2 min leitura
0

Desafios da validação de limpeza nas empresas de alimentos

2 min leitura

Nas empresas de alimentos, o tema validação de limpeza é muito comentado e é um requisito auditado em muitas normas de segurança de alimentos. Por isso, penso ser importante explicar alguns dos desafios relacionados a esta prática, além das análises propriamente ditas.

No artigo anterior sobre validação de limpeza, mostramos as principais etapas do processo de limpeza.

Em 2021, o EHEDG publicou o guia 45, com explicações detalhadas do processo. Quando dizemos validação de limpeza, pode ser com ou sem desinfecção.

A validação de limpeza não é só responsabilidade do(a) higienista ou da área de qualidade.

Isso mesmo: algumas empresas nomearam um higienista com a responsabilidade da adequação dos processos de higienização. Dessa forma, o(a) higienista é responsável pela validação da limpeza.

Quando não há higienista, a responsabilidade é da qualidade.

O termo responsabilidade não é apropriado, pois deveria ser a liderança do processo.

As normas de segurança de alimentos mencionam várias vezes o termo equipe multidisciplinar em vários requisitos. Isso porque realmente a validação necessita da participação de várias áreas e pessoas.

Vou explicar nos próximos itens.

  • Definição do pior cenário

O objetivo desse termo é que a área de Produção juntamente com a Qualidade definam qual é o cenário limite.

Se cumprirmos esse limite, ao executar a higienização, ela será eficaz para atingir os critérios de aceitação.

Esses critérios serão importantes para que o próximo ciclo produtivo seja realizado sem risco à segurança dos produtos.

O pior cenário pode variar para cada processo e pode ser baseado em vários fatores:

  • Tempo máximo de operação,
  • Sequência de tipos de produtos,
  • Temperatura da água quente ou vapor,
  • Outros.

Após definido o pior cenário, ou cenário limite, e validado, é imprescindível que a área de produção cumpra todo o procedimento, não extrapolando esses limites. Por isso, é necessário alinhamento com o responsável da produção.

  • Manutenção dos equipamentos antes do processo de validação

Como descrito no artigo sobre manutenção, antes da validação de limpeza é importante realizar a manutenção dos equipamentos, para evitar surpresas com resultados fora dos critérios de aceitação.

  • Gestão de mudanças

Também um dos desafios das empresas é ter procedimentos escritos que realmente sejam executados e que estejam atualizados.

A automação é uma ferramenta muito útil e segura para que os processos sejam padronizados e inter-travados.

Mas há uma ameaça em relação à segurança de senhas de administradores. Se não houver uma política rigorosa de controle de acessos, o sistema pode ficar vulnerável.

Além disso, qualquer teste temporário deve ser controlado em relação ao prazo de realização e análise dos resultados, para evitar que testes sem avaliação ou com resultados negativos impactem a segurança dos alimentos.

  • Modificações de projetos, linhas e equipamentos

Ao realizar o processo de validação com abertura de pontos difíceis de higienização, pode haver a necessidade de modificação de linhas e ou de equipamentos. Pode ser necessária a eliminação, por exemplo, de pontos mortos e necessidade de aplicação de princípios de projeto sanitário e design higiênico.

As normas de segurança de alimentos, como a FSSC 22.000, incluíram requisitos específicos sobre análise de risco em relação a equipamentos novos e linhas existentes para atendimento de diretrizes de projeto sanitário, mencionando guias do EHEDG e 3A sanitary.

Analisar os riscos de projeto sanitário pode economizar tempo do processo de validação, pois se houver problemas, eles poderão ser resolvidos antes da validação de limpeza.

Resumindo: o processo de validação de limpeza é um trabalho em equipe e o planejamento é fundamental para obter o sucesso.  Além disso, é importante gerar documentos adequados  e melhorar processos continuamente, sempre com o objetivo de produzir alimentos seguros.

Leia também:

Inclua a Manutenção na Validação de Higienização

Validação de Limpeza | Manual Gratuito EHEDG

 

2 min leituraNas empresas de alimentos, o tema validação de limpeza é muito comentado e é um requisito auditado em muitas normas de segurança de alimentos. Por isso, penso ser importante explicar […]

5 min leitura
0

E agora, como retomar meu negócio após a enchente?

5 min leitura

O Rio Grande do Sul enfrentou sua maior catástrofe climática neste ano de 2024, impactando mais de 2 milhões de pessoas, com 400 cidades afetadas e centenas de mortes. Agora que as pessoas começaram a voltar para suas casas e estabelecimentos de alimentação, a EAT Consultoria lançou a cartilha “O Recomeço: guia para higienizar e retomar as operações de serviços de alimentação após enchentes“. Esta cartilha oferece orientações essenciais para evitar a contaminação por microrganismos e principalmente pela bactéria Leptospira, presentes nas águas poluídas.

 

Apresento aqui os pontos principais para que a higienização destes espaços seja completa e evite danos à saúde das pessoas que irão compartilhar o mesmo espaço.

Este post é baseado nas normas:

Prepare-se e proteja-se

É muito importante utilizar os Equipamentos de Proteção Individual (EPI) para se proteger de qualquer tipo de contaminação. Por isso, utilize:

Luvas: Protegem as mãos do contato com materiais contaminados.
Botas: Evitam a exposição dos pés a águas poluídas e detritos.
Máscaras: Filtram partículas e microrganismos presentes no ar.
Óculos de proteção: Protegem os olhos contra respingos da água contaminada.
Roupas de proteção: Roupas impermeáveis que cobrem a pele, evitando contato direto com contaminantes.

