3 min leitura
0

Resíduo químico pós-CIP: o perigo que seu enxágue pode estar deixando para trás

3 min leitura

Na busca por eficiência e segurança nos processos de limpeza, a indústria de alimentos investe tempo, produto e energia. Tudo cronometrado, controlado, com curvas de pH registradas e protocolos bem definidos. Mas, em meio a tanta atenção, há uma etapa que ainda costuma ser tratada como um simples detalhe: o enxágue.

Enquanto os detergentes fazem o trabalho pesado — removendo proteínas, gorduras e microrganismos — o enxágue é encarado apenas como um “passo final”. E é justamente nessa simplificação perigosa que mora o risco.

O que parece uma etapa simples pode se tornar um ponto cego na segurança de alimentos, silencioso e recorrente.

O que é um enxágue insatisfatório?

É o que acontece quando resíduos químicos de etapas anteriores permanecem no sistema mesmo após a limpeza. Esses resíduos podem ser alcalinos, ácidos ou oxidantes — e ficam ali, escondidos em válvulas, dutos, tanques ou até em equipamentos de envase. Em sistemas Clean In Place (CIP), falhas de enxágue já foram identificadas como causa direta de contaminações químicas em produtos acabados.

O problema é que, em algum momento, eles saem do esconderijo. E isso tem consequências.

Quais impactos isso pode causar?

Mesmo sendo silencioso, o enxágue insatisfatório pode gerar sérias consequências:

  • Alterações no pH do produto final: resíduos alcalinos ou ácidos podem desestabilizar o equilíbrio do produto, principalmente em bebidas fermentadas ou lácteos.
  • Instabilidade em fermentações: contaminantes químicos alteram o ambiente microbiano, inibindo ou favorecendo microrganismos indesejados.
  • Danos a membranas, placas e conexões: o contato contínuo com agentes corrosivos acelera o desgaste de componentes.
  • Formação de subprodutos indesejados: como cloratos e cloritos, derivados da decomposição do hipoclorito de sódio quando mal enxaguado.
  • Não conformidades em auditorias: resíduos químicos são frequentemente identificados em análises de validação de limpeza.

É um erro que passa despercebido até gerar prejuízo. E quando aparece, já contaminou lote, danificou equipamento ou comprometeu a confiança do cliente.

Produtos mais críticos

Alguns químicos usados em sistema CIP precisam de atenção redobrada no enxágue:

  • Soda cáustica: alcalina, comumente utilizada para limpeza pesada. Pode elevar o pH do produto e é altamente irritante.

  • Ácido nítrico ou fosfórico: ácidos inorgânicos corrosivos que, quando mal removidos, promovem corrosão localizada em aço inoxidável.

  • Sanitizantes (como hipoclorito): se não forem completamente removidos, podem deixar resíduos oxidantes ou gerar subprodutos como trihalometanos e cloratos, que são potencialmente tóxicos.

Leia:  Cloratos na indústria de alimentos: impactos, regulação e alternativas

Como identificar um enxágue insatisfatório?

Não se trata de “achar” — é preciso medir e comprovar:

  • pH da água de enxágue: deve se igualar ao da água potável.
  • Condutividade elétrica: deve se aproximar da água limpa; valores altos = resíduos.
  • Tiras reagentes: identificam resíduos de soda, cloro ou peróxidos.
  • Indicadores ácido/base: mostram presença de resíduos por mudança de cor.
  • Sensores em linha: monitoram e registram pH e condutividade em tempo real.

O que a indústria pode fazer?

Ações técnicas recomendadas:

  • Estabelecer tempo mínimo de enxágue com base em testes reais.

  • Validar volume de água ideal por circuito e tipo de resíduo.

  • Instalar sensores de pH/condutividade em pontos críticos.

  • Treinar operadores para não encurtar essa etapa.

  • Correlacionar desvios de qualidade com registros históricos do enxágue.

Reflexão necessária

Desvios de pH, corrosão precoce, sabores estranhos, falhas de fermentação… Será que o problema está no produto ou no resíduo que ficou no sistema?

O enxágue é a última barreira entre o produto químico e o alimento. Quando essa etapa falha, o risco é real — e completamente evitável.

A conclusão é que o enxágue insatisfatório não dispara alarme, não para a linha, não chama a atenção. Mas ele pode ser o maior vilão silencioso da sua fábrica. Validar e monitorar essa etapa é um investimento que evita perdas, retrabalho e crises de imagem.

Não adianta ter o melhor detergente do mundo se você está servindo ele junto com o produto final.

Quer entender como qualificar seu sistema CIP de forma prática e segura? Confira também o artigo Limpeza industrial: descomplicando o processo de qualificação de CIP, uma leitura complementar essencial para quem leva a segurança de alimentos a sério.

3 min leituraNa busca por eficiência e segurança nos processos de limpeza, a indústria de alimentos investe tempo, produto e energia. Tudo cronometrado, controlado, com curvas de pH registradas e protocolos bem […]

2 min leitura
1

O desafio de higienizar equipamentos sem desenho sanitário

2 min leitura

Em algum momento a palavra biofilme aparecerá no dia a dia de uma indústria de alimentos, seja de queijo ou de outros alimentos. Quando essa questão surge, as primeiras perguntas são:

– como está a higienização dos seus equipamentos?

– qual produto químico você está utilizando?

