8 min leitura
1

Detectores de metais: entendendo falsos rejeitos e como evitá-los (I)

8 min leitura

Entre os perigos físicos na indústria de alimentos, a contaminação metálica é um dos mais críticos, oferecendo riscos à segurança de alimentos e à reputação das empresas. Mesmo em sistemas validados, monitorados e verificados, podem ocorrer falsos rejeitos, impactando a produtividade e a confiança no processo. Entender como os detectores de metais funcionam é essencial para garantir a eficácia dessa medida de controle, seja ela um PCC, PPRO ou PC, e para conduzir análises de causa raiz sempre que necessário.

Este artigo foi elaborado a partir de uma entrevista com Mateus, especialista em detector de metais, da empresa Fortress, e complementado com informações de referências técnicas e documentos especializados. O objetivo é apresentar, de forma prática, as principais causas de falsas rejeições (falsos positivos), como identificá-los e estratégias para reduzir sua ocorrência, contribuindo para a gestão eficaz da segurança de alimentos. Este conteúdo contém exemplos não exaustivos e não substitui as recomendações específicas para cada equipamento ou processo.

Como funciona um detector de metais?

O detector de metais opera com base em um campo eletromagnético gerado por bobinas localizadas na abertura de inspeção do equipamento. Quando um material condutor, como um contaminante metálico, atravessa esse campo, ele interrompe o equilíbrio eletromagnético, gerando um “sinal” que é interpretado pelo equipamento.

Exemplo prático: imagine um lago calmo. Se você jogar uma pedra, as ondas geradas indicarão a presença de algo que perturbou aquela superfície tranquila. O detector age de forma parecida.

O detector pode identificar diferentes tipos de metais com base no tipo de distorção gerada no campo eletromagnético:

• Valor Reativo – gerado por metais ferrosos (Fe), que produzem uma distorção intensa e facilitam a detecção.

• Valor Resistivo – característico de metais não ferrosos (NF), como cobre e alumínio. O aço inoxidável (SS) apresenta um efeito resistivo mais baixo, dificultando sua detecção, especialmente em ambientes com fatores interferentes.

Quanto mais próximo o sinal estiver do chamado ponto “R”, menor será a distorção no campo, resultando em um sinal mais fraco e difícil de detectar. Os metais ferrosos (Fe) e não ferrosos (NF) estão a uma distância considerável de “R”, gerando um sinal mais forte e facilmente reconhecido pelo detector. Já o aço inoxidável (SS) está mais próximo de “R”, gerando um sinal fraco, o que exige sensibilidade ajustada e controle rigoroso das variáveis de inspeção.

Outro fator relevante é que o próprio produto pode causar distorções no campo, exigindo ajustes adequados para evitar interferências na leitura.

Falsos rejeitos: o que são e por que acontecem?

Falsos rejeitos ocorrem quando o detector de metais rejeita um produto sem que haja contaminação metálica real. Essa rejeição indevida pode ser causada pelo sinal gerado pelo próprio produto ou por interferências externas, como equipamentos próximos ou variações elétricas.

Além de gerar desperdício de produto e interrupções no processo produtivo, os falsos rejeitos comprometem a confiabilidade do sistema de detecção de metais.

Exemplo prático:

Imagine uma linha de produção em que o detector rejeita vários pacotes sem uma causa aparente. Se isso ocorrer repetidamente, os operadores podem passar a questionar a confiabilidade do equipamento e ignorar alertas reais, deixando de realizar as ações corretivas necessárias. Isso aumenta o risco de que um produto realmente contaminado não seja detectado, colocando em risco a segurança de alimentos e podendo resultar em recall ou danos ao consumidor.

As principais causas de falsos positivos incluem:

1- Interferências eletromagnéticas e elétricas

1.1 Rádios comunicadores e transmissores de RF podem causar distorções no campo magnético do detector, comprometendo sua sensibilidade. É importante evitar o uso desses dispositivos próximos à abertura de inspeção. O celular não  gera interferência.

1.2 Motores, inversores de frequência e válvulas: equipamentos com componentes eletromagnéticos próximos ao detector de metais podem gerar campos que interferem na estabilidade dos detectores de metais.

1.3 Oscilações na rede elétrica: variações de tensão ou ruídos de alimentação prejudicam a consistência da detecção.

1.4 Aterramento inadequado: sistemas de aterramento inadequados podem aumentar o nível de ruído elétrico, interferindo no funcionamento correto do detector. Recomenda-se a utilização de cabos blindados e aterramento em conformidade com as especificações do fabricante.

1.5 Zona Livre de Metais (MFZ): é a área ao redor da abertura do detector que deve ser mantida livre de metais, para evitar interferências no campo de detecção.  As distâncias recomendadas variam conforme o formato da abertura do detector:

  •  Detectores com aberturas retangulares: manter objetos metálicos fixos a uma distância mínima de 1,5 vezes a menor dimensão da abertura (altura ou largura). Manter objetos metálicos em movimento a uma distância mínima de 2 vezes a menor dimensão da abertura.
  • Detectores com aberturas circulares: a zona livre de metais deve ser de 0,64 a 0,8 vezes o diâmetro da abertura.