Etapas da Higienização

Higienização é o processo de limpeza e desinfecção destinado a remover sujeiras, resíduos e microrganismos de superfícies, objetos e ambientes. A higienização compreende duas etapas principais, a limpeza e a desinfecção.

  1.  Remoção da sujeira: á a etapa que retira todos os resíduos e os descarta. Para a remoção da sujeira utilizam-se utensílios como pás, carrinhos de mão, rodos e sacos de lixo.
  2. Limpeza: A remoção de sujidades é realizada com uso de detergentes. Para limpeza utilizam-se vassouras, baldes, rodos, lava jatos, esponjas e esfregões.
  3. Desinfecção: etapa para reduzir o número de microrganismos utilizando desinfetante (álcool 70% ou hipoloclorito de sódio). Para desinfetar, use água sanitária (2 a 2,5%), álcool 70%, borrifadores e panos limpos e secos.

Higienização

a) Estrutura física
A higienização deve começar pela estrutura física, que são teto, paredes, portas e janelas.
Limpeza: utilize vassouras ou esfregões com detergente para esfregar toda a superfície a ser limpa. Em seguida, enxágue com água potável. Se disponível, pode-se utilizar uma lava-jato nesta etapa.
Desinfecção: Aplique a solução de água sanitária ou água clorada em toda a superfície. Deixe agir por aproximadamente 10 minutos e depois enxágue com água potável.

b) Móveis e utensílios
Após a limpeza e desinfecção das grandes áreas, é hora de higienizar os móveis e objetos. Lave-os com água e sabão neutro, em seguida, seque-os e desinfete-os com álcool 70%. Itens que não possam ser recuperados ou apresentem riscos de contaminação devem ser descartados.
Alguns móveis, como sofás, podem não ser reutilizáveis devido ao tempo em que permaneceram submersos, o que provavelmente causou danos às peças de madeira. No entanto, antes de descartar, é importante avaliar cada caso separadamente.
Tenha extrema cautela ao remover os objetos, pois animais peçonhentos e perigosos podem estar escondidos dentro de móveis e equipamentos. Faça uma seleção dos móveis e utensílios, mantendo apenas aqueles feitos integralmente de inox, ferro, alumínio, vidro e louças.

c) Eletrodomésticos
Evite descartar seus eletrodomésticos. Em geral, a água não costuma danificar geladeiras, fornos e outros equipamentos. Recomendamos que você desligue tudo da energia elétrica (caso ainda estejam ligados), realize uma limpeza completa em todo o aparelho e aguarde a secagem completa, que pode levar cerca de uma semana.
Antes de conectá-los à tomada novamente, é aconselhável solicitar o atendimento de um técnico para avaliar possíveis danos internos e realizar a substituição de peças, se necessário.

d) Móveis do salão de atendimento
Cadeiras, mesas e bancadas feitas de madeira (exceto madeira maciça) devem ser descartadas, pois a madeira porosa apresenta risco de contaminação. Sofás e poltronas estofados também devem ser descartados.
Bancadas e cadeiras feitas de metal ou plástico podem ser higienizadas e reaproveitadas. Já as bancadas e cadeiras feitas de metal ou plástico com partes estofadas podem ser avaliadas para a substituição da parte estofada e a higienização da parte de metal ou plástico.
Certifique-se de que após a higienização todos os materiais utilizados na limpeza sejam descartados, para evitar a contaminação cruzada.

O que fazer com os alimentos?

Descarte todos os alimentos e embalagens que foram submersos nas águas das enchentes, a menos que os alimentos estejam selados em latas hermeticamente fechadas e não danificadas.
Alimentos refrigerados e congelados, como carne, aves, ovos e leite, que tenham sido imersos nas águas das enchentes, ou que permaneceram em temperatura ambiente devido à falta de energia, devem ser descartados.
Alimentos embalados em plástico (garrafas PET, leite em saco, grãos ensacados) que não foram abertos, mas tiveram contato com a água da enchente, também devem ser descartados.
Inspecione os alimentos enlatados e descarte qualquer alimento em latas danificadas, que apresentem sinais de inchaço, vazamento, perfurações, ferrugem ou esmagamento/amassamento. Alimentos enlatados e não danificados podem ser aproveitados após remoção dos rótulos, lavagem, enxágue e desinfecção com solução de água sanitária ou álcool 70%. Em seguida, etiquete novamente os recipientes com o prazo de validade.
Evite guardar alimentos embalados em plástico, papel, papelão, tecido e recipientes semelhantes que foram danificados pela água.

Limpeza da caixa d’ água

Antes de iniciar a limpeza da caixa d’água, realize uma inspeção visual para identificar possíveis danos, rachaduras ou sinais de contaminação.
Utilize equipamentos de proteção individual, como luvas de borracha e máscara facial, para garantir a segurança e evitar o contato direto com produtos químicos e sujeira.
Feche o registro e esvazie a caixa d´água, abrindo as torneiras e dando descargas. Quando a caixa estiver quase vazia, feche a saída e utilize a água restante para a limpeza.
Esfregue as paredes e o fundo da caixa com panos, escova macia ou esponja. Evite o uso de sabão, detergente ou outros produtos.
Remova a água suja da limpeza com balde e panos, deixando a caixa totalmente limpa.
Encha a caixa d’água e adicione 1 litro de água sanitária para cada 1000 litros de água. Aguarde 2 horas para a desinfecção do reservatório.
Esvazie a caixa d’água abrindo todas as torneiras, promovendo a limpeza e desinfecção de toda a canalização. Utilize esta água para limpar pisos e paredes.
Tampe a caixa d’água para evitar a entrada de pequenos animais ou insetos.
Registre a data da limpeza da caixa d’água.
Por fim, abra a entrada de água para retomar o abastecimento.