– com que frequência e como essa higienização é feita?

A partir daí começa todo o trabalho. Vamos verificar essa higienização: será que existe mesmo formação de biofilmes? Sim, encontramos. E agora, como agir?

Temos bastante material sobre biofilmes e atualmente muitas informações sobre como higienizar os equipamentos para retirar esses biofilmes. Porém, ainda não dispomos de muitas informações sobre o que fazer com equipamentos que não foram desenvolvidos para serem higienizados de forma simples, ou seja, quem construiu tais equipamentos não pensou em como os operadores iriam limpá-los. São equipamentos com tampas pesadas, difíceis de serem retiradas, que ficam em locais altos, dificultando a borrifação de produtos, já que há o risco de o produto escorrer e atingir o operador que faz a higienização. Existem também equipamentos com várias ranhuras e cilindros de difícil acesso, além de outros exemplos possíveis.

Podemos estabelecer como deve ser feita essa higienização, qual a frequência necessária para obter bons resultados e desmontamos o equipamento para essa prática. No entanto, corremos o risco de haver peças que empenam, parafusos que espanam, ou seja, podemos diminuir a vida útil desse equipamento, que muitas vezes custou um valor considerável.

Por tudo isso, o assunto desenho sanitário não deve ser deixado em segundo plano. Durante o projeto de compra de um novo equipamento, o higienista da planta, ou a pessoa do controle de qualidade que acompanha essa questão de higienização dos equipamentos, precisa ser envolvido. O contato com o fabricante deve ir além da produtividade e preço da máquina. Informações sobre como higienizar no dia a dia, uma avaliação minuciosa sobre pontos de difícil limpeza, quais produtos poderão ser usados, tudo isso deve entrar nessa avaliação prévia. E essa preocupação certamente será revertida em economia para a planta, pois equipamentos não higienizados corretamente levam à formação de biofilmes, que são um grande risco de contaminação para os alimentos.

E quando você já tem um equipamento que foi comprado sem essa preocupação, e que hoje está com presença de biofilme? A desmontagem é difícil e higienizar sem desmontá-lo parece impossível. O que se deve fazer?

Sugiro contatar a empresa que vendeu o equipamento, pedir para conversar com o departamento de desenvolvimento e passar sua dificuldade, solicitando informações de como eles sugerem que a limpeza seja feita. Talvez eles tenham informações de outras indústrias que possuem o mesmo equipamento.

Além disso, conversar com a empresa que fornece os produtos utilizados para higienização e sanitização também pode ser válido. Eles podem ter composições em forma de espuma para facilitar a aplicação em locais mais altos.

2 min leituraEm algum momento a palavra biofilme aparecerá no dia a dia de uma indústria de alimentos, seja de queijo ou de outros alimentos. Quando essa questão surge, as primeiras perguntas são: […]

2 min leitura
0

Desafios da validação de limpeza nas empresas de alimentos

2 min leitura

Nas empresas de alimentos, o tema validação de limpeza é muito comentado e é um requisito auditado em muitas normas de segurança de alimentos. Por isso, penso ser importante explicar alguns dos desafios relacionados a esta prática, além das análises propriamente ditas.

No artigo anterior sobre validação de limpeza, mostramos as principais etapas do processo de limpeza.

Em 2021, o EHEDG publicou o guia 45, com explicações detalhadas do processo. Quando dizemos validação de limpeza, pode ser com ou sem desinfecção.

A validação de limpeza não é só responsabilidade do(a) higienista ou da área de qualidade.

Isso mesmo: algumas empresas nomearam um higienista com a responsabilidade da adequação dos processos de higienização. Dessa forma, o(a) higienista é responsável pela validação da limpeza.

Quando não há higienista, a responsabilidade é da qualidade.

O termo responsabilidade não é apropriado, pois deveria ser a liderança do processo.

As normas de segurança de alimentos mencionam várias vezes o termo equipe multidisciplinar em vários requisitos. Isso porque realmente a validação necessita da participação de várias áreas e pessoas.

Vou explicar nos próximos itens.

  • Definição do pior cenário

O objetivo desse termo é que a área de Produção juntamente com a Qualidade definam qual é o cenário limite.

Se cumprirmos esse limite, ao executar a higienização, ela será eficaz para atingir os critérios de aceitação.

Esses critérios serão importantes para que o próximo ciclo produtivo seja realizado sem risco à segurança dos produtos.

O pior cenário pode variar para cada processo e pode ser baseado em vários fatores:

  • Tempo máximo de operação,
  • Sequência de tipos de produtos,
  • Temperatura da água quente ou vapor,
  • Outros.

Após definido o pior cenário, ou cenário limite, e validado, é imprescindível que a área de produção cumpra todo o procedimento, não extrapolando esses limites. Por isso, é necessário alinhamento com o responsável da produção.

  • Manutenção dos equipamentos antes do processo de validação

Como descrito no artigo sobre manutenção, antes da validação de limpeza é importante realizar a manutenção dos equipamentos, para evitar surpresas com resultados fora dos critérios de aceitação.

  • Gestão de mudanças

Também um dos desafios das empresas é ter procedimentos escritos que realmente sejam executados e que estejam atualizados.

A automação é uma ferramenta muito útil e segura para que os processos sejam padronizados e inter-travados.

