4 min leitura
7

Defensivos agrícolas?

4 min leitura

“Em cada garfada, o seu destino está sendo determinado”.

No XXIV Congresso Brasileiro de Nutrição (Conbran), realizado em Porto Alegre, em outubro de 2016, o Nutricionista e também farmacêutico bioquímico, Gabriel de Carvalho, citou que no componente químico Glifosato, substância utilizada no combate às pragas das lavouras, foi adicionado o componente 2,4-D, mesmo produto usado na Guerra do Vietnã, denominado “Agente Laranja” (apelido dado a Dioxina), cujos efeitos aos seres humanos foram e ainda são devastadores no país do Oriente, com deformações físicas e mentais.

Denomina-se Agrotóxico, segundo a Lei Federal 7.802, de 11.07.1989: “Produto e agente de processos físicos, químicos ou biológicos destinado ao uso nos setores de produção, no armazenamento e beneficiamento de produtos agrícolas, nas pastagens, na proteção de flores, nativas ou implantadas, e de outros ecossistemas e também de ambientes urbanos, hídricos e industriais, cuja finalidade seja alterar a composição da flora ou da fauna, afim de preservá-la da ação danosa de seres vivos considerados nocivos; substância e produto, empregado como desfolhante, dessecante, estimulador e inibidor de crescimento”.

Estudos comprovam que o uso indiscriminado de agrotóxicos gera um ciclo predatório na natureza alterando a cadeia alimentar; estas substâncias corrompem a cadeia evolutiva com o aumento e o uso indiscriminado de compostos perigosos e tóxicos, acarretando um intenso desequilíbrio ambiental, contaminando água, ar, sedimentos e solo (Agrotóxicos e Responsabilidade JurídicaAgrotóxicos, saúde e meio ambiente: Uma introdução ao tema).

Uma alternativa encontrada pela indústria foi a substituição do termo “agrotóxico” por “defensivo agrícola”, diante desta nomeação o Conselho de Químicos III manifestou-se: “O termo defensivo agrícola carrega uma conotação errônea de que as plantas são completamente vulneráveis a pragas e doenças e esconde os efeitos negativos à saúde humana e ao meio ambiente. O termo agrotóxico é mais ético, honesto e esclarecedor, tanto para os agricultores como para os consumidores”. A indução ao erro corrobora com as contaminações humanas, segundo o Sinitox (Sistema Nacional de Informações Toxicológicas) no ano de 2013, foram registrados 1907 casos de pessoas intoxicadas por agrotóxicos de uso agrícola, ficando em 2º lugar no ranking, sendo os medicamentos o maior número de intoxicações (artigo).

Uma alternativa, que ainda não é a melhor solução, para a prática indiscriminada dos “defensivos agrícolas”, foi a criação de uma startup, criada pela empresa Olearys. Ela auxilia e elimina o método do achismo, usado nas lavouras brasileiras, diminuindo em 52% as pulverizações nas plantações; os produtores rurais inserem os dados de sua plantação no aplicativo e este envia, via sms, quando será necessária a aplicação do agrotóxico. Isto acarreta economia para o produtor e menos tóxicos nos alimentos. Na outra ponta de cadeia, o uso de orgânicos nos lares brasileiros, restaurantes e afins é ainda pequeno, embora o Brasil já ocupe posição de destaque na produção deste mercado sustentável, ainda há muito o que se conquistar (artigo).

Originalmente qualificamos os perigos nos alimentos em físicos, químicos e biológicos, os agrotóxicos enquadram-se nos químicos assim como o uso inadequado de higienizantes e sanitizantes. Como não falar de Segurança dos Alimentos quando tivemos, em 2012, 1 milhão de toneladas de agrotóxicos usados no Brasil e das 5 substâncias condenadas pela OMS, 4 continuam liberados no Brasil: Glifosato, Malation, Diazinon e Parationa Metílica (Os venenos na mesa dos brasileiros). A palestra no Mesa Tendências de 2015, da nutricionista e chefe de cozinha Neka Mena Barreto nos faz pensar de uma forma diferente sobre a introdução dos agrotóxicos nas lavouras brasileiras. Veja e tire suas conclusões.

No Brasil, metade dos alimentos in natura (pimentão, alface, tomate, melão) estão contaminados. E que estes alimentos, com agrotóxicos não lhe garante apenas a oferta necessária de macro e micronutrientes e, sim, pode lhe conferir sintomas como os de uma intoxicação alimentar. Tontura, mal-estar, ansiedade, dor no corpo, na garganta e nos olhos, tremor, fraqueza, vômitos, cólicas abdominais, pigarro, desmaio, salivação, alteração visual, suor excessivo, ansiedade, angústia, cólicas abdominais, alterações de pele, alterações visuais, alterações na urina, estes, são alguns deles. (Situação do mercado de agrotóxicos)

Existem 500.000 espécies de plantas e destas, nos alimentamos apenas de 200 tipos. Não é um absurdo pensar que 0,04% de tudo o que existe é o que nos alimenta e encontramos nas gôndolas dos supermercados? Qual o nosso real interesse em resgatar a cor verdadeira da cenoura? Você sabia que este vegetal originalmente não tem essa coloração? Que o milho de pipoca possui vários tons? Vermelho e preto são alguns deles.

O que a terra tem nos oferecido? Você tem respeitado esse cultivo na sua horta? Você já pensou em ter uma? Trabalhar em uma horta comunitária, plantar um vasinho de ervas em sua casa ou de PANC’s (plantas alimentícias não convencionais)? E o que isso tem a ver com a área da Segurança dos Alimentos? Menos intoxicações, menos doenças, mais biodiversidade, mais cultura. Infelizmente, embora sejam mais baratos, os alimentos convencionais, ricos em “pesticidas” são os que nos alimentam todos os dias, em nossas casas, nos restaurantes comerciais, institucionais e industriais. Qual a nossa responsabilidade, como profissionais de saúde e incentivadores dos bons alimentos e do consumo adequado de alimentos livres de organofosforados e afins?

Os Nutricionistas podem e devem começar a prescrever orgânicos em suas receitas assim como prescreve-se “diet”, “light”, “sem lactose” ou “sem glúten”, pois só assim a procura será maior do que a oferta, havendo uma maior disseminação dos produtos e consequente uma queda dos preços, mais saúde, mais harmonia, mais cultura local.

Já existe no Brasil, desde 2001, criado pela Vigilância Sanitária o “Programa de Análise de Resíduos de Agrotóxicos”, o PARA, instituído em 27 estados que coleta vegetais e analisa os teores de substâncias aceitas e o uso inadequado de produtos proibidos. Em 2012 a Anvisa verificou que 45% do total das plantações eram pulverizas com herbicidas, 14% com Fungicidas, 12% com Inseticidas e 29% com as demais categorias, lembrando que a Dioxina citada acima está na categoria dos Herbicidas.

O Grande desafio do Brasil, segundo o Ministério da Agricultura, é: “atendimento das necessidades do presente, sem comprometer a possibilidade de as gerações futuras atenderem às próprias necessidades”, mantendo o Brasil como provedor mundial de matérias-primas e alimentos aliado à necessidade da conservação do meio ambiente.

Será que a gente consegue? Eu acredito que sim!

Autora: Adriana Nodari.

Créditos de imagem: AgroLink.