É fundamental observar e seguir atentamente todos os passos e instruções delineados neste documento, a fim de mitigar potenciais riscos à saúde ocasionados por contaminações provenientes das águas poluídas. Temos certeza de que  o processo de reconstrução do estado do Rio Grande do Sul será conduzido com determinação e resiliência, refletindo a força e a união do povo gaúcho.

Leia mais:

– Enchentes no Rio Grande do Sul levam à flexibilização na produção de alimentos [link]
– Preparando-se para o inesperado: você e sua empresa estão preparados? [link]

5 min leituraO Rio Grande do Sul enfrentou sua maior catástrofe climática neste ano de 2024, impactando mais de 2 milhões de pessoas, com 400 cidades afetadas e centenas de mortes. Agora […]

3 min leitura
0

Como a tecnologia de desinfecção da indústria farmacêutica pode auxiliar a indústria de alimentos

3 min leitura

A segurança dos alimentos é um desafio constante das indústrias do segmento. Afinal, além de toda uma rígida legislação sanitária a seguir, é preciso encontrar soluções para manter o elevado padrão de higiene de ambientes de grandes dimensões.

Em outras palavras, aplicar o conceito de Food Safety ao higienizar ambientes da indústria alimentícia pode não ser uma tarefa fácil se não for usada a tecnologia mais adequada.

E vem da experiência de uma coirmã, a indústria farmacêutica, uma forma eficiente de se alcançar resultados consistentes na higienização. Com inovação e tecnologia, é possível higienizar grandes áreas e garantir a segurança dos alimentos produzidos.

Acompanhe a leitura e aprenda mais.

Ambientes controlados na indústria

A produção de qualquer produto deve seguir rígidos padrões de qualidade. Quando tratamos daqueles de consumo humano, esse tema torna-se ainda mais importante, pois afeta tanto a saúde das pessoas quanto os requisitos para a produção industrial.

As legislações sanitárias costumam ditar os parâmetros de higienização, mas não a forma de conseguir os resultados. As indústrias é que precisam alocar métodos e tecnologias para se adequar e garantir ambientes higienizados em conformidade com os regulamentos.

Nesse sentido, existem dois conceitos que vale a pena explicar:

  • Ambiente controlado – em uma indústria, trata-se de locais higienizados que controlam parâmetros como temperatura e pressão, além de serem segregados de outros espaços produtivos, para garantir um alto padrão de higiene no local.
  • Sala limpa – trata-se de um ambiente controlado com regras bem mais rígidas. Além dos mesmos critérios acima, ainda é controlado o número de partículas no ar, a fim de evitar a contaminação de insumos e equipamentos.

A indústria farmacêutica, pela natureza dos seus produtos, possui muitos ambientes críticos, que podem ser controlados ou salas limpas. Contudo, essas áreas do seu parque industrial tendem a ser reduzidas, com plantas muito específicas. Diferentemente da indústria alimentícia, que tem outra arquitetura e escala de produção.

Nem sempre os ambientes da indústria de alimentos são totalmente fechados, o que inviabiliza o controle total de temperatura e pressão. Além disso, a presença de sujidades, como matéria orgânica, e a pressão pela escala da produção pressionam todo o ambiente. Isso de forma alguma é uma negligência, mas uma característica dessas empresas, que as desafia a encontrar soluções para a higienização dos ambientes.

É neste ponto que a tecnologia usada na indústria farmacêutica pode ajudar.

Compartilhando know how com a indústria de alimentos 

Uma nova tecnologia de desinfecção de ambientes vem sendo amplamente utilizada na indústria farmacêutica, com o objetivo de reduzir a presença de microrganismos nos ambientes produtivos. Esse novo sistema é baseado na tecnologia DryFog (névoa seca) e por suas características pode ser utilizado nas indústrias de alimentos, mesmo em ambientes muito amplos e com maquinário pesado.

Esse novo conceito de aplicação une a tecnologia DryFog de geração de microgotas com a eficiência dos peroxidados para promover uma desinfecção tridimensional, com alta penetrabilidade que permite acesso a áreas de difícil acesso e geometria complexas. E através do alto poder de dispersão e penetrabilidade ajudam a melhorar o controle microbiológico de todo o ambiente.

A TerraNova Desinfecção é especialista neste processo, tendo desenvolvido equipamentos e processos que atendem o setor industrial. Através do equipamento UltraFog®, a solução desinfetante é agitada e gotas micrométricas são formadas, resultando numa névoa que permanece em suspensão no ambiente, possibilitando desinfecção não só das superfícies expostas à névoa mas também do ar do ambiente.

Esta é uma das vantagens do UltraFog® da TerraNova, pois permite que o processo de desinfecção seja realizado de forma segura e eficiente, sem danificar máquinas e equipamentos, não umedecendo superfícies, evitando assim qualquer reação de oxidação com materiais. Assim, não é necessária a sua remoção. Além disso, a TerraNova também realiza testes laboratoriais com as amostras colhidas no local.