Mas há uma ameaça em relação à segurança de senhas de administradores. Se não houver uma política rigorosa de controle de acessos, o sistema pode ficar vulnerável.

Além disso, qualquer teste temporário deve ser controlado em relação ao prazo de realização e análise dos resultados, para evitar que testes sem avaliação ou com resultados negativos impactem a segurança dos alimentos.

  • Modificações de projetos, linhas e equipamentos

Ao realizar o processo de validação com abertura de pontos difíceis de higienização, pode haver a necessidade de modificação de linhas e ou de equipamentos. Pode ser necessária a eliminação, por exemplo, de pontos mortos e necessidade de aplicação de princípios de projeto sanitário e design higiênico.

As normas de segurança de alimentos, como a FSSC 22.000, incluíram requisitos específicos sobre análise de risco em relação a equipamentos novos e linhas existentes para atendimento de diretrizes de projeto sanitário, mencionando guias do EHEDG e 3A sanitary.

Analisar os riscos de projeto sanitário pode economizar tempo do processo de validação, pois se houver problemas, eles poderão ser resolvidos antes da validação de limpeza.

Resumindo: o processo de validação de limpeza é um trabalho em equipe e o planejamento é fundamental para obter o sucesso.  Além disso, é importante gerar documentos adequados  e melhorar processos continuamente, sempre com o objetivo de produzir alimentos seguros.

Leia também:

Inclua a Manutenção na Validação de Higienização

Validação de Limpeza | Manual Gratuito EHEDG

 

2 min leituraNas empresas de alimentos, o tema validação de limpeza é muito comentado e é um requisito auditado em muitas normas de segurança de alimentos. Por isso, penso ser importante explicar […]

2 min leitura
0

Como higienizar luvas de aço

2 min leitura

As luvas de aço são importantes principalmente para cortes de carnes, aves e peixes, para dar segurança aos manipuladores, contudo podem ser um ponto de risco para a segurança dos alimentos.

Dessa forma, o cuidado com sua higienização é crítico. Seguem algumas dicas:

  • A remoção de resíduos é fundamental para a boa higienização e deve ser realizada antes de aplicar o desinfetante.
  • Os produtos químicos mais usados são os alcalinos clorados. Escolha desinfetante ao invés de detergente, para garantir a destruição de microrganismos.
  • O rodízio de desinfetante com ativos diferentes é bom para evitar a resistência dos microrganismos. Alguns ativos que podem ser usados pelo menos uma vez por semana são ácido peracético e compostos quaternários de amônio. Os fabricantes de produtos de limpeza disponibilizam outros ativos que podem ser usados, desde que regulamentados pela Anvisa.
  • Cuidado com a prática de deixar as luvas de “molho” de um dia para outro. A solução de desinfetante vai perdendo os ativos. Pode ser melhor deixar 15 min de tempo de contato e depois deixá-las secar. Antes de usar, passe uma solução com desinfetante, por exemplo hipoclorito de sódio, e enxague.

Lembre-se de enxaguar bem após o uso de desinfetantes.

Há métodos físicos que também podem ser utilizados:

  • Luz UV: oferece eficácia parcial e depende do comprimento de onda e tempo de exposição.
  • Água quente: depende da temperatura e tempo de exposição, pode ser risco para o manuseio.
  • Ultrassom: pode ser associado à utilização de produtos químicos. É eficaz para remoção das sujidades nos pontos mais difíceis da malha das luvas.

Equipamento de ultrassom

Tanto as carnes e peixes podem ser ingeridos crus e a higienização afeta a segurança em relação a microrganismos patogênicos, em especial a Listeria monocytogenes. Listeria monocytogenes pode causar morte, abortos, além de outros sintomas, sendo que os indivíduos mais afetados são gestantes, idosos e imunodeprimidos.

Resumindo: a limpeza de luvas está diretamente ligada à segurança de alimentos, principalmente nos meses quentes quando a cadeia fria fica mais comprometida.

2 min leituraAs luvas de aço são importantes principalmente para cortes de carnes, aves e peixes, para dar segurança aos manipuladores, contudo podem ser um ponto de risco para a segurança dos […]

10 min leitura
0

Conheça o ácido hipocloroso, o desinfetante sustentável

10 min leitura

O ácido hipocloroso é um novo e promissor ativo desinfetante com apelo sustentável, porque é obtido pela eletrólise de água e sal e não tem efeitos nocivos ao meio ambiente. Esse ativo é encontrado na água eletrolisada e sua concentração varia em função do pH.

O processo de eletrólise de água e sal para a produção de água eletrolisada como agente bactericida começou em 1987 e foi testado com sucesso em diferentes aplicações na indústria de alimentos, conforme reportado em trabalhos científicos.

A água eletrolisada (EW), um sanitizante produzido a partir da água com cloreto de sódio (NaCl) sem adição de produtos químicos nocivos, tem mostrado grande potencial como substituto do hipoclorito de sódio (NaClO), produzindo danos mais severos nas células bacterianas em comparação com a desinfecção com cloro puro. A aplicação de EW em ambientes de processamento de alimentos tem várias vantagens, incluindo custo-benefício, produção in loco, além de ser seguro para a saúde humana.