4 min leitura“Em cada garfada, o seu destino está sendo determinado”. No XXIV Congresso Brasileiro de Nutrição (Conbran), realizado em Porto Alegre, em outubro de 2016, o Nutricionista e também farmacêutico bioquímico, […]

< 1 min leitura
0

FSMA | Explore os principais elementos da Lei de Modernização de Segurança de Alimentos do FDA

< 1 min leitura

O LRQA desenvolveu uma ferramenta interativa que ajuda a compreender os principais elementos do FSMA, a relação entre FSSC 22000 e FSMA, o HARPC e detalha o Curso FSPCA Indivíduo Qualificado em Controles Preventivos, entre outros tópicos.

Acesse agora a ferramenta interativa e descubra como o FSMA afeta as empresas brasileiras que exportam para os EUA.

Saiba detalhes do curso FSPCA Indivíduo Qualificado em Controles Preventivos, reconhecido pelo FDA.

Aproveite, o acesso é gratuito e válido até o dia 02 de dezembro!

< 1 min leituraO LRQA desenvolveu uma ferramenta interativa que ajuda a compreender os principais elementos do FSMA, a relação entre FSSC 22000 e FSMA, o HARPC e detalha o Curso FSPCA Indivíduo […]

7 min leitura
23

Sanitização e Desinfecção: Diferenças, benefícios, cuidados e os principais químicos

7 min leitura

Na indústria de alimentos, os produtos químicos são usados rotineiramente para sanitizar e desinfectar superfícies de contato do produto. São etapas necessárias para garantir que os alimentos consumidos estarão livres (tanto quanto seja possível) de microrganismos que podem causar doenças.

Desinfecção versus Sanitização – Vamos entender a diferença entre eles!

Desinfectar significa destruir ou irreversivelmente inativar fungos e bactérias (mas não necessariamente os esporos) em superfícies rígidas.  

Sanitizar significa reduzir microrganismos críticos para saúde pública em níveis considerados seguros, com base em parâmetros estabelecidos, sem prejudicar nem a qualidade do produto nem a sua segurança.

Embora as medidas de desinfecção possam ser empregadas no processamento e preparação de alimentos, é mais comum utilizar métodos de sanitização para reduzir a presença microbiana.

Eficácia

Para atingir o nível requerido de sanitização ou desinfecção, o produto químico em questão deve ser aplicado a uma certa concentração durante um período de tempo especificado. Estes parâmetros são descritos no rótulo do produto e devem ser seguidos para se obter o controle desejado. É importante garantir uso de produtos adequados para aplicação em alimentos registrados pela ANVISA.  

A eficácia de um produto químico utilizado para sanitização ou desinfecção baseia-se na sua capacidade para reduzir o nível de contaminação. O padrão de sanitização para a redução da contaminação de superfícies de contato com alimentos é geralmente aceito como 99,999% (uma redução de 5 log) alcançado em 30 segundos (Teste Oficial de Detergente Sanitizer da AOAC). O padrão de sanitização para superfícies que não encontram em contato com alimento é aceito como uma redução de 99,9% (3 logs) em 30 segundos. A desinfecção deve destruir ou irreversivelmente inativar todos os organismos especificados dentro de um determinado tempo, normalmente 10 minutos. Alguns produtos químicos podem funcionar como desinfetantes e sanitizantes.

O processo de higienização depende da preparação das superfícies em questão. A maioria dos desinfetantes deve ser aplicada em superfícies livres de matéria orgânica e resíduos de limpeza. A ordem de eventos geralmente recomendada é enxaguar, lavar, enxaguar e sanitizar. O detergente utilizado na etapa de limpeza precisa ser apropriado para o tipo de resíduo. Por exemplo, os detergentes alcalinos removem com maior eficiência os resíduos à base de gordura e proteínas, enquanto que os resíduos à base de minerais necessitam de detergentes ácidos. Felizmente, os agentes de limpeza modernos são misturas de componentes químicos que podem tratar vários cenários de limpeza.

Químicos Sanitizantes

Independentemente do produto, a solução sanitizante deve ser testada para verificar se a concentração desejada está consistentemente presente. Uma concentração muito baixa pode resultar em eficácia inaceitável, enquanto concentração muito alta pode produzir residual que atende aos padrões (contaminante).

Hipoclorito

Eficácia, baixo custo e facilidade de fabricação tornam os hipocloritos os desinfetantes mais amplamente utilizados. Hipoclorito de sódio é o composto mais comum e é um desinfetante ideal, pois é um oxidante forte.

Os hipocloritos causam ampla mortalidade microbiana danificando a membrana externa causando perda de controle da permeabilidade e eventual lise da célula. Além disso, esses compostos inibem as enzimas celulares e destroem o DNA. Os esporos, contudo, são resistentes aos hipocloritos, uma vez que o revestimento de esporos não é susceptível à oxidação, exceto em concentrações elevadas associadas a longos tempos de contato e temperaturas elevadas.

Embora os hipocloritos sejam muito reativos, as suas propriedades são afetadas negativamente por fatores tais como sólidos em suspensão, altas temperaturas, luz, impurezas de água e níveis de pH impróprios. No uso rotineiro, as superfícies devem ser tão livres quanto possível de materiais orgânicos, e o pH deve ser mantido entre 5 e 7 para garantir que a maior quantidade de ácido hipocloroso esteja disponível. Como com qualquer desinfetante, devem ser feitas medições periodicamente para garantir que o cloro disponível livremente esteja no nível desejado.

Outras desvantagens dos hipocloritos são corrosividade para os metais, problemas de saúde relacionados com a irritação da pele, dano da membrana mucosa e contaminação ambiental. Este último é motivo de preocupação, uma vez que o cloro pode combinar com substâncias orgânicas para formar compostos clorados tóxicos, tais como trihalometanos e dioxinas. O uso de hipoclorito pode ser restringido no futuro. Deve-se tomar cuidado ao limpar derramamentos de hipoclorito, pois materiais orgânicos, como pano, serragem e papel, podem entrar em combustão espontaneamente após a secagem.

Dióxido de cloro

Este composto inorgânico é um desinfetante amplo eficaz contra bactérias, fungos e vírus. É um oxidante que reage com as proteínas e ácidos graxos dentro da membrana celular, resultando em perda de controle de permeabilidade e interrupção da síntese de proteínas.

Enquanto o dióxido de cloro é um gás explosivo, é relativamente seguro em solução. É produzido no local porque não pode ser comprimido ou armazenado comercialmente na forma gasosa.

Em comparação com os hipocloritos, o dióxido de cloro requer concentrações muito mais baixas para atingir a mortalidade microbiana. Por exemplo, uma solução de 5 ppm é eficaz como um sanitizante em superfícies de contato com alimentos com um tempo de contato de pelo menos 1 minuto. Além disso, a desinfecção pode ser conseguida com 100 ppm utilizando um tempo de contato de 10 minutos.

O dióxido de cloro reage mais seletivamente com os compostos presentes nas células microbianas em oposição à reação com compostos orgânicos em geral. Esta capacidade permite que o dióxido de cloro funcione em soluções mais carregadas organicamente, embora à medida que a carga orgânica aumenta, a eficácia diminui. O dióxido de cloro funciona bem sobre uma gama de pH de cerca de 6 a 10, permitindo assim uma maior mortalidade de alguns microrganismos a valores mais elevados. Outra vantagem é que o dióxido de cloro não forma compostos orgânicos clorados, tornando-o mais ambientalmente amigável.