Como vimos, é um método que pode ser aplicado com muita eficiência na indústria alimentícia, com todas as suas características. Este é um dos diferenciais da TerraNova, que considera processos e ambientes para atender todos os segmentos do mercado.

3 min leituraA segurança dos alimentos é um desafio constante das indústrias do segmento. Afinal, além de toda uma rígida legislação sanitária a seguir, é preciso encontrar soluções para manter o elevado […]

10 min leitura
0

Conheça o ácido hipocloroso, o desinfetante sustentável

10 min leitura

O ácido hipocloroso é um novo e promissor ativo desinfetante com apelo sustentável, porque é obtido pela eletrólise de água e sal e não tem efeitos nocivos ao meio ambiente. Esse ativo é encontrado na água eletrolisada e sua concentração varia em função do pH.

O processo de eletrólise de água e sal para a produção de água eletrolisada como agente bactericida começou em 1987 e foi testado com sucesso em diferentes aplicações na indústria de alimentos, conforme reportado em trabalhos científicos.

A água eletrolisada (EW), um sanitizante produzido a partir da água com cloreto de sódio (NaCl) sem adição de produtos químicos nocivos, tem mostrado grande potencial como substituto do hipoclorito de sódio (NaClO), produzindo danos mais severos nas células bacterianas em comparação com a desinfecção com cloro puro. A aplicação de EW em ambientes de processamento de alimentos tem várias vantagens, incluindo custo-benefício, produção in loco, além de ser seguro para a saúde humana.

Quando, a este processo de obtenção de água eletrolisada, é inserida uma membrana de separação (também chamada de diafragma), pode-se produzir dois tipos de solução, sendo uma de pH ácido (anólito) e outra alcalina (católito). Íons com cargas positivas (H+ e Na+) são atraídos pelo cátodo, tornando-se, ao receber elétrons, gás hidrogênio (H2) e hidróxido de sódio (NaOH).

Já os íons com carga negativa (OHe Cl) são atraídos pelo ânodo doando elétrons e resultando em cloro gasoso (Cl2), gás oxigênio (O2), íon hipoclorito (OCl) e ácido hipocloroso (HClO). A figura 1 representa este processo:

Figura 1: Processo de eletrólise de solução salina

Fonte: Shiroodi e Ovissipour, 2018

No lado do ânodo, forma-se uma solução ácida (chamada anólito) com pH entre 2 e 3 e potencial de oxirredução maior que 1000 mV e entre 10 e 90 ppm de cloro ativo, dependendo da concentração de sal na solução inicial.

No lado do cátodo, forma-se uma solução alcalina (também chamada católito) com pH na faixa de 10 a 13 e potencial de oxirredução entre 800 e 900 mV.

Variações desse sistema, com adição de ácido clorídrico ou íons hidróxido, permitem a obtenção de soluções em outras faixas de pH.

Recentemente, indústrias e pesquisadores relataram a geração de água eletrolisada neutra (NEW) com um pH de 7-8, e ORP de 750–1000mV e água eletrolisada levemente ácida (SAEW) com pH de 5 a 6,5 e ORP de aproximadamente 850mV.

A NEW é produzida pela mistura da solução anódica com íons OH_ ou por eletrólise de NaCl em uma unidade de célula única, enquanto SAEW é gerada pela eletrólise de HCl sozinho ou em combinação com NaCl em uma unidade de célula única.

Em termos gerais, as nomenclaturas mais utilizadas nos artigos são:

Tabela 1 – Siglas e abreviações mais utilizadas nos artigos técnicos relacionados a água eletrolisada

Apesar dos resultados em relação à ação bactericida da AEW serem favoráveis, o processo AEW pode gerar gases (Cl2) que são tóxicos aos manipuladores, restringindo o uso em nível industrial.

A atividade antimicrobiana da água eletrolisada depende muito do pH e de como o pH pode determinar a forma disponível de cloro. O ácido hipocloroso (HClO) é a forma mais forte de cloro, que pode chegar a 80 vezes mais que o hipoclorito (ClO) quando o pH está próximo 5–6,5. Em pH mais baixo, o HClO é dissociado em gás cloro Cl2, e em pH mais alto forma ClO-. (Fig. 2).

Figura 2. Relação entre pH e formas disponíveis de cloro.

Espécies de cloro ativo, incluindo Cl2, ClO, e HClO, contribuem para a inativação microbiana. Pesquisadores concluíram que a principal razão para a inativação das bactérias são as propriedades de penetração do HClO e ClO. ClO ionizado não é capaz de penetrar na membrana da célula microbiana devido à existência da bicamada lipídica hidrofóbica e algumas estruturas protetoras da parede celular, e o fato de que a célula de uma bactéria patogênica é carregada negativamente por natureza. A carga dos íons negativos de hipoclorito (ClO) será repelida pela carga negativa da parede celular da bactéria patogênica, resultando em ação oxidante fraca apenas fora da célula.

A forma neutra do ácido hipocloroso HClO pode penetrar na parede celular do microrganismo patogênico com muita facilidade, tornando-se assim um desinfetante muito eficaz que pode atuar tanto no exterior como no interior do microrganismo. O ácido hipocloroso também pode penetrar nas camadas de limo, paredes celulares e camadas protetoras de microrganismos. Além disso, o ácido hipocloroso pode matar as bactérias oxidando grupos sulfidrila de certas enzimas, interrompendo a síntese de proteínas e descarboxilação de aminoácidos a nitritos e aldeídos.