1.6 Deixe um espaço de 2 a 5 metros entre detectores de metais para evitar que interfiram um no outro.

2- Fatores mecânicos

2.1-  Vibração mecânica

  • Equipamentos e estruturas próximos, como motores, válvulas de by-pass, bombas e sistemas móveis, podem gerar vibrações que interferem no campo eletromagnético do detector de metais. Essas vibrações podem reduzir a sensibilidade, gerar leituras imprecisas e causar falsos rejeitos.
  • O detector de metais deve ser instalado em estruturas fixas e soldadas. O uso de suportes parafusados é desaconselhado, pois pode formar curtos-circuitos variáveis, levando a ativações acidentais.
  • A estrutura da esteira transportadora e o suporte do detector devem ser firmemente ancorados na base, impedindo movimentos relativos entre as estruturas.
  • Respeitar um espaçamento de, no mínimo, o dobro (2x de cada lado) da menor dimensão do detector (largura ou altura, sendo geralmente a altura, e para  tubulação considerar o  diâmetro).

Exemplo prático:

Se a largura for 1m e a altura for 0,5m , aplica-se à altura: 0,5 × 2 = 1 m. Portanto, a distância mínima para instalação de motores deve ser 1m de cada lado.

2.2 Tamanho da abertura do detector

O tamanho da abertura dos detectores de metais influencia diretamente sua sensibilidade de detecção.

  • Quanto menor a abertura do detector, maior sua sensibilidade para detectar partículas metálicas pequenas. Detectores superdimensionados apresentam sensibilidade reduzida.
  • A proporção do tamanho da abertura para o tamanho do produto é importante, para atingir desempenho ideal. A sensibilidade do detector é medida no centro geométrico da abertura, que é o ponto menos sensível. Isso é inversamente proporcional ao tamanho da abertura.
  • Para alimentos com alto efeito de produto (alta condutividade), o túnel não deve ser muito pequeno, pois o preenchimento excessivo pode gerar falsos rejeitos.
  • Regra prática: O nível de preenchimento do túnel deve ser inferior a 70% da área útil, especialmente em produtos altamente condutivos, para evitar interferências e perda de desempenho.

Exemplo prático:

Se a abertura do túnel for 500 mm x 200 mm, o produto não deve ultrapassar 350 mm de largura ou 140 mm de altura.

3 -Efeito do produto

3.1 Composição do alimento 

Alimentos com alto teor de água, sal ou ingredientes condutivos, como carnes frescas, queijos, molhos e refeições prontas, podem gerar sinais elétricos próprios que interferem no funcionamento dos detectores de metais. Esse fenômeno, conhecido como efeito de produto, ocorre devido à condutividade elétrica natural desses alimentos, influenciada por fatores como umidade, salinidade, atividade de água (Aw) e temperatura. Essas características podem simular a presença de contaminantes metálicos, impactando a sensibilidade e a precisão do equipamento.

Além disso, produtos com características variáveis dentro de um mesmo lote, como diferentes cortes de carne ou alterações na receita, aumentam a variabilidade do sinal, tornando o controle mais desafiador. Outro ponto importante é a diferenciação entre produtos “úmidos” e “secos”. Produtos úmidos, por serem altamente condutivos, são mais suscetíveis ao efeito de produto, enquanto produtos secos apresentam menor interferência no processo de detecção.

  • Produtos secos – Ex.: açúcar, farinha, salgadinhos, confeitaria, cereais -> Alta sensibilidade
  • Produtos úmidos (efeito de produto) – Ex.: refeições prontas, carne, peixe, molhos, conservas ->  Sensibilidade reduzida
  • Produtos ricos em ferro-> Alta sensibilidade
  • Produtos com altos níveis de sal-> Sensibilidade reduzida
  • Produtos com formatos irregulares->  Sensibilidade reduzida

A composição do alimento também pode intensificar esse efeito. A água, combinada com sal ou açúcar, aumenta a condutividade elétrica e pode distorcer o campo eletromagnético do detector. Além disso, o tamanho e a densidade do alimento também influenciam a detecção: produtos muito grandes ou excessivamente compactados podem distorcer o campo magnético do detector e afetar sua sensibilidade.

Exemplo prático:

A massa total do produto influencia o volume de água e, consequentemente, o comportamento no detector. Um produto com 10 kg a -18°C terá uma condutividade diferente de um lote com 30 kg a -18°C, devido à quantidade de água e densidade da massa. Isso pode criar cenários distintos, simulando condições de produto úmido ou seco.

Por isso, é fundamental  ter uma “receita” para rodar cada produto, com parâmetros validados  e específicos no equipamento para compensar essas variações e evitar falsos rejeitos, assegurando a eficácia na detecção de contaminantes metálicos.

3.2  Temperatura do alimento

A temperatura influencia diretamente a condutividade elétrica do produto. Pequenas variações térmicas, como o descongelamento parcial, podem elevar a umidade e a condutividade, alterando o sinal detectado. Isso aumenta o risco de falsos rejeitos, especialmente em produtos congelados expostos a variações de temperatura durante a inspeção.

Exemplo: cheesecakes inteiros e congelados apresentam um efeito de produto diferente em comparação aos cheesecakes fatiados e congelados, mesmo quando elaborados com os mesmos ingredientes. Esses mesmos cheesecakes podem apresentar um efeito de produto distinto imediatamente após saírem do túnel de congelamento, em relação ao efeito observado após permanecerem vinte minutos em uma esteira transportadora.

3.3 Embalagens e materiais de embalagem

Os materiais de embalagem também afetam o desempenho do detector de metais:

  • Embalagens contendo alumínio criam campos magnéticos que podem dificultar a identificação de contaminantes metálicos ou gerar falsas detecções. Por isso, recomenda-se que a inspeção ocorra antes do envase, para evitar interferências no processo de detecção.
  • Embalagens recicláveis podem conter materiais compostos ou fragmentos metálicos que causam interferências.  Um exemplo é o uso de embalagens kraft ou de papelão reciclado, que podem conter partículas metálicas oriundas do processo de fabricação e reciclagem (uso de embalagens Tetra Pak, por exemplo).
  • Dimensionamento do produto e da embalagem: quanto maior a dimensão do produto e do detector, menor será a sensibilidade do equipamento, devido ao aumento da interferência no campo magnético.