Iodóforos

Estes compostos são menos ativos que os hipocloritos, mas são sanitizantes e desinfetantes eficazes. Os iodóforos se ligam aos radicais sulfúricos de proteínas como a cisteína, causando inativação e danos à parede celular.

Os iodóforos são melhores em situações em que o pH é ligeiramente ácido, uma vez que existem formas menos ativas acima do pH neutro. A concentração comum para higienização é de 25 ppm por minuto. Infelizmente, os compostos de iodo facilmente mancham muitas superfícies, particularmente os plásticos. No lado positivo, são sanitizantes comuns usados em superfícies de vidro, como nas indústrias de engarrafamento de cerveja e vinho. A EPA (Ecological Hazard and Environmental Risk Assessment and Environmental Fate) tem avaliado iodóforos como não tendo efeito significativo sobre o ambiente.

Ácido Peracético (PAA)

O PAA é um sanitizante eficaz que é ativo contra muitos microrganismos e seus esporos. A mortalidade é produzida pela ruptura de ligações químicas dentro da membrana celular. Os sanitizantes à base de PAA são frequentemente combinados com peróxido de hidrogênio estabilizado. Estes sanitizantes funcionam bem sob condições frias (~4°C), produzindo assim uma mortalidade microbiana aceitável em equipamentos normalmente mantidos abaixo da temperatura ambiente. O PAA também é eficaz na remoção de biofilmes e é mais ativo que os hipocloritos.

As soluções de PAA podem ser atenuadas pela carga orgânica e começarão a perder atividade à medida que o pH se aproxima do neutro. Estas soluções são aplicadas em concentrações que variam entre cerca de 100 ppm a 200 ppm para o ácido peroxiacético, e 80 ppm para 600 ppm para o peróxido de hidrogênio.

Os desinfetantes à base de PAA são ambientalmente amigáveis à medida que os compostos neles se decompõem em ácido acético, oxigênio e água. Estes sanitizantes também são menos corrosivos para o equipamento do que os hipocloritos. Tal como acontece com qualquer oxidante altamente ativo, PAA concentrado pode apresentar um perigo para a segurança.

Compostos de Quaternário de Amônia (QACs)

Os compostos de quaternário de amônia são compostos químicos bastante complexos nos quais o azoto está ligado a quatro grupos orgânicos. Os cátions positivamente carregados nos compostos ligam-se aos fosfolipídeos ácidos na parede celular microbiana. Esta ação bloqueia a absorção de nutrientes para a célula microbiana e impede a descarga de resíduos. Em geral, os QACs são eficazes contra uma vasta gama de microrganismos, embora a fase de esporos não seja afetada. Em concentrações mais baixas, as bactérias Gram-positivas são mais sensíveis aos QAC do que as bactérias Gram-negativas.

Os QAC podem ser aplicados em concentrações que variam de cerca de 100 ppm a 400 ppm. Como sanitizantes, os QACs são comumente aplicados a 200 ppm nas superfícies de contato com os alimentos, e a solução é deixada secar. Uma vez seco, sobra um resíduo dos compostos QAC e proporciona atividade germicida até ocorrer sua degradação. Os QAC também podem funcionar como detergentes quando presentes em alta concentração porque os compostos possuem grupos químicos tanto hidrofílicos como lipofílicos.

QACs são geralmente inodoros, não mancham, não são corrosivos e relativamente não tóxicos aos usuários. Eles funcionam bem em uma ampla faixa de temperatura e uma ampla faixa de pH, embora a atividade seja maior em temperaturas mais quentes e em situações alcalinas. Enquanto os QACs toleram cargas orgânicas leves, resíduo carregado de carga orgânica irá diminuir significativamente a atividade QAC. Alguns QACs podem não funcionar adequadamente em águas duras, mas outros são formulados com agentes quelantes adicionados que permitem tal uso.

Enquanto os QACs se combinam com compostos orgânicos e são descarregadas no ambiente, as concentrações são baixas e as bactérias heterotróficas não são impactadas negativamente. Bactérias que habitam o solo, como Pseudomonas spp. e Xanthomonas spp. podem degradar os QACs. Além disso, as baixas quantidades de QACs que seguem para instalações comerciais de tratamento de esgoto parecem combinar com os tensoativos aniônicos presentes para formar complexos que reduzem ou eliminam a toxicidade.

Resistência aos Sanitizantes

aline_santana

Sempre que um produto químico é usado para produzir a mortalidade microbiana, existe a possibilidade de promover a resistência. Isso ocorre porque nem todos os microrganismos são mortos. Uma redução de 5 log (99,999%) ainda significa que de 1.000.000 de microrganismos presentes, 10 sobreviveram, embora o processo tenha reduzido a população para o que pode ser denominado um nível seguro. O sanitizante poderia não ter tido contato com estes 10 organismos ou eles poderiam ser imunes. Se estes 10 microrganismos são de fato imunes, ao longo do tempo eles vão proliferar, e a concentração sanitizante usual ou produto químico não produzirá mais mortalidade aceitável. Neste momento, devem ser tomadas medidas para desinfectar as superfícies em questão. Em seguida, é necessário avaliar quais microrganismos estão presentes para que o desinfetante adequado com a concentração adequada e o tempo adequado sejam mantidos.

Às vezes, pensa-se que está ocorrendo resistência bacteriana quando na verdade os microrganismos estão evitando o contato com o produto químico sanitizante porque há presença de biofilme. Biofilmes são polissacarídeos que conseguem se depositar em quase qualquer superfície. Bactérias como Escherichia coli, Salmonella spp., Listeria spp., Campylobacter spp. e várias outras podem produzir biofilmes. Ao longo do tempo, o filme se torna mais complexo e pode conter diferentes espécies de bactérias, produzindo uma fonte constante de contaminação.

Este artigo pode ser lido na íntegra aqui.

7 min leituraNa indústria de alimentos, os produtos químicos são usados rotineiramente para sanitizar e desinfectar superfícies de contato do produto. São etapas necessárias para garantir que os alimentos consumidos estarão livres […]

< 1 min leitura
0

Aberta consulta pública para um novo escopo de trabalho da GFSI

< 1 min leitura

A GFSI criou um novo escopo: “G – Food Service e Catering” que tratará da produção de alimentos de qualquer fonte para consumo fora do domicílio com o intuito de descrever os métodos para preparação de componentes, cocção, mistura e homogeneização.

Para isto, foi aberta uma consulta pública que visa reunir comentários de partes interessadas sobre diferentes aspectos, incluindo definições a serem utilizadas, gerenciamento de segurança de alimentos, riscos e perigos, competências de auditores, entre outros, com o objetivo de aprimorar a sua abordagem inclusiva dentro da cadeia de valor (do campo à mesa do consumidor).

Para participar é necessário fazer o download do documento no site da GFSI, inserir seus comentários enviar por e-mail até 15 de dezembro de 2016.

Para quem não conhece a GFSI, Global Food Safety Iniciative, é uma iniciativa global de inocuidade dos alimentos, impulsionada pela indústria que fornece liderança e orientação sobre os sistemas de gestão de segurança alimentar necessários para a segurança ao longo da cadeia de abastecimento.

Um post recente ressaltou a importância de participar de consultas públicas, então não perca tempo e dê a sua contribuição para este tema tão relevante para a garantia da segurança de alimentos!