A corrente elétrica, a vazão de água e a concentração de sal também afetam as propriedades da água eletrolisada produzida. O aumento da vazão de água causa um aumento na corrente elétrica devido à eletrólise de mais solução salina. Aumentar a redução bacteriana aumentando a taxa de fluxo de água foi relatado para E. coli e L. monocytogenes. A concentração de sal tem relação linear com a concentração de cloro.

Alguns equipamentos, além de produzir a água eletrolisada levemente ácida SAEW, também produzem o BEW, que devido a sua composição de hidróxido de sódio pode ser estudado futuramente como detergente e aplicado antes da desinfecção para limpeza, por exemplo, de superfícies. Resíduos orgânicos diminuem a eficácia de redução microbiológica pelo ácido hipocloroso.

Em um trabalho de revisão de aplicações de água eletrolisada como agente de limpeza e desinfecção, pesquisadores relataram que essa é uma solução promissora para a indústria de alimentos e bebidas, podendo ser aplicada sozinha ou combinada com outras técnicas de desinfecção como ultrassom, ultravioleta e tratamento térmico.

A água eletrolisada EW é reconhecida por órgãos norte-americanos como FDA (Food and Drug Administration,  agência norte-americana reguladora dos setores alimentícios e de medicamentos), USEPA (United States Environmental Protection Agency, Agência de Proteção Ambiental) e  (United States Department of Agriculture, Departamento da Agricultura dos Estados Unidos) para fins de descontaminação de superfícies e no processamento de alimentos. Além disso, foi reconhecida como desinfetante para utilização em produtos orgânicos  pelo USDA, em 2015.

Vantagens e desvantagens da água eletrolisada

As vantagens da água eletrolisada são muitas em comparação com outras tecnologias de sanitização:

  1. Pode ser gerada no local e é relativamente barata.
  2. Fornece água eletrolisada com qualidade consistente, que também pode ser armazenada por até 6 meses.
  3. Pode ser produzido por eletrólise de água com solução salina diluída, como NaCl, o que o torna seguro para o meio ambiente.
  4. Sua aplicação reduz os problemas de segurança e custo com manuseio, armazenamento e aplicação de solução de cloro.
  5. No caso da água eletrolisada levemente ácida SAEW e neutra NEW são mais segura para operadores e funcionários pois não gera gás cloro.
  6. Atualmente é possível obter água eletrolisada levemente ácida SAEW com 500 ppm e é fácil modificar a concentração de cloro para atingir as concentrações desejadas com base na aplicação.
  7. Pode ser convertido para a água normal após a aplicação, sem liberar gases prejudiciais.
  8. Segundo alguns pesquisadores, a água eletrolisada não causa resistência em microrganismos
  9. É mais eficaz que o cloro. Consequentemente, a formação de cloraminas e trialometanos é menor.
  10. Também pode evitar o escurecimento enzimático durante o armazenamento de alimentos em atmosfera modificada embalagem.
  11. A água eletrolisada tem menos citotoxicidade e menos impacto nos atributos de qualidade de materiais alimentares. No caso da SAEW, é menos corrosiva e tem menor impacto na qualidade em comparação com outras soluções ácidas.
  12. NEW tem muitas vantagens devido ao seu pH neutro e à forma de cloro disponível.
  13. A NEW obteve o certificado do Departamento de Agricultura dos EUA (DA) como Produto orgânico.

A água eletrolisada, semelhante a outras tecnologias, tem suas próprias desvantagens:

  1. AEW, pH <3, pode ser corrosivo para alguns metais e resinas sintéticas.
  2. Sua eficácia diminui significativamente quando entra em contato com materiais orgânicos particularmente proteínas devido à sua reação com proteína.
  3. No caso de AEW, pH <3, a máquina pode gerar gás cloro que não é seguro para o operador.
  4. O equipamento pode ser um investimento inicial alto.

Aplicações em indústria de alimentos

Algumas aplicações possíveis do ácido hipocloroso nas indústrias:

  • Desinfecção de superfícies
  • Limpeza de circuitos fechados – CIP
  • Lavagem de caixas plásticas de transporte
  • Lavagem e desinfecção de frutas e ovos
  • Lava-botas ou barreiras de contenção (superfícies dos calçados)
  • Nebulização e sanitização por “neblina” de áreas/cantos de difícil acesso.

E no Brasil?

Segundo levantamento de estudos e artigos publicados em vários países, a utilização dessa tecnologia no Brasil é menor do que 1%, conforme apresentado na Figura 3.

Figura 3: Artigos publicados sobre a utilização de água eletrolisada

Fonte: Iram at all, 2021

 Para atender a legislação brasileira para Saneantes (RDC 14/2007), que está em conformidade com a AOAC – referente a Desinfetantes para indústria de Alimentos, foram realizados testes de eficácia de redução microbiológica e para aprovação devem apresentar uma redução mínima de 5 log. Os testes foram realizados em laboratório acreditado no Brasil com água eletrolisada levemente ácida SAEW, pH 5,35 / 5,68 e 500 ppm de ácido hipocloroso e tempo de contato de 10 minutos. Foram aprovados e estão demonstrados na Tabela 2.

Tabela 2: Resultados fornecidos por laboratório acreditado

Assim, podemos concluir que as indústrias brasileiras têm muito a desenvolver com a nova tecnologia sustentável que o ácido hipocloroso oferece, com várias vantagens ambientais e visando maior segurança dos alimentos.