Quando, a este processo de obtenção de água eletrolisada, é inserida uma membrana de separação (também chamada de diafragma), pode-se produzir dois tipos de solução, sendo uma de pH ácido (anólito) e outra alcalina (católito). Íons com cargas positivas (H+ e Na+) são atraídos pelo cátodo, tornando-se, ao receber elétrons, gás hidrogênio (H2) e hidróxido de sódio (NaOH).

Já os íons com carga negativa (OHe Cl) são atraídos pelo ânodo doando elétrons e resultando em cloro gasoso (Cl2), gás oxigênio (O2), íon hipoclorito (OCl) e ácido hipocloroso (HClO). A figura 1 representa este processo:

Figura 1: Processo de eletrólise de solução salina

Fonte: Shiroodi e Ovissipour, 2018

No lado do ânodo, forma-se uma solução ácida (chamada anólito) com pH entre 2 e 3 e potencial de oxirredução maior que 1000 mV e entre 10 e 90 ppm de cloro ativo, dependendo da concentração de sal na solução inicial.

No lado do cátodo, forma-se uma solução alcalina (também chamada católito) com pH na faixa de 10 a 13 e potencial de oxirredução entre 800 e 900 mV.

Variações desse sistema, com adição de ácido clorídrico ou íons hidróxido, permitem a obtenção de soluções em outras faixas de pH.

Recentemente, indústrias e pesquisadores relataram a geração de água eletrolisada neutra (NEW) com um pH de 7-8, e ORP de 750–1000mV e água eletrolisada levemente ácida (SAEW) com pH de 5 a 6,5 e ORP de aproximadamente 850mV.

A NEW é produzida pela mistura da solução anódica com íons OH_ ou por eletrólise de NaCl em uma unidade de célula única, enquanto SAEW é gerada pela eletrólise de HCl sozinho ou em combinação com NaCl em uma unidade de célula única.

Em termos gerais, as nomenclaturas mais utilizadas nos artigos são:

Tabela 1 – Siglas e abreviações mais utilizadas nos artigos técnicos relacionados a água eletrolisada

Apesar dos resultados em relação à ação bactericida da AEW serem favoráveis, o processo AEW pode gerar gases (Cl2) que são tóxicos aos manipuladores, restringindo o uso em nível industrial.

A atividade antimicrobiana da água eletrolisada depende muito do pH e de como o pH pode determinar a forma disponível de cloro. O ácido hipocloroso (HClO) é a forma mais forte de cloro, que pode chegar a 80 vezes mais que o hipoclorito (ClO) quando o pH está próximo 5–6,5. Em pH mais baixo, o HClO é dissociado em gás cloro Cl2, e em pH mais alto forma ClO-. (Fig. 2).

Figura 2. Relação entre pH e formas disponíveis de cloro.

Espécies de cloro ativo, incluindo Cl2, ClO, e HClO, contribuem para a inativação microbiana. Pesquisadores concluíram que a principal razão para a inativação das bactérias são as propriedades de penetração do HClO e ClO. ClO ionizado não é capaz de penetrar na membrana da célula microbiana devido à existência da bicamada lipídica hidrofóbica e algumas estruturas protetoras da parede celular, e o fato de que a célula de uma bactéria patogênica é carregada negativamente por natureza. A carga dos íons negativos de hipoclorito (ClO) será repelida pela carga negativa da parede celular da bactéria patogênica, resultando em ação oxidante fraca apenas fora da célula.

A forma neutra do ácido hipocloroso HClO pode penetrar na parede celular do microrganismo patogênico com muita facilidade, tornando-se assim um desinfetante muito eficaz que pode atuar tanto no exterior como no interior do microrganismo. O ácido hipocloroso também pode penetrar nas camadas de limo, paredes celulares e camadas protetoras de microrganismos. Além disso, o ácido hipocloroso pode matar as bactérias oxidando grupos sulfidrila de certas enzimas, interrompendo a síntese de proteínas e descarboxilação de aminoácidos a nitritos e aldeídos.

A corrente elétrica, a vazão de água e a concentração de sal também afetam as propriedades da água eletrolisada produzida. O aumento da vazão de água causa um aumento na corrente elétrica devido à eletrólise de mais solução salina. Aumentar a redução bacteriana aumentando a taxa de fluxo de água foi relatado para E. coli e L. monocytogenes. A concentração de sal tem relação linear com a concentração de cloro.

Alguns equipamentos, além de produzir a água eletrolisada levemente ácida SAEW, também produzem o BEW, que devido a sua composição de hidróxido de sódio pode ser estudado futuramente como detergente e aplicado antes da desinfecção para limpeza, por exemplo, de superfícies. Resíduos orgânicos diminuem a eficácia de redução microbiológica pelo ácido hipocloroso.

Em um trabalho de revisão de aplicações de água eletrolisada como agente de limpeza e desinfecção, pesquisadores relataram que essa é uma solução promissora para a indústria de alimentos e bebidas, podendo ser aplicada sozinha ou combinada com outras técnicas de desinfecção como ultrassom, ultravioleta e tratamento térmico.

A água eletrolisada EW é reconhecida por órgãos norte-americanos como FDA (Food and Drug Administration,  agência norte-americana reguladora dos setores alimentícios e de medicamentos), USEPA (United States Environmental Protection Agency, Agência de Proteção Ambiental) e  (United States Department of Agriculture, Departamento da Agricultura dos Estados Unidos) para fins de descontaminação de superfícies e no processamento de alimentos. Além disso, foi reconhecida como desinfetante para utilização em produtos orgânicos  pelo USDA, em 2015.

