

Assim:

METAIS FERROSOS METAIS NÃO FERROSOS AÇO INOXIDÁVEL
COMPOSIÇÃO Possuem, pelo menos, 90% de ferro em sua composição, além de carbono Não possuem ferro em sua estrutura ou possuem baixíssima concentração O aço inoxidável é uma liga de ferro e cromo, podendo conter níquel, molibdênio, nióbio, titânio e outros elementos
EXEMPLO Aço carbono, ferro fundido e o ferro laminado Metais e ligas com alumínio, cobre, chumbo, zinco, titânio, estanho, prata e ouro Aço 304, aço 304 L, aço 316, aço 316 L, aço aço 410, aço 420, aço 430
FACILIDADE DE DETECÇÃO Fácil Fácil Difícil
PERMEABILIDADE AO MAGNETISMO Magnético Não magnético Existem magnéticos (austenítico¹) e totalmente não magnéticos
CONDUTIVIDADE ELÉTRICA Boa Boa Variável dependendo da composição do inox

(1) O aço inox, popularmente conhecido como aço inoxidável austenítico, consiste em uma liga metálica formada por ferro e cromo.

A posição/ orientação de cada tipo de metal em relação ao campo magnético também terá impacto em sua detecção. Para entender este conceito imagine um pedaço de fio metálico e veja no esquema a seguir seu comportamento em relação ao campo magnético:

Figura 4: Facilidde de detecção segundo tipo de metal em relação ao posicionamento/ orientação no campo magnético

Contudo, se ao invés de um fio metálico, o corpo for uma esfera perfeita, o comportamento para ambos os casos será similar. Justamente por isso, corpos de prova para testes de detectores de metal são constituídos normalmente por esferas.

Influência dos produtos

Por fim, importante mencionar que os próprios alimentos podem gerar sinal no sistema de bobinas do detector de metais, principalmente quando apresentarem alta salinidade, umidade ou acidez, como é o caso de carnes, molhos, condimentos e sopas, além é claro, de produtos já embalados com material metalizado.

Para tornar possível a inspeção neste tipo de produto é necessário eliminar ou reduzir este sinal, o que pode ser feito reduzindo a sensibilidade do detector de metais, a frequência ou realizar uma compensação do produto:

  1. Quando se reduz a sensibilidade do detector de metais progressivamente, até tornar o sinal do produto não detectável, dependendo do produto, se o sinal for alto, prejudicará a detecção dos contaminantes e isso prejudicará sua segurança.
  2. Sobre a redução de frequência, um detector de metais opera numa frequência normal entre 10 e 500 kHz, sendo que numa frequência baixa o sinal de efeito do produto fica menor, porém, o do aço inoxidável também, e com isso, é reduzida a sensibilidade para este tipo de metal.
  3. Quanto à compensação do produto, trata-se da utilização de filtros especiais que podem amplificar os sinais do detector de forma diferenciada. Assim, o filtro é ajustado de acordo com cada tipo de produto, o que requer diferentes programações para diferentes produtos.

Dependendo das características intrínsecas do alimento, limitações podem fazer com que a tecnologia de detecção de metais seja inapropriada. Neste caso, outras tecnologias podem apresentar melhores soluções, como por exemplo, o uso de raio X.

Falhas operacionais 

Não basta ter um bom detector de metais. Cuidados precisam ser tomados para evitar falhas que permitam que alimentos contaminados cheguem aos consumidores:

  • Se o produto rejeitado é deixado sem identificação ou num recipiente aberto, pode ser devolvido facilmente à produção por um erro operacional ou descuido, em especial nos horários de produção críticos, como trocas de turno;
  • Utilização errada do equipamento pelos operadores, fazendo testes de checagem de forma equivocada, podem tornar sua eficácia inócua;
  • Manutenções e instalação de novos equipamento ou o uso de equipamentos eletrônicos próximos do detector de metais podem influenciar no campo magnético e em sua sensibilidade;
  • O desenho e posição do contaminante podem impedir que o detector de metais faça a detecção e isso pode ocorrer eventualmente, por uma questão de probabilidade.

Boas Práticas Operacionais 

  • O produto rejeitado deve sempre ficar numa caixa de rejeitos identificada com fechadura ou tipo cofrinho;
  • Um dispositivo de advertência deve ser incorporado para indicar quando a caixa está cheia;
  • Devem ser mostrados aos operadores da linha os vários pedaços de metal achados para construir confiança no equipamento;
  • A manutenção de registros confiáveis adequados deve ser feita para destacar quais linhas industriais parecem ter suspeitosamente poucos rejeitos e quais apresentam problemas crônicos;
  • O acesso aos controles do equipamento deve ser limitado a pessoas autorizadas com competência para esta finalidade;
  • Medidas para casos de desvio (para processo e produto) devem ser tomadas sempre que testes com corpos de prova demonstrarem que o detector está falhando;
  • Ações corretivas nas linhas de processo devem sempre ser realizadas, em especial, após a detecção de metais fora da rotina esperada pelo equipamento;
  • Ações preventivas em termos de manutenção devem sempre ser realizadas para prevenir liberação de fragmentos de metais na linha industrial, lembrando que o detector de metais é um seguro para falhas end of pipe e não um “extrator” de metais;
  • Produto capturado pelo detector deve ser inspecionado em local apropriado, fora da área de produção, para identificar sua origem e formas de evitar reincidência;
  • O ponto ideal de inspeção deve ser imediatamente após o empacotamento ou tão perto da embalagem final quanto possível.