Leia também:

O papel da água eletrolisada na segurança dos alimentos

·        Referências

  Ruviaro, A. R. 2017. O papel da água eletrolisada na segurança dos alimentos. 

Al    Haq, M.I., Sugiyama, J., Isobe, S., 2005. Applications of electrolyzed water in agriculture & food industries.  Food Sci. Technol. Res. 11 (2), 135–150.

·         Audenaert, K., Monbaliu, S., Deschuyffeleer, N., Maene, P., Vekeman, F., Haesaert, G., De Saeger, S., Eeckhout, M., 2012. Neutralized electrolyzed water efficiency reduces Fusarium spp. in vitro and on

·         Ayebah, B., Hung, Y.C., Frank, J.F., 2005. Enhancing the bactericidal effect of electrolyzed water on Listeria monocytogenes biofilms formed on stainless steel. J. Food Protect. 68, 1375–1380.

·         Bird MR, Fryer PJ (1991) An experimental study of the cleaning of surfaces fouled by whey proteins. Food Bioprod Process 69:13–21

·         Deza, M., Araujo, M., Garrido, M., 2003. Inactivation of Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes on the surface of tomatoes by neutral electrolyzed water. Lett. Appl. Microbiol. 37 (6), 482–487

·         Deza, M.A., Araujo, M., Garrido, M.J., 2005. Inactivation of Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus on stainless steel and glass surfaces by neutral electrolysed water. Lett. Appl. Microbiol. 40, 341–346. https://doi.org/10.1111/j.1472-765X.2005.01679.x.

·         Forghani, F., Park, J.-H., Oh, D.-H., 2015. Effect of water hardness on the production and microbicidal efficacy of slightly acidic electrolyzed water. Food Microbiol. 48, 28–34.

·         Fukuzaki, S., 2006. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci. 11 (4), 147–157.

·         Gomez-Lopez, V.M., Ragaert, P., Ryckeboer, J., Jeyachchandran, V., Debevere, J., Devlieghere, F., 2007. Shelf-life of minimally processed cabbage treated with neutral electrolyzed oxidizing water and stored under equilibrium modified atmosphere. Int. J. Food Microbiol. 117 (1), 91–98.

·        Hao X.X., B. M. Li , C. Y. Wang , Q. Zhang and W. Cao. 2013. Application of slightly acidic electrolyzed water for inactivating microbes in a layer breeding house. Poultry Science 92 :2560–2566

·         Hinton, A.Jr., Northcutt, J. K., Smith, D. P., Musgrove, M. T., and Ingram, K. D. 2007. Spoilage Microflora of Broiler Carcasses Washed with Electrolyzed Oxidizing or Chlorinated Water Using an Inside-Outside Bird Washer

·         Hricova D., R. Stephan, and C. Zweifel. 2008. Eletrolyzed water and its application in the food industry. J of Food Protection. Vol. 71. No 9 Pages 1934-1947.

·         Hsu, S.-Y., 2003. Effects of water flow rate, salt concentration and water temperature on efficiency of na electrolyzed oxidizing water generator. J. Food Eng. 60 (4), 469–473.

·         Iram, A., Wang, X., Demirci, A., 2021. Electrolyzed Oxidizing Water and Its Applications as Sanitation and Cleaning Agent. Food Engineering Reviews 13:411–427

·         Issa-Zacharia, A., Kamitani, Y., Miwa, N., Muhimbula, H., Iwasaki, K., 2011. Application of slightly acidic electrolyzed water as a potential nonthermal food sanitizer for decontamination of fresh ready-to-eat vegetables and sprouts. Food Control 22 (3), 601–607.

·         Iwasawa, A., Nakamura, Y., 1993. Antimicrobial activity of aqua oxidizing water. Clin. Bacteriol. 20, 469–473.

·         Kim, C., Hung, Y.C., Brackett, R.E., Frank, J.F., 2001. Inactivation of Listeria monocytogenes biofilms by electrolyzed oxidizing water. J. Food Process. Preserv. 25, 91–100. https://doi.org/10.1111/j.1745-4549.2001.tb00446.x.

·         Koseki, S., Fujiwara, K., Itoh, K., 2002. Decontaminative effect of frozen acidic electrolyzed water on lettuce. J. Food Prot. 65 (2), 411–414.

·         Koseki, S., Yoshida, K., Isobe, S., Itoh, K., 2001. Decontamination of lettuce using acidic electrolyzed water. J. Food Prot. 64 (12), 652–658.

·         Nan, S., Yongyu, L., Baoming, L., Wang, C., Cui, X., Cao, W., 2010. Effect of slightly acidic electrolyzed water for inactivating Escherichia coli O157:H7 and Staphylococcus aureus analyzed by transmission eléctron microscopy. J. Food Prot. 73 (12), 2211–2216.

·         Ovissipour, M., Al-Qadiri, H.M., Sablani, S.S., Govindan, B.N., Al-Alami, N., Rasco, B., 2015. Efficacy of acidic and alkaline electrolyzed water for inactivating Escherichia coli O104:H4, Listeria monocytogenes, Campylobacter jejuni, Aeromonas hydrophila, and Vibrio parahaemolyticus in cell suspensions. Food Control 53, 117–123.