Vantagens e desvantagens da água eletrolisada

As vantagens da água eletrolisada são muitas em comparação com outras tecnologias de sanitização:

  1. Pode ser gerada no local e é relativamente barata.
  2. Fornece água eletrolisada com qualidade consistente, que também pode ser armazenada por até 6 meses.
  3. Pode ser produzido por eletrólise de água com solução salina diluída, como NaCl, o que o torna seguro para o meio ambiente.
  4. Sua aplicação reduz os problemas de segurança e custo com manuseio, armazenamento e aplicação de solução de cloro.
  5. No caso da água eletrolisada levemente ácida SAEW e neutra NEW são mais segura para operadores e funcionários pois não gera gás cloro.
  6. Atualmente é possível obter água eletrolisada levemente ácida SAEW com 500 ppm e é fácil modificar a concentração de cloro para atingir as concentrações desejadas com base na aplicação.
  7. Pode ser convertido para a água normal após a aplicação, sem liberar gases prejudiciais.
  8. Segundo alguns pesquisadores, a água eletrolisada não causa resistência em microrganismos
  9. É mais eficaz que o cloro. Consequentemente, a formação de cloraminas e trialometanos é menor.
  10. Também pode evitar o escurecimento enzimático durante o armazenamento de alimentos em atmosfera modificada embalagem.
  11. A água eletrolisada tem menos citotoxicidade e menos impacto nos atributos de qualidade de materiais alimentares. No caso da SAEW, é menos corrosiva e tem menor impacto na qualidade em comparação com outras soluções ácidas.
  12. NEW tem muitas vantagens devido ao seu pH neutro e à forma de cloro disponível.
  13. A NEW obteve o certificado do Departamento de Agricultura dos EUA (DA) como Produto orgânico.

A água eletrolisada, semelhante a outras tecnologias, tem suas próprias desvantagens:

  1. AEW, pH <3, pode ser corrosivo para alguns metais e resinas sintéticas.
  2. Sua eficácia diminui significativamente quando entra em contato com materiais orgânicos particularmente proteínas devido à sua reação com proteína.
  3. No caso de AEW, pH <3, a máquina pode gerar gás cloro que não é seguro para o operador.
  4. O equipamento pode ser um investimento inicial alto.

Aplicações em indústria de alimentos

Algumas aplicações possíveis do ácido hipocloroso nas indústrias:

  • Desinfecção de superfícies
  • Limpeza de circuitos fechados – CIP
  • Lavagem de caixas plásticas de transporte
  • Lavagem e desinfecção de frutas e ovos
  • Lava-botas ou barreiras de contenção (superfícies dos calçados)
  • Nebulização e sanitização por “neblina” de áreas/cantos de difícil acesso.

E no Brasil?

Segundo levantamento de estudos e artigos publicados em vários países, a utilização dessa tecnologia no Brasil é menor do que 1%, conforme apresentado na Figura 3.

Figura 3: Artigos publicados sobre a utilização de água eletrolisada

Fonte: Iram at all, 2021

 Para atender a legislação brasileira para Saneantes (RDC 14/2007), que está em conformidade com a AOAC – referente a Desinfetantes para indústria de Alimentos, foram realizados testes de eficácia de redução microbiológica e para aprovação devem apresentar uma redução mínima de 5 log. Os testes foram realizados em laboratório acreditado no Brasil com água eletrolisada levemente ácida SAEW, pH 5,35 / 5,68 e 500 ppm de ácido hipocloroso e tempo de contato de 10 minutos. Foram aprovados e estão demonstrados na Tabela 2.

Tabela 2: Resultados fornecidos por laboratório acreditado

Assim, podemos concluir que as indústrias brasileiras têm muito a desenvolver com a nova tecnologia sustentável que o ácido hipocloroso oferece, com várias vantagens ambientais e visando maior segurança dos alimentos.

Leia também:

O papel da água eletrolisada na segurança dos alimentos

·        Referências

  Ruviaro, A. R. 2017. O papel da água eletrolisada na segurança dos alimentos. 

Al    Haq, M.I., Sugiyama, J., Isobe, S., 2005. Applications of electrolyzed water in agriculture & food industries.  Food Sci. Technol. Res. 11 (2), 135–150.

·         Audenaert, K., Monbaliu, S., Deschuyffeleer, N., Maene, P., Vekeman, F., Haesaert, G., De Saeger, S., Eeckhout, M., 2012. Neutralized electrolyzed water efficiency reduces Fusarium spp. in vitro and on

·         Ayebah, B., Hung, Y.C., Frank, J.F., 2005. Enhancing the bactericidal effect of electrolyzed water on Listeria monocytogenes biofilms formed on stainless steel. J. Food Protect. 68, 1375–1380.

·         Bird MR, Fryer PJ (1991) An experimental study of the cleaning of surfaces fouled by whey proteins. Food Bioprod Process 69:13–21

·         Deza, M., Araujo, M., Garrido, M., 2003. Inactivation of Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes on the surface of tomatoes by neutral electrolyzed water. Lett. Appl. Microbiol. 37 (6), 482–487

·         Deza, M.A., Araujo, M., Garrido, M.J., 2005. Inactivation of Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus on stainless steel and glass surfaces by neutral electrolysed water. Lett. Appl. Microbiol. 40, 341–346. https://doi.org/10.1111/j.1472-765X.2005.01679.x.