Exemplo: em linhas com embalagens em sacaria, recomenda-se limitar a largura das sacarias a 660 mm e a altura do produto a 254 mm. Além disso, variações na compactação do produto podem alterar os sinais de detecção, sendo necessário configurar diferentes receitas no equipamento para cada tipo de produto e embalagem.

Referências: 

  • Minebea Intec. (2022). Rilievo dei metalli nelle linee di produzione. Capítulo 4.4 – Factores que influyen en la sensibilidad de detección. Páginas 20 a 27.
  • Metal Detection Guide. (Minebea Intec, 2020). Capítulo 4 – Metal-Free Zone e Fatores Críticos de Detecção. Páginas 18 a 24.
  • Guide to Metal Detection in Food Production. (Loma Systems, 2019). Seções: Principles of Detection e Factors Influencing Performance. Páginas 5 a 12.
  • Fortress Technology. (2020). Metal Detection Basics. Seção 2 – Sensitivity and Product Effect. Páginas 10 a 14.
  • Eriez. (2019). Metal Detector Verification and Validation White Paper. Seção 3 – Best Practices for Validation and Verification. Páginas 6 a 11.
  • Mettler Toledo. (2020). White Paper – Metal Detection vs X-ray Inspection. Capítulo 5 – Comparativo de Tecnologias. Páginas 17 a 21.
  • Anritsu Industrial Solutions. (2018). Metal Detection Guide – Best Practices. Capítulo 3 – Sensitivity Settings and Contaminant Types. Páginas 13 a 20.
  • Safe Food Alliance. (2023). The 6th HACCP Principle: Verification. Seção 6.1 – Procedimentos de Verificação em Pontos Críticos de Controle.

8 min leituraEntre os perigos físicos na indústria de alimentos, a contaminação metálica é um dos mais críticos, oferecendo riscos à segurança de alimentos e à reputação das empresas. Mesmo em sistemas validados, […]

6 min leitura
0

Princípios básicos do funcionamento de detectores de metal

6 min leitura

Detectores de metal são ótimos dispositivos para prevenir que contaminantes físicos metálicos, sejam ferrosos, não ferrosos ou inox, cheguem aos consumidores. Por esta razão, muitas vezes acabam por tornar-se PCC (Pontos Críticos de Controle) em planos de HACCP.

Um detector de metais tem como princípio de ação um sistema constituído por três bobinas equilibradas, que ao serem perturbadas, permitem detectar partículas ferrosas, não ferrosas e aço inoxidável.

Para tanto, as bobinas são alojadas em um contentor não metálico, paralelas uma com a outra, sendo que a bobina central é de transmissão (rádio frequência) e as outras duas laterais são de recepção (receptores de rádio ou antenas).

Figura 1: Alinhamento das bobinas de um detector de metais 

A bobina de transmissão emite uma frequência alta que induz corrente nas duas bobinas de recepção, criando campos magnéticos que são capazes de detectar metais.

Quando uma partícula metálica atravessa o campo magnético da primeira bobina, ocorre uma perturbação do sistema em relação à segunda bobina, criando uma voltagem de desequilíbrio. Esta voltagem é amplificada e processada por um módulo eletrônico, indicando a detecção do metal.

Figura 2: Princípio de desequilíbrio entre as bobinas gera sinal detectável

Para o perfeito funcionamento deste sistema, é preciso que haja, próximo do local onde o detector de metais está instalado, uma ZONA LIVRE DE METAIS como estruturas, eixos e rolos metálicos, além, é claro, de fontes magnéticas ou similares. Esta condição é necessária em cada lado da abertura do detector de metais, evitando que o equilíbrio magnético seja perturbado por fontes que não os contaminantes do produto em processo.

A SENSIBILIDADE de um detector corresponde ao diâmetro da partícula metálica esférica que “sempre” poderá ser detectada quando atravessar o centro da abertura do detector de metais, considerando as diferenças em relação às partículas metálicas, não metálicas e aço inoxidável.

Após um detector de metais ser instalado numa planta industrial, sua sensibilidade deverá ser sempre validada, justamente para avaliar se algo está intervindo no campo magnético e reduzindo a sensibilidade ou causando falhas aleatórias, e se for o caso, a zona livre de metais deve ser revisada ou o equipamento ajustado.

O tipo de metal e o tamanho da abertura do detector de metais influenciam a sensibilidade de detecção realizável.

Tamanho da abertura 

Uma abertura menor por onde o produto passa para ser submetido ao detector de metais cria uma maior densidade de fluxo dos campos magnéticos. Desta forma, detecta partículas menores de metal com maior facilidade.

O centro da abertura é a área de menor sensibilidade, porque proporciona um nível baixo de densidade de fluxo dos campos magnéticos, por isso uma amostra de teste deve ser passada preferencialmente pelo centro, que é o pior caso.

Por este princípio, fica evidente que detectores de queda que permitem o produto passar por um cilindro de pequeno diâmetro tendem a ser mais eficientes do que os detectores de metal de esteira.

Figura 3: Modelo de detector de metais de esteira 

Porém, quando modelos de esteira são os mais aplicáveis pelo desenho da linha industrial, sempre são mais eficientes para pacotes isolados do que para caixas com vários pacotes.

Tipo de metal 

Diferentes metais apresentam diferentes permeabilidades e condutividades:

  1. Permeabilidade – representa a capacidade de um metal ser penetrado por magnetismo;
  2. Condutividade – representa a capacidade para transmitir correntes elétricas.