< 1 min leituraA GFSI criou um novo escopo: “G – Food Service e Catering” que tratará da produção de alimentos de qualquer fonte para consumo fora do domicílio com o intuito de […]

3 min leitura
1

Nanotecnologia: estou comendo isto?

3 min leitura

A resposta é SIM e vou explicar o porquê: um dos segmentos em que a nanotecnologia tem ganhado importância é a tecnologia dos alimentos e o interesse no uso de nanoestruturas para melhorar o desempenho de processos e produtos alimentares tem sido crescente. Do campo à mesa, ou seja, em todas as fases da cadeia produtiva, o uso da nanotecnologia tem o potencial de revolucionar, incrementando não só a oferta de alimentos como a qualidade nutricional e sanitária destes. Uma vez que há o interesse industrial, já existem alimentos nanotecnológicos (nanoalimentos). Os motivos por você não saber disso serão discutidos em um post futuro, quando for abordada a regulamentação de nanoalimentos.

Os nanoalimentos, assim chamados aqueles que possuem aplicação de nanotecnologia em alguma etapa de sua produção, apresentam diferentes funcionalidades. A função determina a aplicação, por isso, existe uma vasta gama de possíveis aplicações.  Dentre as funções mais estudadas e melhor desenvolvidas até o momento, incluem-se: proteção contra deterioração biológica, proteção contra ingredientes químicos e aprimoramento. 

Expectativas e prospecção à parte, em se tratando de possibilidades atuais e potenciais de nanoalimentos, são diversos os exemplos: nanossensores para acompanhamento do crescimento das culturas e controle de pragas; pesticidas em culturas; identificação de doenças dos animais e das plantas; aditivos nanoencapsulados que permitem alterações sensoriais nos alimentos; embalagens comestíveis inteligentes que respondem às condições do ambiente, detectam contaminantes e organismos patogênicos; bactericidas que controlam a deterioração do alimento; sistemas de veiculação inteligente de princípios ativos ou micronutrientes com maior biodisponibilidade; aumento da  eficiência dos filtros de líquidos; ingredientes para alimentos funcionais com uma melhor solubilidade em água, melhor estabilidade térmica,  diferentes atributos sensoriais e de desempenho fisiológico. Assim, com tantas possíveis aplicações, há muito o que discutir sobre as implicações da nanotecnologia para a Segurança dos Alimentos.

Todas as possibilidades supracitadas podem gerar benefícios à produção e principalmente ao consumidor final. Dependendo da tecnologia aplicada, é possível reduzir o uso de conservantes, sal, gordura e surfactantes em produtos alimentares; obter sabores novos ou melhorados, diferentes texturas e sensações; melhor captação, absorção e biodisponibilidade de nutrientes e suplementos no corpo.  Porém, conforme já discutido aqui no blog, apesar de todas as possíveis vantagens, principalmente porque o consumo de nanoalimentos pode levar a diferentes e desconhecidas respostas biológicas, é preciso realizar uma cautelosa avaliação dos seus efeitos tóxicos, bem como é preciso estabelecer regulamentação específica.

A lista de estudos envolvendo possibilidades atuais e potenciais de nanoalimentos é vasta. Seguem alguns dos que embasaram este post:

BRADLEY, E.  L.; CASTLE L; CHAUDHRY, Q. Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends in food science & technology, UK, v. 22, p. 604-610, 2011.  

BROWN, J.; KUZMA J. Hungry for Information: Public Attitudes Toward Food Nanotechnology and Labeling. Review of Policy Research, USA, v. 30, n. 5, 2013.

CHAUDHRY, Q.; CASTLE, L.  Food applications of nanotechnologies: An overview of opportunities and challenges for developing countries. Trends in Food Science & Technology, UK, v.22, p. 595-603, 2011. 

CHENA, H.; YADA R. Nanotechnologies in agriculture: new tools for sustainable development. Trends in food science & technology 22 (2011) 585e594   canadà

COLES, D.; FREWER L.J.  Nanotechnology applied to european food production e a Review of ethical and regulatory issues. Trends in Food science & Technology , UK, v. 34, p.32-43, 2013.

CUSHEN, M. et al.  Nanotechnologies in the food industry e Recent developments, risks and regulation. Trends in Food Science & Technology, UK, v. 24, p. 30-46, 2012.

DUDKIEWICZ, A.  Characterization of nanomaterials in food by electron microscopy. Trends in Analytical Chemistry, v. 30, n. 1, 2011.

FISCHER, A.R.H. et al. Attitudes and attitudinal ambivalence change towards nanotechnology applied to food production. Public understanding of science, Netherlands, p. 1-15, 2012.

GREINER, R. Current and projected applications of nanotechnology in the food sector. Nutrire: rev. Soc. Bras. Alim. Nutr.j. Brazilian soc. Food nutr., são paulo, sp, v. 34, n. 1, p. 243-260, 2009.

GRUÈRE, G. P. Implications of nanotechnology growth in food and agriculture in oecd countries. Food policy, USA, v. 37, p. 191–198, 2012.

HUANG Q.; YU, H.; RU, Q..Bioavailability and delivery of nutraceuticals using nanotechnology. Journal of food science, USA, v. 75, n. 1, 2010.

HUANG, Q. W. Nanotechnology in the food, beverage and nutraceutical industries. Book review. Trends in Food Science & Technology, UK, v. 33, p. 146, 2013.

NEETHIRAJAN, S.; JAYAS, D. S. Nanotechnology for the food and bioprocessing industries. Food bioprocess technol, Canadá, v. 4, p. 39–47, 2011.

SCHNETTLER, B. et al.  Food neophobia, nanotechnology and satisfaction with life. Appetite, v. 69, p. 71–79, 2013. 

SEKHON, B. S. Food nanotechnology – an overview. Nanotechnology, science and applications, India, v. 3, p. 1-15,  2010.

SILVA, T. E. M. da; PREMEBIDA, A.; CALAZANS, D.;  Nanotecnologia aplicada aos alimentos e biocombustíveis: interações sociotécnicas e impactos sociais. Liinc em Revista, Rio de Janeiro, v.8, n.1, p 207-221, 2012.

VAZQUEZ E. L.; BRUNNER A. B.; SIEGRIST T. M.  Perceived risks and benefits of nanotechnology applied to the food and packaging sector in México. British Food Journal, UK, v. 114, n. 2, p. 197-205, 2012.

YIANNAKA, A. Consumer Attitudes and Labeling Regimes as Determinants of the Market Success of Food Nanotechnology. Cornhusker Economics, v.562, 2012.

Autora: Alessandra Barreto.

3 min leituraA resposta é SIM e vou explicar o porquê: um dos segmentos em que a nanotecnologia tem ganhado importância é a tecnologia dos alimentos e o interesse no uso de […]

5 min leitura
1

Pesquisador brasileiro desenvolve biossensor para análise rápida de E. coli

5 min leitura

Desenvolver métodos rápidos para a detecção de microrganismos patogênicos em alimentos é uma prioridade para a saúde pública. Pesquisas científicas recentes têm demonstrado que o sonho de conseguir um aparelho portátil capaz de analisar diretamente um alimento e gerar um resultado rápido e confiável está cada vez mais próximo. Agora é a vez de um pesquisador brasileiro apresentar um estudo inovador e extremamente promissor em relação a isso.