·         Forghani, F., Park, J.-H., Oh, D.-H., 2015. Effect of water hardness on the production and microbicidal efficacy of slightly acidic electrolyzed water. Food Microbiol. 48, 28–34.

·         Fukuzaki, S., 2006. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci. 11 (4), 147–157.

·         Gomez-Lopez, V.M., Ragaert, P., Ryckeboer, J., Jeyachchandran, V., Debevere, J., Devlieghere, F., 2007. Shelf-life of minimally processed cabbage treated with neutral electrolyzed oxidizing water and stored under equilibrium modified atmosphere. Int. J. Food Microbiol. 117 (1), 91–98.

·        Hao X.X., B. M. Li , C. Y. Wang , Q. Zhang and W. Cao. 2013. Application of slightly acidic electrolyzed water for inactivating microbes in a layer breeding house. Poultry Science 92 :2560–2566

·         Hinton, A.Jr., Northcutt, J. K., Smith, D. P., Musgrove, M. T., and Ingram, K. D. 2007. Spoilage Microflora of Broiler Carcasses Washed with Electrolyzed Oxidizing or Chlorinated Water Using an Inside-Outside Bird Washer

·         Hricova D., R. Stephan, and C. Zweifel. 2008. Eletrolyzed water and its application in the food industry. J of Food Protection. Vol. 71. No 9 Pages 1934-1947.

·         Hsu, S.-Y., 2003. Effects of water flow rate, salt concentration and water temperature on efficiency of na electrolyzed oxidizing water generator. J. Food Eng. 60 (4), 469–473.

·         Iram, A., Wang, X., Demirci, A., 2021. Electrolyzed Oxidizing Water and Its Applications as Sanitation and Cleaning Agent. Food Engineering Reviews 13:411–427

·         Issa-Zacharia, A., Kamitani, Y., Miwa, N., Muhimbula, H., Iwasaki, K., 2011. Application of slightly acidic electrolyzed water as a potential nonthermal food sanitizer for decontamination of fresh ready-to-eat vegetables and sprouts. Food Control 22 (3), 601–607.

·         Iwasawa, A., Nakamura, Y., 1993. Antimicrobial activity of aqua oxidizing water. Clin. Bacteriol. 20, 469–473.

·         Kim, C., Hung, Y.C., Brackett, R.E., Frank, J.F., 2001. Inactivation of Listeria monocytogenes biofilms by electrolyzed oxidizing water. J. Food Process. Preserv. 25, 91–100. https://doi.org/10.1111/j.1745-4549.2001.tb00446.x.

·         Koseki, S., Fujiwara, K., Itoh, K., 2002. Decontaminative effect of frozen acidic electrolyzed water on lettuce. J. Food Prot. 65 (2), 411–414.

·         Koseki, S., Yoshida, K., Isobe, S., Itoh, K., 2001. Decontamination of lettuce using acidic electrolyzed water. J. Food Prot. 64 (12), 652–658.

·         Nan, S., Yongyu, L., Baoming, L., Wang, C., Cui, X., Cao, W., 2010. Effect of slightly acidic electrolyzed water for inactivating Escherichia coli O157:H7 and Staphylococcus aureus analyzed by transmission eléctron microscopy. J. Food Prot. 73 (12), 2211–2216.

·         Ovissipour, M., Al-Qadiri, H.M., Sablani, S.S., Govindan, B.N., Al-Alami, N., Rasco, B., 2015. Efficacy of acidic and alkaline electrolyzed water for inactivating Escherichia coli O104:H4, Listeria monocytogenes, Campylobacter jejuni, Aeromonas hydrophila, and Vibrio parahaemolyticus in cell suspensions. Food Control 53, 117–123.

·         Possas A.,  F. P´erez-Rodríguez ,  F.  Tarlak ,  R.  M.  García-Gimeno , 2021. Quantifying and modelling the inactivation of Listeria monocytogenes by  electrolyzed water on food contact surfaces. J. of Food Engineering. 290: 110287

·         Rahman, S.M.E., Khan, I., Oh, D.-H., 2016. Electrolyzed water as a novel sanitizer in the food industry: current trends and future perspective. Compr. Rev. Food Sci. Food Saf. 15, 471–490. https://doi.org/10.1111/1541-4337.12200

·         Rahman, S.M.E., Park, J.H., Wang, J., Oh, D.-H., 2012. Stability of low concentration electrolyzed water and its sanitization potential against foodborne pathogens. J. Food Eng. 113 (4), 548–553.

·         Ruviaro, A. R. 2017. O papel da água eletrolisada na segurança dos alimentos.  https://foodsafetybrazil.org/agua-eletrolisada-na-seguranca-dos-alimentos/

·         Santos,R. A,, Garcia R. G., Gandra E. R. S., Burbarelli M. F. C., Muchon, J. L., Caldara, F. R. 2019. Carcass Washing as an Alternative to Trimming – Is It Possible to Use Carcass Washing as an Alternative to Trimming in Commercial Broiler Slaughterhouses in Brazil? Brazilian Journal of Poultry Science. V.22 n.2 001-006 http://dx.doi.org/10.1590/1806-9061-2019-1209

·         Shiroodi S. G., Ovissipour M., 2018. Eletrolyzed water application in fresh produce sanitation.  Elsevier. Chapter 3, 67-87.