Assim:

METAIS FERROSOS METAIS NÃO FERROSOS AÇO INOXIDÁVEL
COMPOSIÇÃO Possuem, pelo menos, 90% de ferro em sua composição, além de carbono Não possuem ferro em sua estrutura ou possuem baixíssima concentração O aço inoxidável é uma liga de ferro e cromo, podendo conter níquel, molibdênio, nióbio, titânio e outros elementos
EXEMPLO Aço carbono, ferro fundido e o ferro laminado Metais e ligas com alumínio, cobre, chumbo, zinco, titânio, estanho, prata e ouro Aço 304, aço 304 L, aço 316, aço 316 L, aço aço 410, aço 420, aço 430
FACILIDADE DE DETECÇÃO Fácil Fácil Difícil
PERMEABILIDADE AO MAGNETISMO Magnético Não magnético Existem magnéticos (austenítico¹) e totalmente não magnéticos
CONDUTIVIDADE ELÉTRICA Boa Boa Variável dependendo da composição do inox

(1) O aço inox, popularmente conhecido como aço inoxidável austenítico, consiste em uma liga metálica formada por ferro e cromo.

A posição/ orientação de cada tipo de metal em relação ao campo magnético também terá impacto em sua detecção. Para entender este conceito imagine um pedaço de fio metálico e veja no esquema a seguir seu comportamento em relação ao campo magnético:

Figura 4: Facilidde de detecção segundo tipo de metal em relação ao posicionamento/ orientação no campo magnético

Contudo, se ao invés de um fio metálico, o corpo for uma esfera perfeita, o comportamento para ambos os casos será similar. Justamente por isso, corpos de prova para testes de detectores de metal são constituídos normalmente por esferas.

Influência dos produtos

Por fim, importante mencionar que os próprios alimentos podem gerar sinal no sistema de bobinas do detector de metais, principalmente quando apresentarem alta salinidade, umidade ou acidez, como é o caso de carnes, molhos, condimentos e sopas, além é claro, de produtos já embalados com material metalizado.

Para tornar possível a inspeção neste tipo de produto é necessário eliminar ou reduzir este sinal, o que pode ser feito reduzindo a sensibilidade do detector de metais, a frequência ou realizar uma compensação do produto:

  1. Quando se reduz a sensibilidade do detector de metais progressivamente, até tornar o sinal do produto não detectável, dependendo do produto, se o sinal for alto, prejudicará a detecção dos contaminantes e isso prejudicará sua segurança.
  2. Sobre a redução de frequência, um detector de metais opera numa frequência normal entre 10 e 500 kHz, sendo que numa frequência baixa o sinal de efeito do produto fica menor, porém, o do aço inoxidável também, e com isso, é reduzida a sensibilidade para este tipo de metal.
  3. Quanto à compensação do produto, trata-se da utilização de filtros especiais que podem amplificar os sinais do detector de forma diferenciada. Assim, o filtro é ajustado de acordo com cada tipo de produto, o que requer diferentes programações para diferentes produtos.

Dependendo das características intrínsecas do alimento, limitações podem fazer com que a tecnologia de detecção de metais seja inapropriada. Neste caso, outras tecnologias podem apresentar melhores soluções, como por exemplo, o uso de raio X.

Falhas operacionais 

Não basta ter um bom detector de metais. Cuidados precisam ser tomados para evitar falhas que permitam que alimentos contaminados cheguem aos consumidores:

  • Se o produto rejeitado é deixado sem identificação ou num recipiente aberto, pode ser devolvido facilmente à produção por um erro operacional ou descuido, em especial nos horários de produção críticos, como trocas de turno;
  • Utilização errada do equipamento pelos operadores, fazendo testes de checagem de forma equivocada, podem tornar sua eficácia inócua;
  • Manutenções e instalação de novos equipamento ou o uso de equipamentos eletrônicos próximos do detector de metais podem influenciar no campo magnético e em sua sensibilidade;
  • O desenho e posição do contaminante podem impedir que o detector de metais faça a detecção e isso pode ocorrer eventualmente, por uma questão de probabilidade.

Boas Práticas Operacionais 

  • O produto rejeitado deve sempre ficar numa caixa de rejeitos identificada com fechadura ou tipo cofrinho;
  • Um dispositivo de advertência deve ser incorporado para indicar quando a caixa está cheia;
  • Devem ser mostrados aos operadores da linha os vários pedaços de metal achados para construir confiança no equipamento;
  • A manutenção de registros confiáveis adequados deve ser feita para destacar quais linhas industriais parecem ter suspeitosamente poucos rejeitos e quais apresentam problemas crônicos;
  • O acesso aos controles do equipamento deve ser limitado a pessoas autorizadas com competência para esta finalidade;
  • Medidas para casos de desvio (para processo e produto) devem ser tomadas sempre que testes com corpos de prova demonstrarem que o detector está falhando;
  • Ações corretivas nas linhas de processo devem sempre ser realizadas, em especial, após a detecção de metais fora da rotina esperada pelo equipamento;
  • Ações preventivas em termos de manutenção devem sempre ser realizadas para prevenir liberação de fragmentos de metais na linha industrial, lembrando que o detector de metais é um seguro para falhas end of pipe e não um “extrator” de metais;
  • Produto capturado pelo detector deve ser inspecionado em local apropriado, fora da área de produção, para identificar sua origem e formas de evitar reincidência;
  • O ponto ideal de inspeção deve ser imediatamente após o empacotamento ou tão perto da embalagem final quanto possível.