·         Possas A.,  F. P´erez-Rodríguez ,  F.  Tarlak ,  R.  M.  García-Gimeno , 2021. Quantifying and modelling the inactivation of Listeria monocytogenes by  electrolyzed water on food contact surfaces. J. of Food Engineering. 290: 110287

·         Rahman, S.M.E., Khan, I., Oh, D.-H., 2016. Electrolyzed water as a novel sanitizer in the food industry: current trends and future perspective. Compr. Rev. Food Sci. Food Saf. 15, 471–490. https://doi.org/10.1111/1541-4337.12200

·         Rahman, S.M.E., Park, J.H., Wang, J., Oh, D.-H., 2012. Stability of low concentration electrolyzed water and its sanitization potential against foodborne pathogens. J. Food Eng. 113 (4), 548–553.

·         Ruviaro, A. R. 2017. O papel da água eletrolisada na segurança dos alimentos.  https://foodsafetybrazil.org/agua-eletrolisada-na-seguranca-dos-alimentos/

·         Santos,R. A,, Garcia R. G., Gandra E. R. S., Burbarelli M. F. C., Muchon, J. L., Caldara, F. R. 2019. Carcass Washing as an Alternative to Trimming – Is It Possible to Use Carcass Washing as an Alternative to Trimming in Commercial Broiler Slaughterhouses in Brazil? Brazilian Journal of Poultry Science. V.22 n.2 001-006 http://dx.doi.org/10.1590/1806-9061-2019-1209

·         Shiroodi S. G., Ovissipour M., 2018. Eletrolyzed water application in fresh produce sanitation.  Elsevier. Chapter 3, 67-87.

·         Wang X, Demirci A, Puri VM, Graves RE (2016) Evaluation of blended electrolyzed oxidizing water-based cleaning-in-place (CIP) technique using a laboratory-scale milking system. Trans ASABE 59:359–370

·         Zang,  Y.  T. , Li,  B.  M., Bing, Sh. and  Cao W. , 2015. Modeling disinfection of plastic poultry transport cages inoculated with Salmonella enteritids by slightly acidic electrolyzed water using response surface methodology  Poultry Science 94:2059–2065

·         Zhang, J., Wang, J., Zhao, D., Hao, J. 2021. Efficacy of the two-step disinfection with slightly acidic electrolyzed water for reduction of Listeria monocytogenes contamination on food raw materials. LWT 140 (2021) 110699

·         FDA & EPA. Certifications of Electrolyzed Water. 2p. 2016 Disponível em: http://www.environize.ca/wp-content/uploads/2015/03/FDA-EPA-Approvals-s.pdf. Acesso em maio de 2017.

·         USDA. U.S. Department of Agriculture. National Organic Program. Policy Memorandum. PM 15-4 Electrolyzed Water. In: National Organic Program Handbook: Guidance and Instructions for Accredited Certifying Agents and Certified Operations.  2 p. 2015. Washington, DC. Sept, 11, 2015.  Disponível em: https://www.ams.usda.gov/sites/default/files/NOP-PM-15-4-ElectrolyzedWater.pdf. Acesso em maio de 2017.

·         https://avinews.com/electrolisis-salina-vs-hipoclorito-sodico/ Revista AviNews Espanha Dezembro 2021

10 min leituraO ácido hipocloroso é um novo e promissor ativo desinfetante com apelo sustentável, porque é obtido pela eletrólise de água e sal e não tem efeitos nocivos ao meio ambiente. […]

2 min leitura
0

Posso lavar chão de restaurante com sabão em pó?

2 min leitura

Muitas pessoas têm o hábito de lavar o chão com sabão em pó em casa, mas será que essa prática é adequada para a rotina de higiene de serviços de alimentação? Posso lavar o chão do meu restaurante com sabão em pó?

Segundo a RDC 216/04, a qual dispõe sobre Regulamento Técnico de Boas Práticas para Serviços de Alimentação, alguns cuidados devem ser tomados com os saneantes que utilizamos para as etapas de higiene. Podemos citar alguns detalhes da norma que podem nos ajudar a responder à pergunta acima.

– “Devem ser tomadas precauções para impedir a contaminação dos alimentos causada por produtos saneantes, pela suspensão de partículas e pela formação de aerossóis. Substâncias odorizantes e ou desodorizantes em quaisquer das suas formas não devem ser utilizadas nas áreas de preparação e armazenamento de alimentos.”

– “Os produtos saneantes utilizados devem estar regularizados pelo Ministério da Saúde. A diluição, o tempo de contato e modo de uso/aplicação dos produtos saneantes devem obedecer às instruções recomendadas pelo fabricante.”

Sendo assim, NÃO podemos lavar o chão dos serviços de alimentação com sabão em pó! O produto não é recomendado por vários motivos, como:

– O sabão em pó é indicado para lavagem de roupas, não do piso.

– Gasta mais água para o enxague.

– O produto tem cheiro (muitas vezes bem forte, inclusive).

– É recomendável utilizar saneantes de uso profissional, especialmente elaborados para ambientes de produção de alimentos. Os produtos profissionais apresentam fichas técnicas, com todas as especificações necessárias, como tempo de ação do produto, EPI necessário, diluições, dentre outras. Ou seja, todo o processo de higienização será seguro, eficiente e com melhor relação custo e benefício.

A limpeza e a desinfecção das instalações, equipamentos, móveis e utensílios são procedimentos que influenciam diretamente a segurança dos alimentos produzidos. Assim, essas etapas merecem uma atenção especial em um serviço de alimentação!