·         Wang X, Demirci A, Puri VM, Graves RE (2016) Evaluation of blended electrolyzed oxidizing water-based cleaning-in-place (CIP) technique using a laboratory-scale milking system. Trans ASABE 59:359–370

·         Zang,  Y.  T. , Li,  B.  M., Bing, Sh. and  Cao W. , 2015. Modeling disinfection of plastic poultry transport cages inoculated with Salmonella enteritids by slightly acidic electrolyzed water using response surface methodology  Poultry Science 94:2059–2065

·         Zhang, J., Wang, J., Zhao, D., Hao, J. 2021. Efficacy of the two-step disinfection with slightly acidic electrolyzed water for reduction of Listeria monocytogenes contamination on food raw materials. LWT 140 (2021) 110699

·         FDA & EPA. Certifications of Electrolyzed Water. 2p. 2016 Disponível em: http://www.environize.ca/wp-content/uploads/2015/03/FDA-EPA-Approvals-s.pdf. Acesso em maio de 2017.

·         USDA. U.S. Department of Agriculture. National Organic Program. Policy Memorandum. PM 15-4 Electrolyzed Water. In: National Organic Program Handbook: Guidance and Instructions for Accredited Certifying Agents and Certified Operations.  2 p. 2015. Washington, DC. Sept, 11, 2015.  Disponível em: https://www.ams.usda.gov/sites/default/files/NOP-PM-15-4-ElectrolyzedWater.pdf. Acesso em maio de 2017.

·         https://avinews.com/electrolisis-salina-vs-hipoclorito-sodico/ Revista AviNews Espanha Dezembro 2021

10 min leituraO ácido hipocloroso é um novo e promissor ativo desinfetante com apelo sustentável, porque é obtido pela eletrólise de água e sal e não tem efeitos nocivos ao meio ambiente. […]

5 min leitura
3

Limpeza de tanques para alimentos e bebidas – Cuidados Importantes

5 min leitura

A limpeza de tanques pode ser algo muito complexo e por isso escrevi esse artigo para expor algumas questões importantes, principalmente por haver pouca referência sobre esse tema.

Na busca de soluções de higienização adequada, tenho visto alguns profissionais da área de qualidade e produção com problemas crônicos de contaminação microbiológica em razão de projetos não sanitários na indústria de alimentos e bebidas.

As indústrias de alimentos e bebidas buscam cada vez mais a segurança dos alimentos que produzem e por isso as certificações em normas IFS, FSSC 22000, BRCGS, ISO 22000 são cada vez mais importantes para atestarem a conformidade de seus processos. Essas normas contemplam vários aspectos relevantes e estão evoluindo na consideração do projeto sanitário como um dos pontos para obtenção da certificação e provavelmente a médio prazo serão mais exigentes em relação a isso.

Os tanques podem ser utilizados para armazenamento ou processos de mistura e os processos de higiene adequados impactam as indústrias de alimentos, justamente por ser crítico o controle microbiológico para os alimentos. Os tanques podem conter vários acessórios, que dependem da aplicação e nível de controle escolhido para o processo, conforme figura abaixo:

Figura 1: Tanque com componentes – fonte: Manual do Fabricante.

Independentemente do tipo de aplicação, o primeiro aspecto a ser considerado é a drenabilidade do tanque, que é definida pelos manuais (ou guias)  EHEDG, e por isso é o primeiro passo de verificação.

 

Figura 2 – Drenagem de tanques – Fonte: EHEDG: https://www.ehedg.org/

O próximo ponto de verificação é o agitador, que impacta tanto a limpeza como a eficiência de mistura. Por ser um investimento proporcionalmente alto em projeto, há uma busca por redução de custos na aquisição de tanques e por isso em alguns casos subjuga-se a importância do projeto do agitador, gerando consequências irreversíveis. Por isso, pode ser importante que o agitador seja projetado por empresas especializadas em agitação, para que tenha eficiência, baixo consumo de energia e seja fácil de limpar.

Entradas e saídas dos tanques também são importantes na análise, e precisam ser de conexões sanitárias, e que todas sejam limpas no processo de higienização. Os fabricantes de tanques podem optar por válvulas que têm conexões especiais para saídas de tanques.  Atenção especial deve ser dedicada aos sistemas de respiro e “ladrão” para que não sejam possíveis contaminações indesejadas do produto que está dentro dos tanques, através da instalação de filtros especiais que permitam a entrada e saída de ar na quantidade adequada.

A amostragem periódica é opcional, mas a amostra precisa ser representativa, tanto no aspecto físico-químico como microbiológico, por isso a válvula de amostra deve estar rente ao tanque e não ter nenhum ponto morto para evitar crescimento de microrganismos. Cuidado também com o desenho da válvula para que seja fácil limpeza e desinfecção.

A instrumentação de nível, pressão ou temperatura, deve ser considerada para ser possível a higienização, com conexões sanitárias O nível dos tanques deve ser mantido o mínimo possível para que haja uma boa ação mecânica do(s) spray(s) de limpeza. Os tanques não devem ter indicador de nível do tipo visualizador de vidro ou mangueira na lateral conforme foto abaixo, devido à dificuldade de limpeza eficiente e possibilidade de formação de biofilmes.