Gostou do artigo? Tem experiências que deseja compartilhar no uso de detectores de metal? Quer acrescentar alguma informação? Deixe nos comentários!

Leia também:

É preciso calibrar corpos de prova para detector de metais anualmente?

Eficiência de detector de metais e barra magnética no controle de contaminações físicas em alimentos

Detectores de metais – funcionamento e limitações de uso

Sensibilidade de detectores de metal

Tecnologia de detecção de metais melhora segurança de lácteos

Você sabia que é possível automatizar o sistema de detecção de metais da sua empresa?

Quando não é tecnicamente possível detectar menos de 2 mm

6 min leituraDetectores de metal são ótimos dispositivos para prevenir que contaminantes físicos metálicos, sejam ferrosos, não ferrosos ou inox, cheguem aos consumidores. Por esta razão, muitas vezes acabam por tornar-se PCC […]

3 min leitura
18

É preciso calibrar corpos de prova para detector de metais anualmente?

3 min leitura

Corpos de prova para detector de metais são esferinhas metálicas de ferro, metal não ferroso ou inox, em tamanhos específicos de acordo com a sensibilidade de cada detector de metais.

Normalmente esta esferinha metálica vem acondicionada em um invólucro robusto de plástico, que protege a esferinha de danos, amassos etc., e com uma janelinha transparente que permite a um observador enxergar que tal esferinha realmente está lá dentro.

Estes corpos de prova, quando comprados, devem vir acompanhados de uma declaração atestando sua composição (ferroso, não ferroso ou inox), assim como seu exato tamanho.

Normalmente, externamente no invólucro é registrado o tipo de metal que compõe a esferinha e seu respectivo tamanho.

Tais corpos de prova servem a um propósito: avaliar em intervalos regulares se um detector de metais continua percebendo a presença de cada um destes tipos metálicos.

Ao longo do tempo uma bolinha de ferro deixará de ser de ferro, ou uma de metal-não ferroso deixará de ser não-ferroso ou uma de inox deixará de ser de inox?

A princípio não!

Poderiam ocorrer, talvez, magnetizações destas esferas que pudessem intervir em suas propriedades, por isso devem ser mantidas longe de imãs ou de fortes campos magnéticos.

Ao longo do tempo uma esfera com um determinado tamanho mudará seu tamanho e massa, protegida dentro de um invólucro robusto de plástico?

A princípio não!

Se não houvesse o invólucro poderia, talvez, ocorrer alguma oxidação, dano ou amassamento. Neste caso, perderia massa, mas não ganharia. Então, supondo que isso ocorresse, caso o detector de metais ainda assim identificasse a esferinha, isso significaria que este equipamento ainda cumpre seu papel, e que permanece adequado e operante, justamente por ser capaz de ainda identificar o corpo de prova, e veja, se o corpo de prova perdeu massa, o detector de metais estará sendo efetivo em situação ainda mais difícil.

Se um observador é capaz de enxergar que uma esferinha de um corpo de prova feito de um determinado metal e com um determinado tamanho permanece protegida em seu invólucro robusto de plástico, e, que é mantida sempre distante de imãs e fortes campos magnéticos, o que justificaria impedir de continuar a usá-la como está?

A princípio nada!

Por isso, uma organização pode, baseada na gestão de riscos e em uma análise preditiva, determinar qual a real necessidade de pedir (ou não) a renovação de um laudo ou declaração que reateste a validade de cada um dos corpos de prova que possui, aquilo que vem sendo chamado de “calibração de corpos de prova”.

Dicas:

  1. Cuide bem de seus corpos de provas, mantendo-os longe de imãs e fortes campos magnéticos;
  2. Proteja-os de danos e amassados;
  3. Sempre que for usar o corpo de prova, previamente, vistorie se a esferinha metálica permanece visível.

Seguindo estas dicas, sua esferinha metálica permanecerá com a mesma composição de massa e tamanho. Portanto, por que anualmente pedir um novo laudo de calibração?

Não existe norma, legislação ou motivação técnica absoluta que obrigue realizar a calibração de corpos de prova para detectores de metal anualmente!

A empresa pode ter um procedimento interno, baseado em seu contexto e realidade, pelo qual demonstre e justifique que internamente uma pessoa competente, em intervalos regulares, avalia pela ótica preditiva se o corpo de prova permanece em perfeito estado ou se foi de alguma forma violado:

  1. Se estiver violado ou danificado, a organização deve solicitar uma revalidação que ateste a composição e o tamanho da esferinha metálica, ou melhor até, realizar a sua substituição;
  2. Porém, se estiver intacto, poderá permanecer em uso, pois continua a cumprir devidamente a sua função.

Este artigo foi motivado por visitas de consultoria em que clientes anualmente mandam “recalibrar” ou compram novos corpos de prova. Já estão com uma gavetinha cheia deles, todos em perfeito estado, e a princípio, sem nenhuma necessidade de fazer isso, gastando recursos que podem ser usados em outras demandas.

Espero ter ajudado algumas empresas, e para aquelas que todo ano recebem corpos de prova para “calibrar”, por favor, não fiquem chateados comigo!

Quem quiser ler mais, este tema já foi abordado em outros artigos aqui no blog:

  1. Frequência de troca dos corpos de prova para detectores de metais
  2. Corpos de Prova para detectores de metais – Calibração e Cuidados

3 min leituraCorpos de prova para detector de metais são esferinhas metálicas de ferro, metal não ferroso ou inox, em tamanhos específicos de acordo com a sensibilidade de cada detector de metais. […]

3 min leitura
4

Frequência de troca dos corpos de prova para detectores de metais

3 min leitura

Um grande vilão na segurança de alimentos é o contaminante físico. Ele pode ser proveniente de várias fontes e pode ser constituído de vários materiais. Grande parte dos contaminantes físicos é  constituída por metais.