Imagem: foto de Anthony Shkraba no Pexels

2 min leituraMuitas pessoas têm o hábito de lavar o chão com sabão em pó em casa, mas será que essa prática é adequada para a rotina de higiene de serviços de […]

3 min leitura
4

Amostragem de ar em ambientes de produção de alimentos

3 min leitura

De acordo com a OMS, mais de 50% dos locais fechados têm ar de má qualidade, o que se deve principalmente à má higienização dos aparelhos de ar condicionado e a falta de controle periódico sobre as possíveis fontes de contaminação (Schirmer et al.,2011). Em tais espaços confinados, com escassa renovação do ar, há maior tendência de acumulação de microrganismos oriundos de infiltrações ou da má conservação do sistema de ar condicionado, principalmente fungos e bactérias (Sodré, 2006). Sabe-se que grande parte das bactérias patogênicas são aeróbias, e uma alta contagem total deste tipo de microrganismo no ar é um indicativo de insalubridade, pois significa que o ambiente está apropriado para sua multiplicação (Jesus et al. , 2007). É sabido que ar e ambiente interagem de forma dinâmica em termos de contaminação por agentes microbianos, portanto “quaisquer superfícies nas quais os microrganismos estejam depositados podem agir como fontes de contaminação para o ar, quando ocorrerem condições apropriadas para a formação de aerossóis” (Salustiano, 2002).

A sanitização é uma etapa indispensável aos procedimentos de higienização em ambientes, especialmente sob ar condicionado.

Um estudo publicado no 10º Congresso Interinstitucional de Iniciação Científica, em agosto de 2016, realizado pela equipe do Instituto de Tecnologia de Alimentos de Campinas – SP juntamente com técnicos da Merck S.A, avaliou duas técnicas de monitoramento microbiológico de ar: técnica de sedimentação passiva em placas de ágar e técnica de compactação de partículas de ar por aspiração (Principio de Andersen). Utilizou-se a aplicação de sanificante à base de terpenos no ar e superfícies a fim de gerar dados sobre a contaminação de contagem total e bolores e leveduras de 13 salas e 1 ambiente do laboratório de microbiologia. A escolha das salas de amostragem teve como base o fluxo de trabalho e de circulação de pessoas.

Conclusão do estudo: “Apesar de ter custo elevado em relação ao método da sedimentação, o método da compactação é mais rápido e apresenta maior confiabilidade, pois é conhecido o volume de ar amostrado e, consequentemente, a concentração de microrganismos no meio. A coleta com amostrador de ar também tem maior sensibilidade para determinar a presença de agentes patogênicos no ambiente, uma vez que o método da sedimentação apenas recupera os microrganismos  com tamanho suficiente pra permitir deposição na superfície do ágar no tempo de amostragem (15 minutos).”

Já amplamente aplicado e legislado na indústria farmacêutica, a aplicação dos amostradores de ar é uma tendência na indústria de alimentos que busca maior reprodutibilidade e confiabilidade de resultados dentro de suas áreas fabris, permitindo gerenciar decisões de risco microbiológico com dados precisos.

Como funciona o amostrador de ar:

                             O ar é aspirado

Coloca-se uma placa com ágar nutriente dentro do aparelho

Retira-se a placa e leva-se para a incubadora
Retira-se a placa e leva-se para a incubadora

Após incubação se faz a contagem dos microrganismos
Após incubação se faz a contagem dos microrganismos

 

Luis Henrique da Costa é Gerente Field Marketing América Latina da Merck S.A

 

3 min leituraDe acordo com a OMS, mais de 50% dos locais fechados têm ar de má qualidade, o que se deve principalmente à má higienização dos aparelhos de ar condicionado e […]

< 1 min leitura
3

Two Buckets Method (Método dos dois baldes) para higienização de pisos na produção de alimentos

< 1 min leitura

O método dos dois baldes é uma técnica considerada segura para a limpeza de superfícies e é comumente utilizada para lavagem de veículos. Mas o que isso tem a ver com a segurança de alimentos? TUDO! As etapas de higienização de ambientes de produção de alimentos são muito importantes para a garantia da qualidade e requerem um cuidado especial (Veja aqui um pouco mais sobre a relação entre a higienização de ambientes e a segurança dos alimentos).

O método consiste na utilização de dois baldes para a limpeza de superfícies e pode ser aplicado, principalmente, na limpeza do chão, das paredes e dos tetos. É muito simples executar a técnica: um balde é utilizado para colocar a solução com sabão e o outro é utilizado para colocar água cem por cento limpa. A ferramenta que é utilizada para limpar a superfície (vassoura, pano, esfregão ou bucha) deve ser submergida dentro do balde contendo a solução com sabão ou sanitizante e a limpeza é realizada normalmente. Porém, antes de mergulhar o instrumento novamente no balde com essa solução, este deve ser enxaguado no balde com água limpa (que deve ser trocada a cada vez que o instrumento é mergulhado). Esse método é muito eficiente porque a solução com sabão ou sanitizante se mantém sempre limpa e não contamina, com uma água suja, as próximas áreas a serem higienizadas.

O método dos dois baldes é uma excelente alternativa para melhorar a eficiência da limpeza nas indústrias e nos serviços de alimentação, o que ajuda bastante na garantia da segurança dos alimentos produzidos.

Vamos todos acrescentar o método dos dois baldes nos POPs?

< 1 min leituraO método dos dois baldes é uma técnica considerada segura para a limpeza de superfícies e é comumente utilizada para lavagem de veículos. Mas o que isso tem a ver […]

Compartilhar
Pular para a barra de ferramentas