O engenheiro químico André Luís Possan (foto), gaúcho de 36 anos, desenvolveu um biossensor magnetoelástico para detecção rápida da bactéria Escherichia coli em água e alimentos. O trabalho foi apresentado como Dissertação de Mestrado em Engenharia de Processos e Tecnologias da Universidade de Caxias do Sul, RS.

Sensores magnetoelásticos são comumente utilizados como marcadores antifurtos no comércio em geral. No estudo de André, para criar o biossensor com capacidade de detectar e quantificar bactérias, o sensor magnetoelástico foi somado a um método imunológico de atração de bactérias. No processo de montagem, o biossensor foi coberto com sucessivas camadas de diferentes materiais para permitir, ao final, a atração de bactérias em sua superfície. Inicialmente, foram aplicadas camadas de espessuras nanométricas de cromo e ouro, que possibilitam a adsorção de um composto orgânico chamado cistamina (CYS) e a formação de camadas auto-organizáveis na superfície do sensor. Em seguida, foi introduzido um anticorpo relacionado com o patógeno alvo para fazer especificamente a ligação com a bactéria presente no meio contaminante. Veja abaixo uma ilustração das camadas do biossensor:

fig1

Figura 1. Processos de construção do biossensor magnetoelástico para a detecção e quantificação da E. coli

A figura 1 evidencia que, após a ligação com a bactéria, foi inserido novamente o anticorpo primário e depois um anticorpo secundário que se liga especificamente no primário. Esse anticorpo secundário foi marcado com fluoresceína, composto que emite fluorescência quando visto com filtro apropriado no microscópio. Assim, foi possível visualizar as bactérias que foram ligadas no processo imunológico e causaram a mudança de massa na superfície da liga.

A partir da mudança de massa causada pela ligação das bactérias na superfície do biossensor, ocorrem alterações nas frequências de ressonância magnética. Para medir estas alterações, foi criado um sistema de leitura composto por analisador de redes e solenoide, demonstrado na figura 2.  

fig2

Figura 2. Sistema de leitura de frequências de ressonância de biossensor magnetoelástico (adaptado de referência)

Na pesquisa, a detecção e contagem do microrganismo ocorreu em soluções contendo uma diluição seriada de E. coli. O tempo para a leitura das amostras com o biossensor foi de cerca de 40 minutos, quando ocorre a saturação das ligações disponíveis na superfície do biossensor.

Em entrevista concedida ao blog Food Safety Brazil, o pesquisador forneceu mais detalhes sobre o dispositivo e também falou sobre seus objetivos e os trabalhos recentes para melhorar a sensibilidade da técnica. Confira:

FSB– Você acredita que será possível realizar análises microbiológicas rotineiras por biossensores em curto prazo? Quais seriam as principais dificuldades para isto?

ALP – Sim, o objetivo é desenvolver um sistema portátil de baixo custo e que use os biossensores magnetoelásticos como transdutor. Em termos de dificuldade, estamos melhorando a superfície da liga magnetoelástica com diminuição da rugosidade, para que as camadas que são colocadas na superfície sejam planas e dispersas, facilitando a ligação das bactérias e melhorando a eficiência do método.

FSB– A técnica desenvolvida em seu trabalho já foi ou poderá ser patenteada?

ALP – Atualmente, não há patentes para um dispositivo completo com o uso de biossensores magnetoelásticos. Pensaremos em patentear quando possuirmos um sistema com melhoria na eficiência.

FSB – Em sua Dissertação, o foco das análises foi a E. coli. Para cada tipo de bactéria será preciso desenvolver um biossensor específico? 

ALP – A especificidade é relacionada com o tipo de anticorpo que é acoplado no conjunto de bioconjugado, sobre a liga magnetoelástica. Desta forma, podemos montar um sensor individual para uma bactéria específica ou um conjunto de biossensores para detectar e quantificar diferentes bactérias.

FSB – Foi feita alguma estimativa do custo analítico usando este biossensor? 

ALP – Os custos comerciais não foram contabilizados no estudo, mas especulamos um valor em torno de 15 reais por sensor, em nível de pesquisa, sendo que o valor maior vem do anticorpo, item mais caro de todos.

FSB – Durante sua pesquisa, você testou vários tipos de superfícies para os biossensores e o limite de detecção para a E. coli no melhor tipo esteve na ordem de 50.000 UFC/mL, o que pode ser considerado alto para este micro-organismo em alimentos. É possível aprimorar o método para níveis de detecção inferiores, como 10 UFC/mL, por exemplo?

ALP – Sim, é possível. A eficiência do sensor esteve em torno de 60%, entre os valores teóricos e os encontrados experimentalmente. Ficou evidenciado através da microscopia eletrônica de varredura (link da dissertação) que uma camada de cistamina (CYS) revestiu de forma dispersa sobre a superfície da liga, formando um desenho que chamamos de “Nazca Lines”. Também é evidenciado que nem toda a liga foi coberta com a CYS, e isso repercute diretamente na eficiência, pois a CYS adsorve na liga magnetoelástica, o anticorpo liga na CYS através de um intermediário (crosslinker) e o anticorpo liga com a bactéria. Se não tem CYS em toda a superfície, a sequência de bioconjugado não se completa. Estamos trabalhando nessa parte, avaliando porque a CYS não cobre toda a superfície da liga, utilizando derivações de concentração, tempo de aplicação, temperatura e agitação. Com a melhoria da eficiência, é possível reduzir o limite de detecção e também detectar menores concentrações de bactérias.

FSB – Será possível testar diretamente um alimento líquido, por exemplo?

ALP – Sim, é possível e esse é o objetivo final: aplicar biossensores magnetoelásticos em soluções contendo bactérias provenientes de leite, carne, urina, sangue, entre outros.

FSB – Atualmente, em seu trabalho de Doutorado, você permanece numa linha de pesquisa semelhante. O que exatamente, você está pesquisando agora? 

ALP – Atualmente, trabalhamos na resolução de problemas provenientes dos biossensores magnetoelásticos, mas com outro método. Como a sensibilidade do biossensor magnetoelástico ainda deve ser melhorada, estamos analisando o processo de adsorção de compostos tíós (cistamina, cisteamina, ácido mercaptopropiônico) sobre a superfície de bioeletrodos, através de métodos eletroquímicos. Conhecendo os parâmetros ideais de adsorção como temperatura, concentração, tempo e agitação, teremos os parâmetros ideais para aplicar no método dos biossensores magnetoelásticos. O método eletroquímico opera com energia, a qual permite verificar a adsorção da CYS. No outro método somente aplicávamos a CYS sem verificar a adsorção por mudança de massa e usando valores conhecidos nas referências bibliográficas. A mudança de massa era somente das bactérias, por causa da sensibilidade. Para melhorias no sistema e na busca de maior sensibilidade de detecção e quantificação, estamos em parceria com a universidade Ca’ Foscari de Veneza na busca de conhecimento sobre a tecnologia de fabricação de nanoeletrodos, através do processo seletivo da Capes PDSE 2016/2017.

FSB – Você já publicou artigos em revistas científicas internacionais, sendo que alguns foram estudos realizados durante o desenvolvimento do biossensor. Um artigo final, com a conclusão do estudo, já foi publicado?

ALP – Sim, temos um artigo publicado em janeiro deste ano na revista internacional Materials Science and Engineering, de classificação Qualis A1 em Engenharias II base Capes, com fator de impacto de 3,338. O nome do artigo é:  Effect of surface roughness on performance of magnetoelastic biosensors for the detection of Escherichia coli.