Gostou do artigo? Tem experiências que deseja compartilhar no uso de detectores de metal? Quer acrescentar alguma informação? Deixe nos comentários!

Leia também:

É preciso calibrar corpos de prova para detector de metais anualmente?

Eficiência de detector de metais e barra magnética no controle de contaminações físicas em alimentos

Detectores de metais – funcionamento e limitações de uso

Sensibilidade de detectores de metal

Tecnologia de detecção de metais melhora segurança de lácteos

Você sabia que é possível automatizar o sistema de detecção de metais da sua empresa?

Quando não é tecnicamente possível detectar menos de 2 mm

6 min leituraDetectores de metal são ótimos dispositivos para prevenir que contaminantes físicos metálicos, sejam ferrosos, não ferrosos ou inox, cheguem aos consumidores. Por esta razão, muitas vezes acabam por tornar-se PCC […]

2 min leitura
3

Análise da nova legislação para a avaliação de risco e segurança de alimentos – RDC 868/2024 (Anvisa)

2 min leitura

Depois de 25 anos, a Anvisa publicou a RDC nº 868, de 17 de maio de 2024, com as novas diretrizes básicas para a avaliação de risco e segurança de alimentos. Esta resolução entra em vigor a partir do dia 3 de junho de 2024, revogando a RES nº 17, de 30 de abril de 1999.

Vamos agora conhecer um pouco destas normas.

A Resolução nº 17/1999 foi um marco importante para a história da segurança de alimentos no Brasil. Publicada em um cenário no qual a globalização começava a influenciar as exigências de qualidade e padrões alimentares, as regulamentações no Brasil sobre a higiene e a segurança de alimentos estavam sendo consolidadas. O conhecimento técnico, científico e as práticas industriais eram tecnologicamente limitados, a RES 17/1999 assegurou que os alimentos fossem produzidos em condições sanitárias adequadas através de um metodologia para avaliação de risco com maior ênfase, inicialmente, nas Boas Práticas de Fabricação e serviu de base para regulamentações subsequentes mais detalhadas e específicas.

A RDC nº 868/2024 reflete o avanço em novos conhecimentos e a modernização das diretrizes estabelecidas anteriormente pela RES nº 17/1999. A principal motivação desta norma é a atualização das diretrizes de segurança de alimentos através da incorporação de novas metodologias, tecnologias e conhecimento técnico-científico para uma identificação, análise, avaliação e gestão de riscos mais robusta e adaptada às novas realidades e desafios na segurança de alimentos.


Pontos Principais da RDC Nº 868/2024

A análise de riscos é um processo constituído por três etapas:

1 – Avaliação de Risco
Identificação do perigo: Envolve a identificação de agentes biológicos, químicos e/ou físicos presentes nos alimentos que podem causar efeitos adversos à saúde.
Caracterização do perigo: Descrição através de avaliações quantitativas ou qualitativas da natureza e efeitos adversos à saúde causados por um provável perigo e entendimento do impacto dos diferentes níveis de exposição.
Avaliação da exposição: Analisa a frequência e a magnitude da exposição a um perigo presente nos alimentos, estimando quanto pode ser ingerido. Nesta etapa deve-se considerar a exposição a outras fontes relevantes e demais variáveis que possam influenciar a exposição ao perigo.
Caracterização do risco: Combina os dados obtidos nas etapas anteriores para estimar a probabilidade e a gravidade de efeitos adversos à saúde, considerando as incertezas inerentes.

2 – Gerenciamento de Risco
Processo de ponderação das opções de intervenção à luz dos resultados da avaliação de risco e, caso necessário, da seleção e aplicação de possíveis medidas de controle apropriadas, incluídas as medidas normativas.

3 – Comunicação de Risco
A comunicação de risco deve ser clara, baseada em evidências e adaptada ao público-alvo, transparente e eficaz para todas as partes interessadas, incluindo consumidores e autoridades regulatórias.

Assim como a RES nº 17/1999, a RDC nº 868/2024 é considerada um marco histórico na regulamentação sobre segurança de alimentos no país. Os órgãos regulamentadores devem trabalhar em colaboração com as indústrias e demais partes interessadas de modo a garantir que as novas diretrizes sejam aplicadas de forma eficaz e com  benefícios para a saúde pública, aumentando a confiança do consumidor nos alimentos processados.