 

Figura 3 – Indicador de nível externo

Finalmente os sprays de limpeza são fundamentais para higienização interna dos tanques, pela ação mecânica do Ciclo de Sinner. A configuração dos sprays tem relação direta na eficiência de limpeza, tempo de necessário para a remoção das sujidades, consumo de água e pressão da bomba de alimentação. Os sprays não são apenas esferas de aço inox perfuradas. Sua especificação precisa ser feita por softwares que analisam toda a construção do tanque, acessórios e produto processado e assim deve ser feita por especialistas.

Há opções de sprays que consideram basicamente três tipos: spray ball fixo, spray ball rotativo e cabeçote rotativo, e vários modelos que serão configurados conforme necessidade. Os sprays fixos têm maior consumo de água e menor ação mecânica, já os sprays rotativos são uma solução intermediária e os cabeçotes rotativos têm menor consumo de água, maior ação mecânica e requerem maior investimento.

Figura 4: Exemplos de modelos de fabricante.

Uma curiosidade é que até tanques de armazenamento de água deveriam ter sprays para que se houver problemas de formação de biofilmes, seja possível realizar uma higienização adequada. Veja um caso de tanque de 20.000 l com dificuldade de remover os biofilmes.

 

Figura 5: Tanque de água potável com biofilme, sem spray: Fonte: autora

É importante definir uma frequência de verificação da limpeza e eficiência do spray. Na foto abaixo pode ser visto que havia uma região que o spray não atingia e houve formação de biofilme.

Figura 6 – Biofilme próximo ao eixo do spray de limpeza : Fonte: autora

O último tópico, mas não menos importante, a ser considerado são os produtos químicos para a limpeza, ou seja, os saneantes (registrados e isentos de registros) – que devem ser aprovados pela ANVISA e selecionados conforme produto processado e necessidades de limpeza e desinfecção. Os detergentes aditivados são alternativas para redução do tempo e melhor eficiência de limpeza, inclusive devem ser utilizados produtos específicos quando há necessidade de remoção de biofilmes.

Resumindo, é necessário analisar os detalhes do tanque e utilizar os conceitos de segurança de alimentos e microbiologia, porque um tanque não é só feito de aço inox AISI 314 ou AISI 316. Selecionar o projeto e os acessórios adequados pode reduzir o custo operacional e evitar problemas de segurança de alimentos. Se o tanque já está instalado, é possível adequá-lo com empresa especializada.

 

Referências:

https://foodsafetybrazil.org/desenho-sanitario-de-equipamentos/ 

Alles, M. J. L.; Dutra C. C.; Projeto sanitário para a indústria de alimentos e bebidas; CETA – SENAI – RS; 2011

https://mygfsi.com/news_updates/built-in-hygiene-from-farm-to-fork-an-update-from-the-gfsi-technical-working-group-on-hygienic-design/

5 min leituraA limpeza de tanques pode ser algo muito complexo e por isso escrevi esse artigo para expor algumas questões importantes, principalmente por haver pouca referência sobre esse tema. Na busca […]

2 min leitura
4

Limpeza de tanque de transporte de alimentos – tradução do guia da FSSC 22000

2 min leitura

Hoje o time de tradução do Food Safety Brazil nos traz um material que entendo ser de grande relevância para nosso país e para os profissionais que atuam de alguma forma com o processo de transporte de alimentos do campo à mesa. Quem já trabalhou ou interage de alguma forma com o processo de logística deve ter alguma história para contar de problemas com clientes, em que a limpeza do meio de transporte contratado tenha sido causa de alguma reclamação.

Eu mesma já passei por essa situação várias vezes, pois em uma empresa que trabalhei era feito teste swab no bocal do mangote e muitas vezes a entrega atrasava, devido à reprovação do mangote. Na sequência o caminhoneiro saía para realizar nova higienização e em novo teste, continuava reprovado. Enfim, se pararmos para contabilizar o quanto de dinheiro das organizações foi desperdiçado em função da falta de limpeza correta dos tanques de transporte, concluíremos que o valor é alto. Sendo assim, traduzimos para vocês a versão 1 do Documento de Orientação: Limpeza de Tanque de Transporte, lançado pela FSSC 22000 em dezembro de 2020.

Quem de nós não precisou aprender sobre material de contato, em função de avaliar riscos dos materiais de contato utilizados no processo de transporte? Quem não tentou justificar sem sucesso que era necessário investimento no processo de limpeza de caminhões para evitar contaminação cruzada e não conseguiu?

Então… Com esse novo guia da FSSC 22000 traduzido pelo Food Safety Brazil você terá muitos argumentos que permitem demonstrar para a alta direção a importância do tema. Se bem utilizado, este guia ajudará, inclusive, a reduzir números de reclamações de clientes ou de reprovação de produtos devido à contaminação pela prática inadequada de limpeza praticada. Temos com este guia diretrizes claras para a melhoria contínua do processo de limpeza na cadeia de transportes que atuam no segmento de alimentos.

Aproveite e conte-nos se você já teve alguma experiência em que a falha de limpeza no transporte foi causa de algum problema.

Acesse o guia clicando aqui. Boa leitura!

2 min leituraHoje o time de tradução do Food Safety Brazil nos traz um material que entendo ser de grande relevância para nosso país e para os profissionais que atuam de alguma […]

Compartilhar
Pular para a barra de ferramentas