Em alguns dias teremos um novo artigo com estudos mais completos sobre o assunto, com microscopias de força atômica das superfícies e eficiência para três tipos de tióis, em trabalho desenvolvido pela mestranda Marcia Dalla Pozza, de Bento Gonçalves, RS.

O blog Food Safety Brazil parabeniza o pesquisador André Luís Possan e lhe agradece pela especial participação em nosso artigo de hoje. Esperamos publicar mais informações sobre estas pesquisas assim que as novidades forem surgindo.

Leia também:

Avançam as pesquisas brasileiras para realizar análise microbiológica em minutos

Batata geneticamente modificada, que não escurece e produz menos acrilamida, é liberada nos EUA

“Nariz eletrônico” soa alarme para carne deteriorada

5 min leituraDesenvolver métodos rápidos para a detecção de microrganismos patogênicos em alimentos é uma prioridade para a saúde pública. Pesquisas científicas recentes têm demonstrado que o sonho de conseguir um aparelho […]

2 min leitura
1

Prato Cheio: Doação de Alimentos x Segurança de Alimentos

2 min leitura

Nós do Blog Food Safety Brazil tivemos a oportunidade e o prazer de entrevistar a Presidente da Associação Prato Cheio, Dafna Kann, e conhecer um pouco mais sobre o trabalho dessa Associação, bem como conhecer quais são os cuidados e medidas tomadas com relação à doação de alimentos x segurança de alimentos. Confira!

Qual é a atuação da Associação Prato Cheio?

A base de atuação da Associação Prato Cheio (APC) é a Rota Solidária. A rota consiste em identificar locais em que ocorra frequentemente o desperdício de alimentos, instituições que tenham carência de alimentos e fazer esta ponta. A ideia é fazer uma ponta entre quem tem para doar e quem precisa receber.

Quando foi fundada a Associação Prato Cheio?

A APC foi fundada em 2001.

Como nasceu a ideia de fundar a Associação?

A ideia nasceu no mercado municipal de São Paulo, quando uma de nossas diretoras identificou que aos sábado o desperdício de alimentos era muito grande, pois o mercado fechava aos domingos e todos os alimentos que não “aguentariam” até a segunda-feira eram jogados fora.

Quais são os alimentos ou tipo de alimentos que podem ser doados para a Associação?

O maior volume de arrecadação é de Frutas, verduras e legumes, mas também recebemos produtos não perecíveis próximos a data de validade, pães e produtos de panificação.

Como é a logística entre o doador e o receptor da doação?

A APC cuida de toda a logística fazendo o contato e a coleta dos alimentos para na sequência entrega-los às instituições.

Como a Associação atua com relação à segurança dos alimentos que são doados, desde o armazenamento no local do doador até o consumo pelas pessoas que receberão os alimentos doados, uma vez que a legislação sanitária permite a doação de alimentos classificados como “sobras” desde que tenham sido elaborados conforme o estabelecido pelas legislações vigentes de boas práticas de fabricação?

Todo o trabalho é acompanhado por uma equipe de nutrição. Os motoristas e auxiliares que fazem a logística são treinados periodicamente, assim como as responsáveis pelas instituições.

Mensalmente as cozinheiras das instituições participam de cursos dados na Faculdade de Saúde Pública da USP, pela equipe de nutrição da APC, para elas aprenderem como se deve usar os alimentos e também os controles de qualidades a serem implantados em suas cozinhas.

No caso de haver um produto ou uma suspeita de um produto potencialmente inseguro a ser doado, quais são as tratativas adotadas pela Associação?

Caso o produto não seja seguro nós não fazemos a arrecadação.

Vocês possuem tratativas implementadas para gerenciar e evitar sabotagens, como, por exemplo, no caso do receptor da doação sabotar o produto doado?

As Frutas, verduras e legumes são doados sempre in natura e a instituição precisa higieniza-las ou cozinha-las para poder usar.

Os produtos industrializados muitas vezes são doados sem as embalagens originais para evitar que se conheça a origem do alimento.

Além disso temos contrato com todas as instituições garantindo que elas se comprometam com a manipulação adequada dos produtos doados.

Quem quiser doar alimentos para a Associação Prato Cheio, como deve proceder?

Para doação de alimentos basta falar com a Claudia através do nosso telefone ou no e-mail nutrição@pratocheio.org.br. Ou através do nosso site.

Quem quiser ser um voluntário da Associação Prato Cheio, como deve proceder?

Para ser voluntário propomos apoio nas seguintes ações listadas na página de voluntários do nosso site.

2 min leituraNós do Blog Food Safety Brazil tivemos a oportunidade e o prazer de entrevistar a Presidente da Associação Prato Cheio, Dafna Kann, e conhecer um pouco mais sobre o trabalho […]

4 min leitura
0

Nanotecnologia e a Segurança dos Alimentos: preciso entender esta relação?

4 min leitura

Você deve estar se perguntando por que deveria entender a relação entre nanotecnologia e a segurança de alimentos. Esta é uma dúvida pertinente, já que tão pouco ouvimos falar sobre nanotecnologia.  

Talvez você não saiba, mas na comunidade científica é consenso que a nanociência e suas aplicações tecnológicas têm potencial para inovar a ciência e indústria de alimentos. Assim como talvez desconheça o fato de que, no mundo real, este potencial é explorado e a nanotecnologia tem sido incorporada em diferentes etapas da cadeia de produção de alimentos. Aliás, acho que você não se atentou aos números, pois a prospecção é de que o financiamento federal de países líderes em pesquisa e desenvolvimento em nanotecnologia, que já é elevado, aumente.  

Não conseguiu imaginar os impactos na economia global, ambiental, na produção industrial, na regulamentação e na saúde e vida das pessoas? Então, prezado leitor, SIM. Conhecer a relação nanotecnologia e alimentos é fundamental e você precisa saber como isso afeta (ou afetará) a segurança dos alimentos produzidos com esta tecnologia. Você, enquanto profissional envolvido com a Segurança de Alimentos, precisa entender essa relação para se aprimorar, se preparar para os futuros desafios que a popularização desta tecnologia trará. Enquanto consumidor, precisa entender esta relação para que o seu consumo seja consciente. Aos meros curiosos, esse é um prato cheio!

Certamente, entender a relação entre nanotecnologia e alimentos e as implicações para a Segurança dos Alimentos é uma tarefa complexa. Principalmente porque ambas as áreas da ciência são multidisciplinares. O primeiro passo, então, é entender o princípio fundamental da nanociência e nanotecnologia. Partindo de uma explicação muito simples, podemos entender que nanociência e nanotecnologia são o estudo e a aplicação de coisas extremamente pequenas e pode ser usado em todos os outros campos da ciência, tais como química, biologia, física, ciência dos materiais e engenharia.

O prefixo “nano”, presente nos dois termos, é derivado de uma palavra grega que significa “anão”.  Em uma definição mais técnica, indica a bilionésima parte de uma unidade, no caso o metro. Colocando de maneira lúdica, podemos comparar os tamanhos de um nanômetro e de um metro como sendo uma bolinha de gude para o tamanho da terra respectivamente, ou podemos dizer que um nanômetro é a quantidade de barba humana que cresce no tempo que se leva para levantar a navalha à face.  É justamente a dimensão nanométrica das partículas que é o grande diferencial, pois há uma distinção no comportamento de partículas nano em relação às partículas macro do mesmo elemento químico.