Mariana Lacerda é engenheira de alimentos e analista de Qualidade e Segurança de Alimentos, atuando na implementação e manutenção do Esquema FSSC 22000 e em programas de BPF, 5 S, HACCP, Food Defense, Food Fraud, Gestão de Não conformidade, Gestão de mudanças e Cultura de Qualidade. Auditora e multiplicadora interna de FSSC 22000, de BPF e de 5 s. Possui experiência em Pesquisa e Desenvolvimento para a melhoria do processo e da performance de torres de secagem na produção de saneantes.

2 min leituraDepois de 25 anos, a Anvisa publicou a RDC nº 868, de 17 de maio de 2024, com as novas diretrizes básicas para a avaliação de risco e segurança de […]

2 min leitura
1

Qual modelo de APPCC eu uso para atender o MAPA e a ANVISA?

2 min leitura

Sobre a pergunta do título – modelo de APPCC –  vamos ver o que dizem os órgãos reguladores.

O Siscomex é um Sistema Integrado de Comércio Exterior do Governo Federal, que tem por objetivo consolidar os dados de registro, monitoramento e controle das atividades de comércio exterior do Brasil. Essa plataforma foi concebida com a finalidade de reduzir a burocracia, o tempo e os custos associados às exportações e importações brasileiras. É importante ressaltar que produtos importados e que serão exportados devem obrigatoriamente possuir o Sistema de Análise de Perigos e Pontos Críticos de Controle (APPCC) implantado.

Atualmente, o Siscomex constitui o cerne de diversas normas internacionais de segurança de alimentos. No Brasil, a implementação do Sistema APPCC é compulsória para os fabricantes de alimentos, conforme estabelecido na Portaria 1428 de 1993 do Ministério da Saúde e na Portaria 46/1998 do Ministério da Agricultura, Pecuária e Abastecimento (MAPA). Essas regulamentações destacam a importância do controle de perigos e pontos críticos de controle ao longo da cadeia de produção de alimentos.

Além de consultar as portarias 46/1998 e 1428 de 1993 do Ministério da Saúde, recomendamos aos interessados buscar outras referências para aprimorar o conhecimento sobre o tema. Diversas fontes, como o blog Food Safety Brazil, oferecem informações relevantes e atualizadas sobre segurança de alimentos e práticas recomendadas na implementação do Sistema APPCC. A consulta a esses materiais complementares pode contribuir significativamente para garantir a conformidade com as regulamentações e para promover a segurança dos alimentos produzidos e comercializados no país.

Vamos falar das legislações

A portaria 46, de 10/02/1998 institui:

O SISTEMA DE ANÁLISE DE PERIGOS E PONTOS CRÍTICOS DE CONTROLE – APPCC a ser implantado, gradativamente nas indústrias de produtos de origem animal sob o regime do Serviço de Inspeção Federal – SIF, de acordo com o MANUAL GENÉRICO DE PROCEDIMENTOS, anexo à presente Portaria.

A introdução explicita que se trata de um material genérico, portanto, não inclui um modelo físico específico para referência. No entanto, abrange todos os passos essenciais que devem ser contemplados no Sistema de Análise de Perigos e Pontos Críticos de Controle (APPCC).

Na portaria 1428 de 256 de novembro de 1993, do Ministério da Saúde, consta em seu anexo:

A eficácia e efetividade dos processos, meios e instalações, assim como dos controles utilizados na produção, armazenamento, transporte, distribuição, comercialização e consumo de alimentos através do Sistema de Avaliação dos Perigos em Pontos Criíticos de Controle (APPCC) de forma a proteger a saúde o consumidor;

Em outras palavras, o documento não oferece um modelo predefinido. Em vez disso, avalia-se apenas o que a empresa apresenta durante a fiscalização. O modelo comumente utilizado e disponível é o fornecido pelo SENAI/SEBRAE, conhecido como guias do PAS e amplamente reconhecido pelos órgãos reguladores. No entanto, é importante entender que não existe um modelo padronizado, o que importa é o conteúdo exigido pela Portaria 46/1998. O guia de elaboração do plano APPCC pode ser encontrados para compra online. Para um plano mais abrangente e especializado, é possível seguir o passo a passo do Codex Alimentarius, disponível aqui.

Também é possível utilizar o modelo disponibilizado pela Food Standards Agency, o qual requer apenas preenchimento. Durante a fiscalização, os organismos reguladores apenas verificam se o conteúdo do plano atende aos requisitos estabelecidos pelas normas. Não é permitido que uma não conformidade seja atribuída apenas por conta do formato utilizado, seja ele este ou algum outro.

Para saber mais:

=> http://www.fao.org/docrep/005/Y1390S/y1390s09.htm
=> http://www.cdt.unb.br/telecentros/appcc/principios.pdf
=> http://foodsafetybrazil.org/?s=HACCP

2 min leituraSobre a pergunta do título – modelo de APPCC –  vamos ver o que dizem os órgãos reguladores. O Siscomex é um Sistema Integrado de Comércio Exterior do Governo Federal, […]

Compartilhar
Pular para a barra de ferramentas