Eles podem aparecer no processo devido a um parafuso, porca, rebite ou pedaço do próprio equipamento. Podem ser provenientes de uma manutenção mal planejada, de uma matéria prima contaminada e de inúmeras outras fontes.

Para eliminar o risco ou reduzi-lo a níveis aceitáveis, vários métodos podem ser utilizados: peneiras, ímãs, detectores de metais, entre outros.

Qualquer um desses controles deve ter sua eficácia avaliada constantemente, como visto aqui para peneiras, aqui para ímãs e aqui para detectores de metais.

Os detectores de metais são equipamentos que detectam três tipos de metais: ferroso, não ferroso e aço inox. Como qualquer equipamento, eles apresentam alguns fatores que interferem no seu perfeito funcionamento, como foi abordado aqui.

Além dessas considerações, para testar um detector de metais fazemos o uso do corpo de provas. Geralmente são esferas metálicas, para não ter um lado maior que o outro, compostas de material ferroso, não ferroso ou aço inox. Eles são colocados propositalmente no processo e avalia-se se o  equipamento consegue detectá-los.

Esse teste pode ser feito de várias formas:

  • O corpo de provas pode ser introduzido no processo sem produto, para ficar mais fácil de recuperá-lo;
  • Pode ser introduzido no meio do produto para avaliar se a composição do produto interfere na detecção – esse é o mais indicado por simular a situação mais real possível;
  • Pode ser colocado e verificado se é despejado na bandeja de rejeito, pois os detectores são programados com alguma ação, ela pode ser um sinal luminoso, sonoro, uma parada da linha ou um descarte em uma bandeja de rejeito. Pode e deve ser testado se o sincronismo de ação rejeita exatamente as unidades contaminadas.

Esses corpos de prova são usados frequentemente e com isso são geradas algumas dúvidas como:

Existe uma vida útil desse material? Qual o tempo máximo para substituição ou troca?

A resposta mais sensata deve provir de um estudo com registros levantando se há perda de efetividade/detecção nas unidades após uso constante, qual o tamanho dessa perda e em qual tempo.

Como ainda não encontrei e não realizei esse estudo, divido com vocês algumas ideias para definir o momento de troca do corpo de provas.

As esferas metálicas geralmente são revestidas de algum material plástico. Você deve observar se a esfera se encontra no centro do plástico. Se sim, elas estão mais protegidas de danos.

Nesse caso é interessante que o plástico seja transparente para que possa ser observado se a esfera realmente se encontra presente.

Nessa inspeção visual deve ser observado também se o plástico não está trincado, pois ao higienizá-lo, produtos e água podem comprometer a integridade do material metálico.

Caso a esfera se encontre na borda do material plástico, ela está mais suscetível a se desprender ou amassar.

Nesse caso, para evidenciar se a esfera foi realmente gasta, pode ser utilizada medição com régua ou até mesmo pesagem para verificar quanto material foi perdido com o desgaste do uso.

Ao submeter um metal a um campo eletromagnético uma corrente elétrica passa por esse condutor e ele provavelmente ficará magnetizado. O tamanho dessa “modificação” no corpo de prova pode ser medido através de um medidor de magnetismo, por exemplo: Gaussmeter. Nesse caso é interessante medir o campo magnético do material assim que adquirido e medir em X frequência para avaliar o tamanho de sua alteração.

Para desmagnetizar o corpo de provas pode ser feita uma magnetização inversa utilizando um ímã ou aplicar alta temperatura. A utilização da alta temperatura não é recomendada, pois pode dilatar o material metálico e/ou danificar o material que envolve a esfera.

OBS: O processo de desmagnetização não é desejável para ímãs! Este pode ocorrer por proximidades a correntes elétricas e/ou elevadas temperaturas.

Independentemente de qual a frequência de troca dos seus corpos de prova, considerando magnetismo, inspeção visual, peso ou outros métodos, é imprescindível que ele seja adquirido em locais de alta confiança para que seja composto pelo metal especificado e no seu tamanho específico.

Outras fontes:

ftp://mecanica.ufu.br/LIVRE/Valtair%20-%20END/PART%CDCULA%20MAGN%C9TICA.pdf

http://www2.fc.unesp.br/experimentosdefisica/ele19.htm

3 min leituraUm grande vilão na segurança de alimentos é o contaminante físico. Ele pode ser proveniente de várias fontes e pode ser constituído de vários materiais. Grande parte dos contaminantes físicos […]

3 min leitura
1

Você sabia que é possível automatizar o sistema de detecção de metais da sua empresa?

3 min leitura

Reduza os testes periódicos da sua linha de produção e transforme tempo em dinheiro

Testar um detector de metais manualmente pode ser desafiador devido ao acesso, posição da máquina, fluxo da produção e condições do ambiente, como por exemplo, em caso de temperaturas extremas.

O tempo gasto na execução e documentação de testes em todas as linhas em que um detector de metais é instalado, pode custar cerca de milhões de reais em tempo ocioso, erro humano e até mesmo acidentes no local de trabalho.

O revolucionário sistema HALO automatiza o teste de detecção de metais em amostras de aço inoxidável, ferroso e não ferroso em todos os detectores de metais da Fortress Technology®.

FUNCIONAMENTO E OPERAÇÃO DE FORMA REMOTA

O sistema HALO consegue gravar a calibração manual do detector de metais e após este processo, os testes podem ser feitos de forma remota e repetidos quantas vezes forem necessárias, diminuindo a frequência do teste manual, que é feito pelo operador, transformando tempo em dinheiro, gerando payback à empresa.