Esta distinção no comportamento acontece, pois conforme há a redução do tamanho à nanoescala, há um significante aumento na razão área superficial e volume. Consequentemente, mais átomos ficam disponíveis para reagir e isso acaba mudando a natureza das forças de interação entre as moléculas do material. Esta mudança pode resultar em diferentes propriedades físico-químicas, que podem oferecer aplicações funcionais de interesse industrial. Essas aplicações tecnológicas em dispositivos, objetos e alimentos é o que conhecemos como nanotecnologia e a nanociência é o estudo dos princípios fundamentais das partículas e estruturas nanométricas.

Este comportamento distinto proporciona avanços incrementais na elaboração de produtos já conhecidos e na introdução de novos produtos. Na produção industrial, sua aplicabilidade, de um modo extremante singular, alcança a produção de cosméticos, fármacos, equipamentos médicos, energia, segurança, tecidos, produtos biotecnológicos e do setor agroalimentar.

Como exemplo de produtos que atualmente estão no mercado, temos os têxteis antibacterianos, protetores solares transparentes, tecidos que repelem água e odor, tinta livre de arranhões para automóveis, revestimentos repelentes de sujeiras, janelas autolimpantes, bolas de tênis elásticas, raquetes de tênis mais rígidas e, o grande alvo do nosso interesse, os nanoalimentos, ou seja, alimentos que possuem aplicação de nanotecnologia em alguma etapa de sua produção.

Bem, meu caro leitor, deu para ver que entender os detalhes que permeiam as nanotecnologias em alimentos não é tarefa simples, mas se sua leitura o trouxe até aqui, então você já sabe o fundamental para entender as aplicações nanotecnológicas na cadeia produtiva de alimentos e quais as implicações para a segurança dos alimentos. 

Para mais detlahes, consulte o posicionamento da EUROPEAN COMMISSION.

Um link interessante sobre os investimentos para 2016 é o da NATIONAL NANOTECHNOLOGY  INITIATIVE  (NNI), uma iniciativa americana.

Alguns estudos clássicos sobre os fundamentos da nanociência e nanotecnologia:

FEYNMAN, R. P. “there’s plenty of room at the bottom.” Engineering and science 23, n. 5,  p. 22-36, 1960.

KOVVURU, S. K.; et al. Nanotechnology: the emerging science in dentistry. Journal of orofacial research, v.2, n.1, p. 33-36, 2012.   apud  TANIGUCHI, N. 1974. On the basic concept of ‘nano-technology.’ in: proceedings of the international conference on production engineering, tokyo, 1974. Tokyo: japan society of precision engineering.

Alguns trabalhos que embasaram este post:

ADAM, S F. C.; BARBANTE C. Nanoscience, nanotechnology and spectrometry.  Spectrochimica acta part b, Italia, v. 86, p. 3-13, 2013.

ASSIS, L. M. de. Características de nanopartículas e potenciais aplicações em alimentos. Campinas, v. 15, n. 2, p. 99-109, 2012.   

BROWN, J.;  KUZMA J. Hungry for Information: Public Attitudes Toward Food Nanotechnology and Labeling. Review of Policy Research, USA, v. 30, n. 5, 2013.

GREINER, R. Current and projected applications of nanotechnology in the food sector. Nutrire: rev. Soc. Bras. Alim. Nutr.j. Brazilian soc. Food nutr., são paulo, sp, v. 34, n. 1, p. 243-260, 2009.

HUANG, C.; WU, Y. State-led technological development: a case of china’s nanotechnology development. World development, Netherlands,  v.  40, n. 5, p. 970–982, 2012.

SEKHON, B. S. Food nanotechnology – an overview. Nanotechnology, science and applications, India, v. 3, p. 1-15,  2010.

MARTINS, P. Nanotecnologia e meio ambiente para uma sociedade sustentável. Estud. Soc,    México,  v. 17,  n. 34, 2009 .

SEKHON, B. S. Food nanotechnology – an overview. Nanotechnology, science and applications, India, v. 3, p. 1-15,  2010.

SIQUEIRA-BATISTA, R. et al. Nanociência e nanotecnologia como temáticas para discussão de ciência, tecnologia, sociedade e ambiente. Ciência & educação, v. 16, n. 2, p. 479-490, 2010.

4 min leituraVocê deve estar se perguntando por que deveria entender a relação entre nanotecnologia e a segurança de alimentos. Esta é uma dúvida pertinente, já que tão pouco ouvimos falar sobre […]

3 min leitura
6

Ferramentas da Qualidade na Gestão de Riscos e Problemas

3 min leitura

Para que tenhamos uma gestão eficaz da Qualidade faz-se necessária o uso de ferramentas para mensurar, definir, analisar e propor soluções eficientes na tomada de decisões de riscos e problemas. Essas ferramentas da Qualidade quando bem utilizadas vão interferir diretamente no bom desempenho dos processos permitindo um maior controle e melhoria na tomada de decisão.

Faz-se necessário uma forte capacitação de todo o time através de conceitos, princípios e filosofia das ferramentas para que as mesmas sejam aplicadas de maneira correta, caso contrário corre-se o risco de termos resultados incorretos, incoerentes.

A utilização das técnicas e ferramentas da qualidade promove uma robustez no processo, fideliza a satisfação do cliente final e garante a empresa bons rendimentos financeiros devido a ganhos na padronização, redução de desperdícios, retrabalhos e perdas.

Para cada problema surgido podemos aplicar diversas ferramentas. Abaixo algumas mais utilizadas dentro da gestão de riscos e problemas.

  • Gráficos de Dispersão: permite a identificação de qualquer tendência de variação conjunta entre variáveis, ajudando na determinação da causa raiz de problemas. Um modelo representativo de duas ou mais variáveis dentro de um gráfico;
  • Cartas de Controle: permite a melhor visualização do comportamento de um processo ou atividade com relação à variação. São gráficos utilizados para acompanhar o processo;
  • Folha de Verificação: usada quando se pretende coletar dados com base em observações amostrais a fim de determinar um modelo, facilitar a coleta e análise de dados. O uso de folhas de verificação economiza tempo, eliminando o trabalho de se desenhar figuras ou escrever números repetitivos. É um documento feito na forma de planilha ou tabela para auxiliar na coleta de dados;
  • Diagrama de Ishikawa: também conhecido como Diagrama de Causa e Efeito, Diagrama Espinha-de-peixe. Permite estruturar hierarquicamente as causas potenciais de determinado problema ou oportunidade de melhoria, bem como seus efeitos sobre a qualidade dos produtos. Técnica muito empregada para descobrir a relação entre um efeito e suas causas;
  • Histograma: é uma representação de dados quantitativos por classes de frequência. Responsável por mostrar a variação entre um processo em um determinado período;
  • Fluxograma: muito utilizado em fábricas e indústrias para a organização de produtos e processos.  É um tipo de diagrama feito através de gráficos que ilustram de forma descomplicada a transição de informações entre os elementos que o compõem. Nessa ferramenta utiliza-se apoio gráfico para listar todas as atividades de um processo. Ele apresenta uma sequência lógica de tudo que é realizado nas etapas de processo;
  • Diagrama de Pareto: utilizado para se identificar quais os itens responsáveis pela maior parcela de erros ou problemas. Sua maior utilidade é a de permitir uma fácil visualização e identificação das causas ou problemas mais importantes, possibilitando a concentração de esforços sobre os mesmos;
  • Brainstorming: também chamada de Tempestade de ideias é uma técnica usada para gerar ideias dentro de um grupo de pessoas através de soluções interessantes e criativas para resolver o problema;
  • Benchmarking: ferramenta que faz a comparação entre os processos de uma empresa com outras empresas bem-sucedidas. Ao final, todas as ideias são analisadas;
  • 5W2H:  Planejar as ações. É necessário elaborar um quadro e responder as perguntas: O quê? Quando? Por que? Onde? Como? Quem? Quanto?
  • 5S: modelo japonês que contempla cinco princípios (Seiri, Seiton, Seisou, Seiketsu, Shitsuke) – Senso de Utilização, Organização, Limpeza, Saúde ou Melhoria Contínua, Autodisciplina que podem ser implantados na empresa para gerar a qualidade;
  • PDCA: ferramenta de gestão bastante utilizada nas empresas. Possui as etapas planejar, executar, checar e agir para um melhor controle de um processo;
  • 6 SIGMA: ferramenta que mede a performance de processo. Quanto maior o número de Sigmas, menor a sua variabilidade. O símbolo sigma é utilizado pela estatística para representar o parâmetro de dispersão chamado desvio padrão.