Após calibrado, ele produz um sinal de interferência idêntico ao de metais específicos, com tamanho esférico, replicando uma esfera de teste de metal ferroso (passando pelo centro da abertura), quando iniciado, e depois pode produzir um sinal idêntico de Não ferroso e aço inoxidável.

O sinal também pode ser simulado para ser detectado na frente, no centro e atrás do produto, um processo difícil de realizar manualmente.

No gráfico abaixo você confere o sinal gravado pelo teste manual que é variável, afinal, os Corpos de Prova nunca caem no mesmo lugar, já o sistema HALO calcula a região menos sensível do detector, ideal para testes, que é no centro do detector.

EXTRAIA RELATÓRIOS DE DESEMPENHO COM O SOFTWARE CONTACT REPORTADOR

As informações são transferidas do detector de metais para qualquer dispositivo USB, com informações de teste de qualidade totalmente rastreáveis, nos padrões HACCP e GFSI, detalhando o quê e quando aconteceu. Relatórios em extensões de arquivos amigáveis como EXCEL e PDF.

 

5 ANOS DE GARANTIA COM O PLANO DE MANUTENÇÃO ANUAL

A empresa Fortress Technology® participa na gestão da manutenção dos equipamentos, oferecendo recursos técnicos apropriados para o perfeito funcionamento e uma redução muito significativa no tempo de produção parada.

O plano de manutenção anual calibra o detector com certificação, garantindo a sua funcionalidade com eficácia. Concede até 10 visitas técnicas por ano para acompanhamento, treinamentos em loco com kits de Corpos de Prova gratuitos, configurações e atualizações para o perfeito funcionamento dos equipamentos.

Em caso de manutenção, o cliente recebe descontos nos valores de peças e serviços. Para maiores informações sobre as soluções da Fortress Technology®  para segurança de alimentos, acesse: www.fortress.com.br ou envie uma solicitação de orçamento para vendas@fortress-iis.com.br

 

Departamento técnico / Marketing da Fortress Technology® 

3 min leituraReduza os testes periódicos da sua linha de produção e transforme tempo em dinheiro Testar um detector de metais manualmente pode ser desafiador devido ao acesso, posição da máquina, fluxo […]

3 min leitura
4

Eficiência de detector de metais e barra magnética no controle de contaminações físicas em alimentos

3 min leitura

Na revista Higiene Alimentar  de nov/dez 2017 (pág. 48 a 54), tive o prazer de publicar um artigo avaliando os pontos positivos e negativos de dois métodos de controle para contaminações físicas provenientes de metais. Segue um resumo:

Uma empresa X utilizava barras magnéticas para fazer o controle físico. Na dúvida se seu método de controle era o mais adequado, armazenou as partículas retidas durante o período de Set/2015 a Set/ 2016. Submeti essas mesmas partículas a uma série de testes. Eles tiveram como objetivo levantar as vulnerabilidades do atraente magnético e verificar se um aparelho de detector de metais teria um melhor desempenho, visto que ele identifica partículas de alumínio e não ferroso. Considerando inúmeros fatores, com o teste pode ser concluído que, no processo produtivo específico dessa empresa, o atraente magnético tem mais pontos positivos e menos negativos que um detector de metais.

Apesar da quantidade de fatores considerados no artigo, muitos outros não foram levantados como:

Tamanho do túnel do detector de metais. Os detectores utilizados no teste não identificaram partículas grandes de 4 mm. Se o tamanho do túnel for diminuído, 700 mm x 300 mm, sua sensibilidade/capacidade de detecção melhora, podendo assim reter partículas menores. Na empresa do artigo isso não é aplicável devido ao fato de que mais sensibilidade implicará em detectar embalagens metálicas, ferro da farinha de trigo e outros identificáveis indesejáveis, mas dependendo do seu processo essa é uma solução plausível.

Formato do atraente magnético. Nos testes do artigo foi testada uma barra magnética cilíndrica. Foi observado que dependendo do fluxo de produto algumas unidades não entram em contato com a barra.

Para solucionar esse problema é possível utilizar placas magnéticas ao invés de barras, mas essas placas devem ter um comprimento longo o suficiente para que os produtos passem por ela sem se sobrepor, de modo que todos entrem em contato com a superfície magnetizada, até mesmo se a vibração fazer as unidades andar pulando. Também deve ser dada atenção ao final da placa, ela deve ser arredondada, pois se a unidade contaminada chegar ao final da placa ela deve “deslizar” para baixo dela e não cair no produto.

Força de atração. Depois de capturada a partícula, outras unidades podem empurrá-la. Para que isso não ocorra é ideal utilizar atraentes magnéticos de forte atração e também inspeções e retiradas de partículas em curtos períodos de tempo. A força de atração também influenciará se a unidade contaminada será retida independentemente da posição da partícula.

Raio X. Outra opção não testada no artigo é o Raio X. Ele trabalha usando como atributo de seleção a densidade. Este aparelho facilmente identificaria partículas metálicas, até mesmo alumínio. No entanto deveria ser testado qual o tamanho da menor partícula possível de detectar.

Padronização de frequência. Nos testes do artigo o detector de metais não está acostumado com a frequência emitida pelas embalagens metálicas e pela farinha de trigo enriquecida com ferro. Pode ser testado o equipamento por um determinado período, até que o detector aprenda a separar a frequência dos causadores de falsos rejeitos das partículas reais.

A decisão do melhor método de controle para partículas metálicas é algo complicado, visto que os métodos de controle tem um custo muito diferente entre eles.