Estas técnicas são utilizadas para melhorar a qualidade de projetos, produtos, sistemas e processos ajudando a identificar possíveis problemas que possam ocorrer em um determinado projeto, produto ou processo que possam ter seus resultados afetados.

3 min leituraPara que tenhamos uma gestão eficaz da Qualidade faz-se necessária o uso de ferramentas para mensurar, definir, analisar e propor soluções eficientes na tomada de decisões de riscos e problemas. […]

3 min leitura
0

Minor Crops em pauta: “Ilegalidade Involuntária”

3 min leitura

Existe uma dificuldade em manter ou aumentar a produção de frutas, legumes e vegetais (FLV), não só devido a incidência de pragas e doenças, mas também pela carência e ausência de produtos fitossanitários registrados acarretando um impacto sócio-econômico negativo, em função do não atendimento destas demandas fitossanitárias.

No mercado internacional, a consequência desta situação é a perda de novos mercados, enquanto que, no mercado interno, os produtores acabam na “ilegalidade involuntária”, por conta da demora na fabricação e liberação comercial de moléculas que poderiam ser utilizadas na produção desses alimentos, como divulgado na matéria publicada pela Confederação da Agricultura e Pecuária do Brasil – CNA, que relatou a preocupação do setor de fruticultura que é obrigado a aplicar em seus pomares, produtos que são autorizados para outras grandes culturas como soja e milho, devido à falta de defensivos específicos registrados para uso nas pequenas culturas.

Visando atender a demanda pela ampliação da oferta de ingredientes ativos registrados para o uso em pequenas culturas ou culturas especiais (conhecidas mundialmente como “minor crops”), as áreas técnicas dos três órgãos federais envolvidos no registro de agrotóxicos (MAPA, ANVISA e IBAMA), formaram um grupo de trabalho no âmbito do Comitê Técnico de Assessoramento para Agrotóxicos (CTA), com o objetivo de reunir e avaliar as experiências de outros países para o desenvolvimento de uma política que contemplasse estas culturas no Brasil.

Neste contexto, em complemento a Lei nº 7.802/89 regulamentada pelo Decreto nº 4.074/02, foi publicada a Instrução Normativa Conjunta nº 01, de 23 de fevereiro de 2010, revogada pela Instrução Normativa Conjunta nº 01, de 16 de junho de 2014 que define estas culturas pequenas e especiais como “Culturas com Suporte Fitossanitário Insuficiente – CSFI”, e criando agrupamentos de culturas nos moldes do Codex Alimentarius, levando em consideração ainda aspectos morfológicos dos cultivares produzidos no Brasil, sua proximidade taxonômica, a semelhança de práticas agrícolas e a forma de consumo.

Define também regras e procedimentos para autorizar a extrapolação dos Limites Máximos de Resíduos (LMR) de um ingrediente ativo registrado para uma cultura representativa do grupo para as demais culturas deste mesmo agrupamento, o que garante a segurança alimentar, desde que respeitadas as indicações de alvos biológicos e dosagens previstas. Como vimos em post recentemente publicado, os LMRs são utilizados como referência para monitoramento de resíduos e comércio internacional.

A publicação da instrução normativa de uma certa forma estimulou as indústrias a introduzir no mercado mais opções para o controle destas pragas e doenças, pelo fato de reduzir as exigências e custos de registro sem aumentar os riscos à saúde da população e para os trabalhadores envolvidos na manipulação destes produtos, conforme descrito no Manual de Procedimentos da INC para CSFI publicado pelo governo, beneficiando:

*Produtores de frutas, legumes e hortaliças: através de soluções para controle fitossanitário em cultivos tradicionais com garantia de produtividade, competitividade e motivação para aumentar sua produção;

* Indústria alimentícia: fontes seguras e econômicas de alimentos;

* Consumidores: garantia de suprimento de alimentos saudáveis e seguros.

Analisando o caso do morango, considerado no relatório de monitoramento da ANVISA, como um dos itens com maior índice de irregularidades, tanto nos resíduos encontrados acima do permitido (indicando usos de práticas agrícolas diferentes das recomendadas na bula e rótulo do produto), quanto no uso de agrotóxicos não autorizados (devido a carência de produtos registrados), seria possível a extrapolação dos LMRs já estabelecidos em monografia para Maçã e Uva mediante cumprimento de algumas exigências, reduzindo o número de não conformidades encontradas pelo Governo, conforme esquema simplificado a seguir:

rob3

Figura 1: Exemplo de funcionamento da norma.

Foi divulgado pelo governo em março deste ano, um relatório atualizado abordando a estatística das inclusões de culturas com suporte fitossanitário insuficiente, relatando que dos 80 processos de registro submetidos, dos quais 29 processos estão em fase de análise pelo governo e 51 processos foram finalizados resultando até o momento na inclusão de 494 culturas e 1038 alvos biológicos, onde foram considerados impactos na IDA (Ingesta Diária Aceitável), através da avaliação de risco na dieta, e uma estratégia para o registro: priorizando ingredientes ativos menos tóxicos frente aos que possuem restrição de uso ou que estejam sob algum tipo de reavaliação no governo, como, por exemplo, caso dos neonicotinóides, inseticidas mais utilizados no mundo e suspeitos de causar efeitos colaterais sobre a biodiversidade: abelhas, borboletas, minhocas, aves e peixes.

Avaliando o cenário como um todo, a “ilegalidade involuntária” seria uma responsabilidade de todos e neste contexto, o produtor e suas associações, indústrias detentoras dos registros, as instituições de pesquisa e órgãos reguladores, precisam manter diálogos constantes convergindo os esforços para encontrar soluções que atendam as demandas do setor produtivo para que possamos garantir o acesso ao alimento saudável e seguro na mesa do consumidor.

3 min leituraExiste uma dificuldade em manter ou aumentar a produção de frutas, legumes e vegetais (FLV), não só devido a incidência de pragas e doenças, mas também pela carência e ausência […]

Compartilhar
Pular para a barra de ferramentas