O FSB já abordou temas relativos com importantes informações aqui e aqui.

Como autor, sou suspeito, mas recomendo a leitura do artigo, seu processo produtivo pode ser igual ou muito parecido.

3 min leituraNa revista Higiene Alimentar  de nov/dez 2017 (pág. 48 a 54), tive o prazer de publicar um artigo avaliando os pontos positivos e negativos de dois métodos de controle para contaminações […]

2 min leitura
2

Quando não é tecnicamente possível detectar menos de 2 mm

2 min leitura

Após a atualização da RDC 14, da ANVISA, em março de 2014, houve uma revolução com os fabricantes de Detectores de Metais, que agora deveriam ajustar os equipamentos instalados ou fornecer equipamentos capazes de detectar partículas metálicas de 2,0 mm em sua maior extensão, conforme determinava o novo regulamento.

Muitos equipamentos trabalhavam com folga na detecção, e foram facilmente ajustados para a nova sensibilidade, pois os produtos inspecionados eram neutros, ou seja, não geram interferência no campo magnético, o que facilita o ajuste para a nova sensibilidade, agora exigida por norma. Entretanto, em outros casos, foi complexo chegar ao novo nível de sensibilidade e em muitos casos não foi possível detectar 2,0 mm.

Mas por que esta diferença?

Os detectores de metais funcionam baseados na medida da condutividade elétrica e permeabilidade magnética. Muitos produtos que são inspecionados possuem uma ou as duas características juntas. Por exemplo: qualquer produto que é enriquecido com ferro, tal como cereais, cria um grande campo magnético que o detector tem que se superar para que possa detectar pequenos fragmentos de metal. Estes se referem aos produtos “secos”. Por outro lado, produtos com muita umidade e contendo sal, tal como pão, carne, queijo, entre outros, são eletricamente condutivos e produzem um erro no sinal de condutividade. Estes se referem aos produtos “úmidos”.

O detector deve remover ou reduzir este “efeito do produto” para identificar um metal contaminante, através da calibração.

Outro fator importante para determinar a sensibilidade de um detector é o seu tamanho: quanto menor a abertura, menor o fragmento de metal que pode ser detectado. A menor dimensão da abertura retangular é usada para calcular a sensibilidade teórica, embora o comprimento também contribua.

Para maximizar a sensibilidade do detector, a menor abertura deve ser escolhida. Entretanto há algumas exceções, como embalagens metalizadas e produtos altamente condutivos (grandes blocos de queijo e carne).

Efeito do produto, área livre de metal, tipo e orientação do contaminante além de outros fatores, como rede elétrica mal balanceada e ambiente da instalação, podem afetar a sensibilidade prática em qualquer aplicação.

É muito importante sempre fazer um estudo prévio da aplicação, e levar em consideração todos os aspectos da linha de produção e quando possível, testar o produto para obter um laudo detalhado e assim especificar o detector que terá o melhor desempenho para aquele tipo de produto.

Filipe de Andrade

Supervisor de Assistência Técnica da Fortress Technology do Brasil

2 min leituraApós a atualização da RDC 14, da ANVISA, em março de 2014, houve uma revolução com os fabricantes de Detectores de Metais, que agora deveriam ajustar os equipamentos instalados ou […]

< 1 min leitura
0

Promoção: Concorra ao sorteio de um detector de metais | Fortress Tecnology

< 1 min leitura

A Fortress Tecnology está com uma promoção para você concorrer a um detector de metais! Compre corpos de prova online com 50% de desconto em seu site, e você poderá concorrer ao sorteio do detector. 

O sorteio é válido no período do dia 6 de maio de 2016 até o dia 25 de agosto de 2016.

Confira mais condições no regulamento.

< 1 min leituraA Fortress Tecnology está com uma promoção para você concorrer a um detector de metais! Compre corpos de prova online com 50% de desconto em seu site, e você poderá concorrer […]

< 1 min leitura
1

Detector de Metal é ou não é PCC?

< 1 min leitura

 

Antes de qualquer consideração a este respeito, vale observar que um detector de metal deve ter sensibilidade adequada, o que deve ser discutido com o fabricante do detector. Vários fatores devem ser
levados em conta: tamanho, tipo de metal, tipo de produto, velocidade de funcionamento dentre outros.
Um parâmetro importante para seu correto funcionamento é o ajuste da relação entre o tamanho de abertura do detector propriamente dito e o tamanho do produto, considerando como produto exatamente a unidade que passará pelo detector. Outro parâmetro, é o posicionamento do corpo de prova, que deve ser no ponto menos sensível.
Se detector de metal é ou não PCC, há muita controvérsia e vale lembrar que esta decisão sempre depende de uma análise crítica.
Alguns afirmam que um detector é uma etapa de processo, outros afirmam que não é. O fato é que não há ainda a consagração de uma linha de raciocínio única. Há profissionais que defendem até que é pré-requisito, mas este raciocínio não se sustenta face à definição de pré-requisito do Codex Alimentarius.

Os autores deste livro optam pela linha de raciocínio mais conservadora: se o processo depender do detector de metal para que os perigos metálicos estejam em nível aceitável, mesmo havendo histórico de que ele nunca falhou, como não se pode garantir isso para sempre, preferimos o enfoque de PCC.

 

Trecho do livro: Implementação de Sistemas da qualidade e Segurança dos Alimentos, volume II

< 1 min leitura  Antes de qualquer consideração a este respeito, vale observar que um detector de metal deve ter sensibilidade adequada, o que deve ser discutido com o fabricante do detector. Vários fatores […]

Compartilhar
Pular para a barra de ferramentas